Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

J Houseley, K Kotovic, A El Hage, D Tollervey Epigenetics

Trf4 is the poly(A) polymerase component of TRAMP4, which stimulates nuclear RNA degradation by the exosome. We report that in Saccharomyces cerevisiae strains lacking Trf4, cryptic transcripts are detected from regions of repressed chromatin at telomeres and the rDNA intergenic spacer region (IGS1-R), and at CEN3. Degradation of the IGS1-R transcript was reduced in strains lacking TRAMP components, the core exosome protein Mtr3 or the nuclear-specific exosome component Rrp6. IGS1-R has potential binding sites for the RNA-binding proteins Nrd1/Nab3, and was stabilized by mutation of Nrd1. IGS1-R passes through the replication fork barrier, a region required for rDNA copy number control. Strains lacking Trf4 showed sporadic changes in rDNA copy number, whereas loss of both Trf4 and either the histone deacetylase Sir2 or the topoisomerase Top1 caused dramatic loss of rDNA repeats. Chromatin immunoprecipitation analyses showed that Trf4 is co-transcriptionally recruited to IGS1-R, consistent with a direct role in rDNA stability. Co-transcriptional RNA binding by Trf4 may link RNA and DNA metabolism and direct immediate IGS1-R degradation by the exosome following transcription termination.

+view abstract The EMBO journal, PMID: 18007593 2007

F Garçon, DT Patton, JL Emery, E Hirsch, R Rottapel, T Sasaki, K Okkenhaug Immunology

Activation of PI3K is among the earliest signaling events observed in T cells after conjugate formation with antigen-presenting cells (APCs). The relevant PI3K catalytic isoform and relative contribution of the TcR and CD28 to PI3K activity at the immune synapse have not been determined unequivocally. Using a quantitative imaging-based assay, we show that the PI3K activity at the T cell-APC contact area is dependent on the p110delta, but not the p110gamma, isoform of PI3K. CD28 enhanced PIP3 production at the T-cell synapse independently of its YMNM PI3K-recruitment motif that instead was required for efficient PKC recruitment. CD28 could partially compensate for the lack of p110delta activity during T-cell activation, which indicates that CD28 and p110delta act in parallel and complementary pathways to activate T cells. Consistent with this, CD28 and p110delta double-deficient mice were severely immune compromised. We therefore suggest that combined pharmaceutic targeting of p110delta activity and CD28 costimulation has potent therapeutic potential.

+view abstract Blood, PMID: 18006698 2008

SM Garcia, MO Casanueva, MC Silva, MD Amaral, RI Morimoto Epigenetics

Protein homeostasis maintains proper intracellular balance by promoting protein folding and clearance mechanisms while minimizing the stress caused by the accumulation of misfolded and damaged proteins. Chronic expression of aggregation-prone proteins is deleterious to the cell and has been linked to a wide range of conformational disorders. The molecular response to misfolded proteins is highly conserved and generally studied as a cell-autonomous process. Here, we provide evidence that neuronal signaling is an important modulator of protein homeostasis in post-synaptic muscle cells. In a forward genetic screen in Caenorhabditis elegans for enhancers of polyglutamine aggregation in muscle cells, we identified unc-30, a neuron-specific transcription factor that regulates the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). We used additional sensors of protein conformational states to show that defective GABA signaling or increased acetylcholine (ACh) signaling causes a general imbalance in protein homeostasis in post-synaptic muscle cells. Moreover, exposure to GABA antagonists or ACh agonists has a similar effect, which reveals that toxins that act at the neuromuscular junction are potent modifiers of protein conformational disorders. These results demonstrate the importance of intercellular communication in intracellular homeostasis.

+view abstract Genes & development, PMID: 18006691 2007

T Sexton, H Schober, P Fraser, SM Gasser

The nucleus is a highly heterogeneous structure, containing various 'landmarks' such as the nuclear envelope and regions of euchromatin or dense heterochromatin. At a morphological level, regions of the genome that are permissive or repressive to gene expression have been associated with these architectural features. However, gene position within the nucleus can be both a cause and a consequence of transcriptional regulation. New results indicate that the spatial distribution of genes within the nucleus contributes to transcriptional control. In some cases, position seems to ensure maximal expression of a gene. In others, it ensures a heritable state of repression or correlates with a developmentally determined program of tissue-specific gene expression. In this review, we highlight mechanistic links between gene position, repression and transcription. Recent findings suggest that architectural features have multiple functions that depend upon organization into dedicated subcompartments enriched for distinct enzymatic machinery.

