Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

A Plagge, G Kelsey, EL Germain-Lee Epigenetics

The stimulatory alpha-subunit of trimeric G-proteins Galpha(s), which upon ligand binding to seven-transmembrane receptors activates adenylyl cyclases to produce the second messenger cAMP, constitutes one of the archetypal signal transduction molecules that have been studied in much detail. Over the past few years, however, genetic as well as biochemical approaches have led to a range of novel insights into the Galpha(s) encoding guanine nucleotide binding protein, alpha-stimulating (Gnas) locus, its alternative protein products and its regulation by genomic imprinting, which leads to monoallelic, parental origin-dependent expression of the various transcripts. Here, we summarise the major characteristics of this complex gene locus and describe the physiological roles of Galpha(s) and its 'extra large' variant XLalpha(s) at post-natal and adult stages as defined by genetic mutations. Opposite and potentially antagonistic functions of the two proteins in the regulation of energy homeostasis and metabolism have been identified in Gnas- and Gnasxl (XLalpha(s))-deficient mice, which are characterised by obesity and leanness respectively. A comparison of findings in mice with symptoms of the corresponding human genetic disease 'Albright's hereditary osteodystrophy'/'pseudohypoparathyroidism' indicates highly conserved functions as well as unresolved phenotypic differences.

+view abstract The Journal of endocrinology, PMID: 18252944 2008

T Szado, V Vanderheyden, JB Parys, H De Smedt, K Rietdorf, L Kotelevets, E Chastre, F Khan, U Landegren, O Söderberg, MD Bootman, HL Roderick

Imbalance of signals that control cell survival and death results in pathologies, including cancer and neurodegeneration. Two pathways that are integral to setting the balance between cell survival and cell death are controlled by lipid-activated protein kinase B (PKB)/Akt and Ca(2+). PKB elicits its effects through the phosphorylation and inactivation of proapoptotic factors. Ca(2+) stimulates many prodeath pathways, among which is mitochondrial permeability transition. We identified Ca(2+) release through inositol 1,4,5-trisphosphate receptor (InsP(3)R) intracellular channels as a prosurvival target of PKB. We demonstrated that in response to survival signals, PKB interacts with and phosphorylates InsP(3)Rs, significantly reducing their Ca(2+) release activity. Moreover, phosphorylation of InsP(3)Rs by PKB reduced cellular sensitivity to apoptotic stimuli through a mechanism that involved diminished Ca(2+) flux from the endoplasmic reticulum to the mitochondria. In glioblastoma cells that exhibit hyperactive PKB, the same prosurvival effect of PKB on InsP(3)R was found to be responsible for the insensitivity of these cells to apoptotic stimuli. We propose that PKB-mediated abolition of InsP(3)-induced Ca(2+) release may afford tumor cells a survival advantage.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 18250332 2008

V Parelho* / S Hadjur*, M Spivakov, M Leleu, S Sauer, HC Gregson, A Jarmuz, C Canzonetta, Z Webster, T Nesterova, BS Cobb, K Yokomori, N Dillon, L Aragon, AG Fisher, M Merkenschlager

Cohesins mediate sister chromatid cohesion, which is essential for chromosome segregation and postreplicative DNA repair. In addition, cohesins appear to regulate gene expression and enhancer-promoter interactions. These noncanonical functions remained unexplained because knowledge of cohesin-binding sites and functional interactors in metazoans was lacking. We show that the distribution of cohesins on mammalian chromosome arms is not driven by transcriptional activity, in contrast to S. cerevisiae. Instead, mammalian cohesins occupy a subset of DNase I hypersensitive sites, many of which contain sequence motifs resembling the consensus for CTCF, a DNA-binding protein with enhancer blocking function and boundary-element activity. We find cohesins at most CTCF sites and show that CTCF is required for cohesin localization to these sites. Recruitment by CTCF suggests a rationale for noncanonical cohesin functions and, because CTCF binding is sensitive to DNA methylation, allows cohesin positioning to integrate DNA sequence and epigenetic state.

+view abstract Cell, PMID: 18237772 2008

D Umlauf, P Fraser, T Nagano

Transcriptome studies have uncovered a plethora of noncoding RNAs (ncRNA) in mammals. Most originate within intergenic regions of the genome and recent evidence indicates that some are involved in many different pathways that ultimately act on genome architecture and gene expression. In this review, we discuss the role of well-characterized long ncRNAs in gene regulation pointing to their similarities, but also their differences. We will attempt to highlight a paradoxical situation in which transcription is needed to repress entire chromosomal domains possibly through the action of ncRNAs that create nuclear environments refractory to transcription.