+view abstract Nature structural & molecular biology, PMID: 17984967 2007

TM Wishart, SH Macdonald, PE Chen, MJ Shipston, MP Coleman, TH Gillingwater, RR Ribchester Signalling

Mice carrying the spontaneous genetic mutation known as Wallerian degeneration slow (Wlds) have a unique neuroprotective phenotype, where axonal and synaptic compartments of neurons are protected from degeneration following a wide variety of physical, toxic and inherited disease-inducing stimuli. This remarkable phenotype has been shown to delay onset and progression in several mouse models of neurodegenerative disease, suggesting that Wlds-mediated neuroprotection may assist in the identification of novel therapeutic targets. As a result, cross-breeding of Wlds mice with mouse models of neurodegenerative diseases is used increasingly to understand the roles of axon and synapse degeneration in disease. However, the phenotype shows strong gene-dose dependence so it is important to distinguish offspring that are homozygous or heterozygous for the mutation. Since the Wlds mutation comprises a triplication of a region already present in the mouse genome, the most stringent way to quantify the number of mutant Wlds alleles is using copy number. Current approaches to genotype Wlds mice are based on either Southern blots or pulsed field gel electrophoresis, neither of which are as rapid or efficient as quantitative PCR (QPCR).

+view abstract Molecular neurodegeneration, PMID: 17971231 2007

M Yuille, GJ van Ommen, C Bréchot, A Cambon-Thomsen, G Dagher, U Landegren, JE Litton, M Pasterk, L Peltonen, M Taussig, HE Wichmann, K Zatloukal

Biobanks are well-organized resources comprising biological samples and associated information that are accessible to scientific investigation. Across Europe, millions of samples with related data are held in different types of collections. While individual collections can be well organized and accessible, the resources are subject to fragmentation, insecurity of funding and incompleteness. To address these issues, a Biobanking and BioMolecular Resources Infrastructure (BBMRI) is to be developed across Europe, thereby implementing a European 'roadmap' for research infrastructures that was developed by a forum of EU member states and that has been received by the European Commission. In this review, we describe the work involved in preparing for the construction of BBMRI in a European and global context.

+view abstract Briefings in bioinformatics, PMID: 17959611 2008

M He, MJ Taussig

Cell-free transcription and translation provides an open, controllable environment for production of correctly folded, soluble proteins and allows the rapid generation of proteins from DNA without the need for cloning. Thus it is becoming an increasingly attractive alternative to conventional in vivo expression systems, especially when parallel expression of multiple proteins is required. Through novel design and exploitation, powerful cell-free technologies of ribosome display and protein in situ arrays have been developed for in vitro production and isolation of protein-binding molecules from large libraries. These technologies can be combined for rapid detection of protein interactions.

+view abstract Biochemical Society transactions, PMID: 17956255 2007

HL Roderick, DR Higazi, I Smyrnias, C Fearnley, D Harzheim, MD Bootman

Ca(2+) increases in the heart control both contraction and transcription. To accommodate a short-term increased cardiovascular demand, neurohormonal modulators acting on the cardiac pacemaker and individual myocytes induce an increase in frequency and magnitude of myocyte contraction respectively. Prolonged, enhanced function results in hypertrophic growth of the heart, which is initially also associated with greater Ca(2+) signals and cardiac contraction. As a result of disease, however, hypertrophy progresses to a decompensated state and Ca(2+) signalling capacity and cardiac output are reduced. Here, the role that Ca(2+) plays in the induction of hypertrophy as well as the impact that cardiac hypertrophy and failure has on Ca(2+) fluxes will be discussed.