+view abstract Biological chemistry, PMID: 18225988 2008

CJ Hanson, MD Bootman, CW Distelhorst, T Maraldi, HL Roderick

Bcl-2 is an oncoprotein that is widely known to promote cell survival by inhibiting apoptosis. We explored the consequences of different expression paradigms on the cellular action of Bcl-2. Using either transient or stable transfection combined with doxycycline-inducible expression, we titrated the cellular concentration of Bcl-2. With each expression paradigm Bcl-2 was correctly targeted to the endoplasmic reticulum and mitochondria. However, with protocols that generated the greatest cellular concentrations of Bcl-2 the structure of these organelles was dramatically altered. The endoplasmic reticulum appeared to be substantially fragmented, whilst mitochondria coalesced into dense perinuclear structures. Under these conditions of high Bcl-2 expression, cells were not protected from pro-apoptotic stimuli. Rather Bcl-2 itself caused a significant amount of spontaneous cell death, and sensitised the cells to apoptotic agents such as staurosporine or ceramide. We observed a direct correlation between Bcl-2 concentration and spontaneous apoptosis. Expression of calbindin, a calcium buffering protein, or an enzyme that inhibited inositol 1,4,5-trisphosphate-mediated calcium release, significantly reduced cell death caused by Bcl-2 expression. We further observed that high levels of Bcl-2 expression caused lipid peroxidation and that the deleterious effects of Bcl-2 could be abrogated by the reactive oxygen species (ROS) scavenger Trolox. When stably expressed at low levels, Bcl-2 did not corrupt organelle structure or trigger spontaneous apoptosis. Rather, it protected cells from pro-apoptotic stimuli. These data reveal that high cellular concentrations of Bcl-2 lead to a calcium- and ROS-dependent induction of death. Selection of the appropriate expression paradigm is therefore crucial when investigating the biological role of Bcl-2.

+view abstract Cell calcium, PMID: 18215418 2008

J Houseley, D Tollervey Epigenetics

The TRAMP polyadenylation complexes have well-established functions in RNA surveillance, stimulating degradation by the 3' to 5' exonuclease activity of the exosome on a wide range of nuclear RNAs and RNA-protein complexes. Known targets include some of the non-protein coding RNA transcripts (ncRNAs), which are apparently widely transcribed from yeast and mammalian genomes. We will discuss potential mechanisms of TRAMP recruitment and exosome activation during RNA surveillance and degradation. Less well-understood observations link both the TRAMP and exosome complexes to chromatin structure and DNA repair, and we will speculate on the potential significance of these activities.

+view abstract Biochimica et biophysica acta, PMID: 18211833 2008

M He, O Stoevesandt, MJ Taussig

In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.

+view abstract Current opinion in biotechnology, PMID: 18207731 2008

M He, O Stoevesandt, EA Palmer, F Khan, O Ericsson, MJ Taussig

We describe a method, DNA array to protein array (DAPA), which allows the 'printing' of replicate protein arrays directly from a DNA array template using cell-free protein synthesis. At least 20 copies of a protein array can be obtained from a single DNA array. DAPA eliminates the need for separate protein expression, purification and spotting, and also overcomes the problem of long-term functional storage of surface-bound proteins.

+view abstract Nature methods, PMID: 18204456 2008

E Arana, A Vehlow, NE Harwood, E Vigorito, R Henderson, M Turner, VL Tybulewicz, FD Batista Immunology

The integrin leukocyte function-associated antigen-1 (LFA-1) is important in the promotion of B cell adhesion, thereby facilitating immunological synapse (IS) formation and B cell activation. Despite this significance, the associated signaling mechanisms regulating LFA-1 activation remain elusive. Here, we show that both isoforms of the small GTPase Rac expressed by primary B cells, Rac1 and Rac2, were activated rapidly downstream of Src-family kinases, guanine-nucleotide exchange factors Vav1 and Vav2, and phosphoinositide-3 kinase (PI3K) after BCR engagement. We identify Rac2, but not Rac1, as critical for B cell adhesion to intercellular adhesion molecule-1 (ICAM-1) and IS formation. Furthermore, B cells expressing constitutively active Rac2 are highly adhesive. We observe that Rac2-deficient B cells exhibit lower amounts of Rap1-GTP and severe actin polymerization defects, identifying a potential mechanism underlying their behavior. We postulate that this critical role for Rac2 in mediating B cell adhesion and IS formation might apply in all lymphocytes.