+view abstract Biochemical Society transactions, PMID: 17956254 2007

Wakelam MJ, Pettitt TR, Postle AD Signalling

This chapter outlines methods that can be applied to determine the levels of lipids in cells and tissues. In particular, the methods focus upon the extraction and analysis of those lipids critical for monitoring signal transduction pathways. The methods address the analysis of the phosphoinositides, the lipid agonists lysophosphatidic acid and sphingosine 1-phosphate, and the neutral lipid messengers diacylglycerol and ceramide. Additionally, because of the increasing need to determine the dynamics of signaling, the analysis of phospholipids synthesis using stable isotope methods is described. The use of these methods as described or adaptation to permit both approaches should allow investigators to determine changes in signaling lipids and to better understand such processes in most cell types. The increasing appreciation of the central roles played by lipid signaling pathways has dispelled the misconception that lipids are inert structural components that are involved solely in keeping a cell intact. Advances in our understanding of cell-signaling pathways have identified particular lipids that act to regulate the functions of a number of proteins either by controlling enzyme activity directly, or by localizing proteins to particular intracellular compartments where they perform a specialized role. These lipid-binding domains (e.g., PH, PX, FYVE) have been found in many proteins, and considerable detail is recorded of the structural basis of lipid protein interaction. Additional lipid-binding domains exist, which remain less well characterized (e.g., those that bind phosphatidic acid [PA] or ceramide); however, the important regulatory roles that these lipids play and the pathways involving these messengers are increasingly appreciated. While the downstream targets are thus being defined, the actual changes in lipid concentration in a stimulated cell or membrane are less characterized. The primary reason for this lack has been a deficiency in methodology. Much of the reported studies of lipid messengers in stimulated cells have depended upon monitoring changes in radio-labeled cells. Many well-documented problems are associated with this type of methodology, including lack of isotopic equilibrium, distinct pools with different turnover rates, and inadequate separation of radio-labeled metabolites; however, much important information has been generated. The second approach has been to make use of the lipid-binding properties of the target protein domains and to generate a tagged fusion protein, generally GFP, which permits identification of a region rich in a signaling lipid (Guillou et al., 2007). This has proved useful in monitoring PI-3-kinase activation in stimulated cells; however, considerable caveats must be raised, not least the problems associated with lipid specificity and the fact that many of these domains have associated protein-binding regions that can compromise the findings. A further problem associated with these two methodologies is that they tend to group lipids together and take no account of the multiple acyl chain structures that occur in all lipids. These concerns point to the need to determine actual changes in lipid compositions. Until relatively recently, such an analysis was unachievable; however, advances in both chromatographic separation and mass spectrometry (MS) have permitted the development of lipidomic analysis. This chapter outlines a number of methods that allow determination of changes in signaling lipids. Adaptation of the methods here for the analysis of other molecules should be relatively straightforward in the future. Much of the lipidomic research in the United Kingdom is focused upon signaling lipidomics, with particular foci upon phosphoinositide-related signaling in Birmingham and Cambridge (Wakelam) and London (Larijani), upon eicosanoids in Cardiff (O'Donnell), and steroids in London (Griffiths). Meanwhile, the use of stable isotopes has been particularly developed in Southampton (Postle).

+view abstract Methods in enzymology, PMID: 17954220 2007

O Florey, DO Haskard Signalling

To be able to visualize real time leukocyte - endothelial cell interactions in vitro opens up the possibility of exploring the complex cascade of events that culminate in leukocyte recruitment and diapedesis in a much more detailed and controlled way. Techniques have been developed whereby fluorescently labeled leukocytes are perfused over an endothelial substrate in a controlled manner. Interactions can then be visualized and, using motion tracking software, the movement of cells characterized. Dynamic flow based adhesion assay protocols build on previous static assays of leukocyte adhesion in better modeling the environment in which these interactions actually take place in vivo.

+view abstract Methods in molecular medicine, PMID: 17951668 2007

T Sexton, D Umlauf, S Kurukuti, P Fraser

The genome is spatially organized inside nuclei, with chromosomes and genes occupying preferential positions relative to each other and to various nuclear landmarks. What drives this organization is unclear, but recent findings suggest there are extensive intra- and inter-chromosomal communications between various genomic regions that appear to play important roles in genome function. Here we review transcription factories, distinct sub-nuclear foci where nascent transcription occurs. We argue that the spatially restricted, limited number of transcription sites compels transcribed regions of the genome to dynamically self-organize into tissue-specific conformations, thus playing a major role in the three-dimensional interphase organization of the genome.