+view abstract Immunity, PMID: 18191593 2008

Kaden D, Munter LM, Joshi M, Treiber C, Weise C, Bethge T, Voigt P, Schaefer M, Beyermann M, Reif B, Multhaup G Epigenetics

We found previously by fluorescence resonance energy transfer experiments that amyloid precursor protein (APP) homodimerizes in living cells. APP homodimerization is likely to be mediated by two sites of the ectodomain and a third site within the transmembrane sequence of APP. We have now investigated the role of the N-terminal growth factor-like domain in APP dimerization by NMR, biochemical, and cell biological approaches. Under nonreducing conditions, the N-terminal domain of APP formed SDS-labile and SDS-stable complexes. The presence of SDS was sufficient to convert native APP dimers entirely into monomers. Addition of an excess of a synthetic peptide (APP residues 91-116) containing the disulfide bridge-stabilized loop inhibited cross-linking of pre-existing SDS-labile APP ectodomain dimers. Surface plasmon resonance analysis revealed that this peptide specifically bound to the N-terminal domain of APP and that binding was entirely dependent on the oxidation of the thiol groups. By solution-state NMR we detected small chemical shift changes indicating that the loop peptide interacted with a large protein surface rather than binding to a defined pocket. Finally, we studied the effect of the loop peptide added to the medium of living cells. Whereas the levels of alpha-secretory APP increased, soluble beta-cleaved APP levels decreased. Because Abeta40 and Abeta42 decreased to similar levels as soluble beta-cleaved APP, we conclude either that beta-secretase binding to APP was impaired or that the peptide allosterically affected APP processing. We suggest that APP acquires a loop-mediated homodimeric state that is further stabilized by interactions of hydrophobic residues of neighboring domains.

+view abstract The Journal of biological chemistry, PMID: 18182389

ML Janas, D Hodson, Z Stamataki, S Hill, K Welch, L Gambardella, LC Trotman, PP Pandolfi, E Vigorito, M Turner Immunology

Control of the intracellular levels of phosphatidylinositol-(3, 4, 5)-trisphosphate by PI3K and phosphatase and tensin homolog (PTEN) is essential for B cell development and differentiation. Deletion of the PI3K catalytic subunit p110delta leads to a severe reduction in B1 and marginal zone (MZ) B cells, whereas deletion of PTEN results in their expansion. We have examined the relationship between these two molecules by generating mice with a B cell-specific deletion of PTEN (PTENB) and a concurrent germline deletion of p110delta. The expanded B1 cell population of PTENB mice was reduced to normal levels in PTENB/p110delta mutant mice, indicating a critical role for the p110delta isoform in the expansion of B1 cells. However, numbers of MZ B cells in the PTENB/p110delta mutants was intermediate between wild-type and PTENB-deficient mice, suggesting an additional role for other PI3K catalytic isoforms in MZ differentiation. Furthermore, the defective class switch recombination in PTENB B cells was only partially reversed in PTENB/p110delta double mutant B cells. These results demonstrate an epistatic relationship between p110delta and PTEN. In addition, they also suggest that additional PI3K catalytic subunits contribute to B cell development and function.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 18178811 2008

JA Mitchell, P Fraser

Nascent transcription occurs at nuclear foci of concentrated, hyperphosphorylated RNA polymerase II (RNAPII). We investigate RNAPII localization, distal gene co-association, and Hbb locus conformation during inhibition of transcription. Our results show distal active genes remain associated with RNAPII foci and each other in the absence of elongation. When initiation is inhibited, active genes dissociate from RNAPII foci and each other, suggesting initiation is necessary to tether distal active genes to shared foci. In the absence of transcription RNAPII foci remain, indicating they are not simple accumulations of RNAPII on transcribed genes but exist as independent nuclear subcompartments.

+view abstract Genes & development, PMID: 18172162 2008

C Stace, M Manifava, C Delon, J Coadwell, S Cockcroft, NT Ktistakis Signalling

+view abstract Advances in enzyme regulation, PMID: 18167315 2008

Hemberger M, Yang W, Natale D, Brown TL, Dunk C, Gargett CE, Tanaka S Epigenetics

Stem cells that can be derived from fetal membranes represent an exciting field of research that bears tremendous potential for developmental biology and regenerative medicine. In this report we summarize contributions to a workshop in which newest insights into the characteristics, subtypes and molecular determinants of stem cells from trophoblast and endometrial tissues were presented.

+view abstract Placenta, PMID: 18155293 2008

Siggs OM, Miosge LA, Yates AL, Kucharska EM, Sheahan D, Brdicka T, Weiss A, Liston A, Goodnow CC Immunology

Null mutations that cripple T cell receptor (TCR) signaling explain rare primary immunodeficiencies, but it is not understood why more common polymorphisms that lead to subtle TCR signaling defects are paradoxically associated with autoimmunity. Here we analyzed how a series of Zap70 variants with step-wise decreases in TCR signaling impacted upon opposing TCR functions of immunity and tolerance. One Zap70 variant, murdock, moderately decreased TCR signaling and thymic selection without compromising immunological tolerance, whereas a more severe Zap70 defect, mrtless, abolished thymic-positive selection and led to immunodeficiency. Signaling capacities between these two thresholds disproportionately compromised negative selection and Foxp3(+) regulatory T cell formation, creating a cellular imbalance between immunogenic and tolerogenic functions that resulted in the excessive production of autoantibodies and immunoglobulin E (IgE). The pleiotropic functions of ZAP-70 and their differential response to graded variation provide a paradigm for understanding the complex outcomes of human genetic variation.

+view abstract Immunity, PMID: 18093540 2007

X Zou, MJ Osborn, DJ Bolland, JA Smith, D Corcos, M Hamon, D Oxley, A Hutchings, G Morgan, F Santos, PJ Kilshaw, MJ Taussig, AE Corcoran, M Brüggemann Epigenetics,Mass Spectrometry

In healthy mammals, maturation of B cells expressing heavy (H) chain immunoglobulin (Ig) without light (L) chain is prevented by chaperone association of the H chain in the endoplasmic reticulum. Camelids are an exception, expressing homodimeric IgGs, an antibody type that to date has not been found in mice or humans. In camelids, immunization with viral epitopes generates high affinity H chain-only antibodies, which, because of their smaller size, recognize clefts and protrusions not readily distinguished by typical antibodies. Developmental processes leading to H chain antibody expression are unknown. We show that L(-/-) (kappa(-/-)lambda(-/-)-deficient) mice, in which conventional B cell development is blocked at the immature B cell stage, produce diverse H chain-only antibodies in serum. The generation of H chain-only IgG is caused by the loss of constant (C) gamma exon 1, which is accomplished by genomic alterations in C(H)1-circumventing chaperone association. These mutations can be attributed to errors in class switch recombination, which facilitate the generation of H chain-only Ig-secreting plasma cells. Surprisingly, transcripts with a similar deletion can be found in normal mice. Thus, naturally occurring H chain transcripts without C(H)1 (V(H)DJ(H)-hinge-C(H)2-C(H)3) are selected for and lead to the formation of fully functional and diverse H chain-only antibodies in L(-/-) animals.

+view abstract The Journal of experimental medicine, PMID: 18086860 2007

M Hemberger Epigenetics

Extraembryonic development in rodents depends on the differentiation and function of trophoblast giant cells. Morphologically striking, giant cells exhibit many extraordinary characteristics adapted to ensure the success of pregnancy. This review summarizes some of the intriguing aspects of giant cell morphology and function. Giant cells are highly polyploid as a result of a switch from a mitotic to an endoreduplicative cell cycle. They further partition their genome content into various fragments which may represent a mechanism to maximize protein synthesis. Similar to metastatic tumour cells, they breach basement membranes and invade deeply into a foreign tissue, the maternal decidualized uterine stroma. Their angiogenic and vasodilatory properties, combined with the ability to remodel arterial walls, enable them to redirect maternal blood flow towards the implantation site. Recent advances have recognized that the giant cell population is more diverse than previously recognized and future studies will have to show how these subtypes differ functionally and how their differentiation is controlled.

+view abstract Placenta, PMID: 18083226 2008

Laibe C, Le Novère N Signalling

The Minimal Information Requested In the Annotation of biochemical Models (MIRIAM) is a set of guidelines for the annotation and curation processes of computational models, in order to facilitate their exchange and reuse. An important part of the standard consists in the controlled annotation of model components, based on Uniform Resource Identifiers. In order to enable interoperability of this annotation, the community has to agree on a set of standard URIs, corresponding to recognised data types. MIRIAM Resources are being developed to support the use of those URIs.