+view abstract Seminars in cell & developmental biology, PMID: 17950637 2007

S Schoenfelder, G Smits, P Fraser, W Reik, R Paro Epigenetics

The imprinting control region (ICR) upstream of H19 is the key regulatory element conferring monoallelic expression on H19 and Igf2 (insulin-like growth factor 2). Epigenetic marks in the ICR regulate its interaction with the chromatin protein CCCTC-binding factor and with other control factors to coordinate gene silencing in the imprinting cluster. Here, we show that the H19 ICR is biallelically transcribed, producing both sense and antisense RNAs. We analyse the function of the non-coding transcripts in a Drosophila transgenic system in which the H19 upstream region silences the expression of a reporter gene. We show that knockdown of H19 ICR non-coding RNA (ncRNA) by RNA interference leads to the loss of reporter gene silencing. Our results are, to the best of our knowledge, the first to show that ncRNAs in the H19 ICR are functionally significant, and also indicate that they have a role in regulating gene expression and perhaps epigenetic marks at the H19/Igf2 locus.

+view abstract EMBO reports, PMID: 17948025 2007

DA Rider, CE Havenith, R de Ridder, J Schuurman, C Favre, JC Cooper, S Walker, O Baadsgaard, S Marschner, JG vandeWinkel, J Cambier, PW Parren, DR Alexander

Zanolimumab is a human IgG1 antibody against CD4, which is in clinical development for the treatment of cutaneous and nodal T-cell lymphomas. Here, we report on its mechanisms of action. Zanolimumab was found to inhibit CD4+ T cells by combining signaling inhibition with the induction of Fc-dependent effector mechanisms. First, T-cell receptor (TCR) signal transduction is inhibited by zanolimumab through a fast, dual mechanism, which is activated within minutes. Ligation of CD4 by zanolimumab effectively inhibits early TCR signaling events but, interestingly, activates signaling through the CD4-associated tyrosine kinase p56lck. An uncoupling of p56lck from the TCR by anti-CD4 allows the kinase to transmit direct inhibitory signals via the inhibitory adaptor molecules Dok-1 and SHIP-1. Second, CD4+ T cells are killed by induction of antibody-dependent cell-mediated cytotoxicity, to which CD45RO+ cells are more sensitive than CD45RA+ cells. Finally, zanolimumab induces down-modulation of CD4 from cell surfaces via a slow Fc-dependent mechanism. In conclusion, zanolimumab rapidly inhibits T-cell signaling via a dual mechanism of action combined with potent Fc-dependent lysis of CD4+ T cells and may act long-term by down-regulating CD4.

+view abstract Cancer research, PMID: 17942927 2007

JT Huang, L Wang, S Prabakaran, M Wengenroth, HE Lockstone, D Koethe, CW Gerth, S Gross, D Schreiber, K Lilley, M Wayland, D Oxley, FM Leweke, S Bahn Mass Spectrometry

Although some insights into the etiology of schizophrenia have been gained, an understanding of the illness at the molecular level remains elusive. Recent advances in proteomic profiling offer great promise for the discovery of markers underlying pathophysiology of diseases. In the present study, we employed two high-throughput proteomic techniques together with traditional methods to investigate cerebrospinal fluid (CSF), brain and peripheral tissues (liver, red blood cells and serum) of schizophrenia patients in an attempt to identify peripheral/surrogate disease markers. The cohorts used to investigate each tissue were largely independent, although some CSF and serum samples were collected from the same patient. To address the major confounding factor of antipsychotic drug treatment, we also included a large cohort of first-onset drug-naive patients. Apolipoprotein A1 (apoA1) showed a significant decrease in expression in schizophrenia patients compared to controls in all five tissues examined. Specifically, using SELDI-TOF mass spectrometry, apoA1 was found decreased in CSF from schizophrenia patients (-35%, P=0.00001) and, using 2D-DIGE, apoA1 was also found downregulated in liver (-30%, P=0.02) and RBCs (-60%, P=0.003). Furthermore, we found a significant reduction of apoA1 in sera of first-onset drug-naive schizophrenia patients using enzyme-linked immunosorbent assay (-18%, P=0.00008) and in two investigations of post-mortem brain tissue using western blot analysis (-35%, P=0.05; -51%, P=0.05). These results show that apoA1 is consistently downregulated in the central nervous system as well as peripheral tissues of schizophrenia patients and may be linked to the underlying disease mechanism.