+view abstract BMC systems biology, PMID: 18078503 2007

MD Bootman, HL Roderick

+view abstract American journal of physiology. Heart and circulatory physiology, PMID: 18065525 2008

E Vigorito, KL Perks, C Abreu-Goodger, S Bunting, Z Xiang, S Kohlhaas, PP Das, EA Miska, A Rodriguez, A Bradley, KG Smith, C Rada, AJ Enright, KM Toellner, IC Maclennan, M Turner Immunology

microRNA-155 (miR-155) is expressed by cells of the immune system after activation and has been shown to be required for antibody production after vaccination with attenuated Salmonella. Here we show the intrinsic requirement for miR-155 in B cell responses to thymus-dependent and -independent antigens. B cells lacking miR-155 generated reduced extrafollicular and germinal center responses and failed to produce high-affinity IgG1 antibodies. Gene-expression profiling of activated B cells indicated that miR-155 regulates an array of genes with diverse function, many of which are predicted targets of miR-155. The transcription factor Pu.1 is validated as a direct target of miR155-mediated inhibition. When Pu.1 is overexpressed in wild-type B cells, fewer IgG1 cells are produced, indicating that loss of Pu.1 regulation is a contributing factor to the miR-155-deficient phenotype. Our results implicate post-transcriptional regulation of gene expression for establishing the terminal differentiation program of B cells.

+view abstract Immunity, PMID: 18055230 2007

RM Salek, RE Colebrooke, R Macintosh, PJ Lynch, BC Sweatman, PC Emson, JL Griffin

The vesicular monoamine transporter 2 (VMAT2) sequesters monoamines into synaptic vesicles in preparation for neurotransmission. Samples of cerebellum, cortex, hippocampus, substantia nigra and striatum from VMAT2-deficient mice were compared to age-matched control mice. Multivariate statistical analyses of (1)H NMR spectral profiles separated VMAT2-deficient mice from controls for all five brain regions. Although the data show that metabolic alterations are region- and age-specific, in general, analyses indicated decreases in the concentrations of taurine and creatine/phosphocreatine and increases in glutamate and N-acetyl aspartate in VMAT2-deficient mouse brain tissues. This study demonstrates the efficacy of metabolomics as a functional genomics phenotyping tool for mouse models of neurological disorders, and indicates that mild reductions in the expression of VMAT2 affect normal brain metabolism.

+view abstract Neurochemical research, PMID: 18041582 2008

Webster JM, Oxley D, Pettolino FA, Bacic A Mass Spectrometry

High molecular weight material recovered from the culture filtrate of cell suspension cultured Pyrus communis was composed of 81% carbohydrate, 13% protein and 5% inorganic material. This material was separated into three fractions (one neutral (Fraction A) and two acidic (Fractions B and C)), by anion-exchange chromatography on DEAE-Sepharose CL-6B using a gradient of imidazole-HCl at pH 7.0. The monosaccharide and linkage composition of each fraction was determined after carboxyl reduction of uronic acid residues. From the combined results of the carbohydrate analyses, we conclude that the high molecular weight extracellular material consists of three major and two minor polysaccharides: a (fucogalacto)xyloglucan (36%) in the unbound neutral Fraction A; a type II arabinogalactan (as an arabinogalactan-protein, 29%) and an acidic (glucurono)arabinoxylan (2%) in Fraction B; and a galacturonan (33%) and a trace of heteromannan in Fraction C. The main amino acids in the proteins were Glx, Thr, Ser, Hyp/Pro and Gly. Further separation of Fraction B by solvent partition, SDS-PAGE and analysis by LC-MS/MS identified the major proteins as two chitanases, two thaumatin-like proteins, a beta-1,3-glucanase, an extracellular dermal glycoprotein and a pathogenesis-related protein.

+view abstract Phytochemistry, PMID: 18037144 2008

F Colucci

+view abstract Nature immunology, PMID: 18026080 2007

B Stockinger, M Veldhoen, B Martin Immunology

While the cytokine IL-17 has been cloned and described more than 10 years ago [Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995;3(6):811-21; Kennedy J, Rossi DL, Zurawski SM, Vega Jr F, Kastelein RA, Wagner JL, et al. Mouse IL-17: a cytokine preferentially expressed by alpha beta TCR+CD4-CD8-T cells. J Interferon Cytokine Res 1996;16(8):611-7], it was only 2 years ago that IL-17 producing T cells have been classified as a new distinct CD4 T cell subset [Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005;6(11):1123-32] and only in 2006 the molecular mechanisms underlying their differentiation were identified [Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006;24(2):179-89; Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441(7090):235-8; Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006;441(7090):231-4]. Since then the literature on IL-17 producing cells has grown steadily and many reviews of the field are already outdated by the time they are published, a fate that no doubt will affect this review as well. In order to avoid too many repetitions we focus this review mainly on publications in 2006 and 2007 and refer to a number of reviews, which cover earlier aspects of Th17/IL-17 biology.

+view abstract Seminars in immunology, PMID: 18023589 2007