+view abstract Molecular psychiatry, PMID: 17938634 2008

S Elderkin, GN Maertens, M Endoh, DL Mallery, N Morrice, H Koseki, G Peters, N Brockdorff, K Hiom

Recent studies have shown that PRC1-like Polycomb repressor complexes monoubiquity-late chromatin on histone H2A at lysine residue 119. Here we have analyzed the function of the polycomb protein Mel-18. Using affinity-tagged human MEL-18, we identify a polycomb-like complex, melPRC1, containing the core PRC1 proteins, RING1/2, HPH2, and CBX8. We show that, in ES cells, melPRC1 can functionally substitute for other PRC1-like complexes in Hox gene repression. A reconstituted subcomplex containing only Ring1B and Mel-18 functions as an efficient ubiquitin E3 ligase. This complex ubiquitylates free histone substrates nonspecifically but is highly specific for histone H2A lysine 119 in the context of nucleosomes. Mutational analysis demonstrates that while Ring1B is required for E3 function, Mel-18 directs this activity to H2A lysine 119 in chromatin. Moreover, this substrate-targeting function of Mel-18 is dependent on its prior phosphorylation at multiple residues, providing a direct link between chromatin modification and cell signaling pathways.

+view abstract Molecular cell, PMID: 17936708 2007

C Selman, S Lingard, AI Choudhury, RL Batterham, M Claret, M Clements, F Ramadani, K Okkenhaug, E Schuster, E Blanc, MD Piper, H Al-Qassab, JR Speakman, D Carmignac, IC Robinson, JM Thornton, D Gems, L Partridge, DJ Withers Immunology

Recent evidence suggests that alterations in insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) can increase mammalian life span. For example, in several mouse mutants, impairment of the growth hormone (GH)/IGF1 axis increases life span and also insulin sensitivity. However, the intracellular signaling route to altered mammalian aging remains unclear. We therefore measured the life span of mice lacking either insulin receptor substrate (IRS) 1 or 2, the major intracellular effectors of the IIS receptors. Our provisional results indicate that female Irs1-/- mice are long-lived. Furthermore, they displayed resistance to a range of age-sensitive markers of aging including skin, bone, immune, and motor dysfunction. These improvements in health were seen despite mild, lifelong insulin resistance. Thus, enhanced insulin sensitivity is not a prerequisite for IIS mutant longevity. Irs1-/- female mice also displayed normal anterior pituitary function, distinguishing them from long-lived somatotrophic axis mutants. In contrast, Irs2-/- mice were short-lived, whereas Irs1+/- and Irs2+/- mice of both sexes showed normal life spans. Our results therefore suggest that IRS1 signaling is an evolutionarily conserved pathway regulating mammalian life span and may be a point of intervention for therapies with the potential to delay age-related processes.

+view abstract FASEB journal : official publication of the Federation of American Societies for Experimental Biology, PMID: 17928362 2008

S Andrews, L Stephens, P Hawkins Signalling,Bioinformatics

Activation of G(i)-coupled receptors in neutrophils stimulates class IB phosphoinositide 3-kinase (PI3K) (also known as PI3Kgamma) through the combined actions of Gbetagamma subunits and the small guanosine triphosphatase (GTPase) Ras, resulting in the production of phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] in the plasma membrane. In most cases, the effectors of this pathway possess a pleckstrin homology (PH) domain that mediates the interaction with and regulation by these two lipid messengers. These direct effectors sit within a complex regulatory network that includes several other signaling pathways and that is responsible for the control of important neutrophil functions, including adhesion, chemotaxis, secretion, and the "respiratory burst" [activation of the nicotinamide adenosine diphosphate (NADPH) oxidase]. Although the molecular details that link the direct effectors of class IB PI3K to these complex cell responses are still largely unknown, these responses involve complex regulation of small GTPases of the Rac, Rho, and Arf families.

+view abstract Science's STKE : signal transduction knowledge environment, PMID: 17925574 2007

Andrews S, Stephens LR, Hawkins PT Signalling,Bioinformatics

Class I phosphoinositide 3-kinases (PI3Ks) are well-established signal transduction enzymes that play an important role in the mechanisms by which a wide variety of cell surface receptors control several cellular functions, including cellular growth, division, survival, and movement. Class IB PI3K (also known as PI3Kgamma) allows fast-acting, heterotrimeric GTP-binding protein-coupled receptors to access this pathway. Activation of class IB PI3K results in the rapid synthesis of phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3] and its dephosphorylation product, PI(3,4)P2, in the plasma membrane. These two lipid messengers bind to multiple, pleckstrin homology (PH) domain-containing effectors, which together regulate a complex signaling web downstream of receptor activation. This pathway regulates the activity of protein kinases and small guanosine triphosphatases that control cellular movement, adhesion, contraction, and secretion. Most of the ligands that have been established to activate class IB PI3K are involved in coordinating the body's response to injury and infection through the regulation of multiple cell types in the immune system and vascular lining. Mice lacking the catalytic subunit of class IB PI3K are remarkably resistant to the development of several inflammatory pathologies in mouse models of human inflammatory disease. These results suggest small molecule inhibitors of class IB PI3K may represent a novel class of therapeutic agents that may complement existing anti-inflammatory treatments.

+view abstract Science's STKE : signal transduction knowledge environment, PMID: 17925573 2007

PT Hawkins, LR Stephens Signalling

Class I phosphoinositide 3-kinase (PI3K) signaling pathways regulate several important cellular functions, including cellular growth, division, survival, and movement. Class IB PI3K (also known as PI3Kgamma) links heterotrimeric GTP-binding protein-coupled receptors to these pathways. Activation of class IB PI3K results in the rapid synthesis of phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] and its dephosphorylation product PtdIns(3,4)P2 in the plasma membrane. These two lipid messengers bind to pleckstrin homology domain-containing effectors that regulate a complex signaling web downstream of receptor activation. Characteristic features of this pathway are the regulation of protein kinases and the regulation of small guanosine triphosphatases that control cellular movement, adhesion, contraction, and secretion. Most of the ligands that activate class IB PI3K are involved in coordinating the body's response to injury and infection, and recent studies suggest that small molecule inhibitors of this enzyme may represent a novel class of anti-inflammatory therapeutic agents.

+view abstract Science (New York, N.Y.), PMID: 17916723 2007

Hurst NG, Stocken DD, Wilson S, Keh C, Wakelam MJ, Ismail T Signalling

Early detection of polyps or colorectal carcinoma can reduce colorectal carcinoma-associated deaths. Previous studies have demonstrated raised serum levels of matrix metalloproteinase 9 (sMMP-9) in a range of cancers. The aim of this study was to investigate the role of sMMP-9 levels in identifying colorectal neoplasia. Consenting patients donated a blood sample and were assessed by proforma-led history and physical examination. Samples were analysed for sMMP-9 concentration (enzyme-linked immuno-sorbant assay) and compared to final diagnoses. Logistic regression modelling determined independent factors associated with neoplasia. A total of 365 patients were recruited of whom 300 were analysed, including 46 normal controls. A total of 27 significant adenomas and 63 malignancies were identified. The median sMMP-9 concentration was 443 ng ml(-1) (IQR: 219-782; mean: 546). Patients with neoplasia had significantly elevated sMMP-9 levels (P<0.001). Logistic regression modelling identified elevated log(sMMP-9) as the most significant predictor of neoplasia (chi(2)=38.33, P<0.001). Other significant factors were age, sex, smoking history, abdominal pain and weight loss. The model accurately predicted neoplasia in 77.3% of cases. Sensitivity and specificity were 77.9 and 77.1%. sMMP-9 estimation can accurately stratify patient to low- or high-risk cohorts. Serum sampling is a potential means of avoiding unnecessary colonoscopy and reducing patient anxiety, iatrogenic morbidity and mortality, and cost.

+view abstract British journal of cancer, PMID: 17912241 2007

PJ Rugg-Gunn, AC Ferguson-Smith, RA Pedersen Epigenetics

Investigation of the epigenetic stability of human embryonic stem cells (hESCs) is a crucial step for their use in cell-replacement therapies, as well as for assessing whether hESCs model epigenetic regulation in human pre-implantation cell types. To address these issues, we have examined the expression of imprinted genes in a previous study and more recently in 46 individual hESC lines as part of the International Stem Cell Initiative. Our results show that nearly all hESC lines examined possessed a substantial degree of epigenetic stability, despite differences in genetic background and in their derivation and initial propagation conditions. However, some hESCs did show loss of allele-specific expression, which could have implications for hESC differentiation and epigenetic stability (both in vitro and after clinical transplantation). A benefit of our and other recent studies of genomic imprinting in hESCs was the identification of imprinted genes that provide a useful indication of epigenetic stability. SNRPN, IPW and KCNQ1OT1 were highly stable and thus appeared insensitive to perturbation; in contrast, H19, IGF2 and MEG3 were more variable and thus could potentially provide a sensitive indication of epigenetic status. In this review, we examine the differences between imprinted genes in their susceptibility to perturbation and discuss the potential molecular basis for these differences. This examination provides insight into the regulation of genomic imprinting in hESCs and the corresponding peri-implantation stages of human development.

+view abstract Human molecular genetics, PMID: 17911167 2007

CM Wiggins, H Band, SJ Cook Signalling

Bim(EL) the most abundant Bim splice variant, is subject to ERK1/2-catalysed phosphorylation, which targets it for ubiquitination and proteasome-dependent destruction. In contrast, inactivation of ERK1/2, following withdrawal of survival factors, promotes stabilization of Bim(EL). It has been proposed that the RING finger protein Cbl binds to Bim(EL) and serves as its E3 ubiquitin ligase. However, this is controversial since most Cbl substrates are tyrosine phosphoproteins and yet Bim(EL) is targeted for destruction by ERK1/2-catalysed serine phosphorylation. Consequently, a role for Cbl could suggest a second pathway for Bim(EL) turnover, regulated by direct tyrosine phosphorylation, or could suggest that Bim(EL) is a coincidence detector, requiring phosphorylation by ERK1/2 and a tyrosine kinase. Here we show that degradation of Bim(EL) does not involve its tyrosine phosphorylation; indeed, Bim(EL) is not a tyrosine phosphoprotein. Furthermore, Bim(EL) fails to interact with Cbl and growth factor-stimulated, ERK1/2-dependent Bim(EL) turnover proceeds normally in Cbl-containing or Cbl-/- fibroblasts. These results indicate that Cbl is not required for ERK1/2-dependent Bim(EL) turnover in fibroblasts and epithelial cells and any role it has in other cell types is likely to be indirect.

+view abstract Cellular signalling, PMID: 17884340 2007

KE Ewings, CM Wiggins, SJ Cook Signalling

Bim (Bcl-2-interacting mediator of cell death) is a BH3-only protein (BOP), a pro-apoptotic member of the Bcl-2 protein family. The Bim mRNA undergoes alternate splicing to give rise to the short, long and extra long protein variants (Bim(S), Bim(L) and Bim(EL)). These proteins have distinct potency in promoting death and distinct modes of regulation conferred by their interaction with other proteins. Quite how Bim and other BOPs promote apoptosis has been the subject of some debate. Bim was isolated by it's interaction with pro-survival proteins such as Bcl-2 and it has been suggested that this is key to the ability of Bim to induce apoptosis. However, an alternative model argues that some forms of Bim can bind directly to the pro-apoptotic Bax and Bak proteins to initiate apoptosis. A new study may finally put this debate to rest as it provides strong evidence to suggest that Bim and other BOPs act primarily by binding to pro-survival Bcl-2 proteins, thereby releasing Bax or Bak proteins to promote apoptosis. The importance of the interaction between Bim and the pro-survival Bcl-2 proteins is underlined by our demonstration that it is regulated by ERK1/2-dependent phosphorylation of Bim(EL). ERK1/2-dependent dissociation of Bim(EL) from pro-survival proteins is the first step in a process by which the pro-survival ERK1/2 pathway promotes the destruction of this most abundant Bim splice variant. In this review we outline the significance of these new studies to our understanding of how BOPs such as Bim initiate apoptosis and how this process is regulated by growth factor-dependent signalling pathways.

+view abstract Cell cycle (Georgetown, Tex.), PMID: 17881896 2007

J Wu, KM Kendrick, J Feng

Progressive advances in the measurement of complex multifactorial components of biological processes involving both spatial and temporal domains have made it difficult to identify the variables (genes, proteins, neurons etc.) significantly changed activities in response to a stimulus within large data sets using conventional statistical approaches. The set of all changed variables is termed hot-spots. The detection of such hot spots is considered to be an NP hard problem, but by first establishing its theoretical foundation we have been able to develop an algorithm that provides a solution.

+view abstract BMC bioinformatics, PMID: 17848185 2007