Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

RM Densham, DE Todd, K Balmanno, SJ Cook Signalling

The conditional kinase DeltaMEKK3:ER allows activation of JNK, p38 and ERK1/2 without overt cellular stress or damage and has proved useful in understanding how these pathways regulate apoptosis and cell cycle progression. We have previously shown that activation of DeltaMEKK3:ER causes a sustained G(1) cell cycle arrest which requires p21(CIP1), with ERK1/2 and p38 cooperating to promote p21(CIP1) expression. In cells lacking p21(CIP1), DeltaMEKK3:ER causes only a transient delay in cell cycle re-entry. We now show that this delay in cell cycle re-entry is due to a reduction in cyclin D1 levels. Activation of DeltaMEKK3:ER promotes the proteasome-dependent turnover of cyclin D1; this requires phosphorylation of threonine 286 (T(286)) and expression of cyclin D1T(286)A rescues the delay in G(1)/S progression. DeltaMEKK3:ER-dependent phosphorylation of T(286) does not appear to be mediated by GSK3beta but requires activation of the ERK1/2 and p38 pathways. ERK1/2 can physically associate with cyclin D1 but activation of ERK1/2 alone is not sufficient for phosphorylation of T(286). Rather, cyclin D1 phosphorylation appears to require coincident activation of ERK1/2 and p38. Thus activation of DeltaMEKK3:ER promotes a sustained G(1) cell cycle arrest by a bipartite mechanism involving the rapid destruction of cyclin D1 and the slower more prolonged expression of p21(CIP1). This has parallels with the bipartite response to ionizing radiation and p53-independent mechanisms of G(1) cell cycle arrest in simple organisms such as yeast.

+view abstract Cellular signalling, PMID: 18664382 2008

YP Rong, AS Aromolaran, G Bultynck, F Zhong, X Li, K McColl, S Matsuyama, S Herlitze, HL Roderick, MD Bootman, GA Mignery, JB Parys, H De Smedt, CW Distelhorst

The antiapoptotic protein Bcl-2 inhibits Ca2+ release from the endoplasmic reticulum (ER). One proposed mechanism involves an interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel localized with Bcl-2 on the ER. Here we document Bcl-2-IP3R interaction within cells by FRET and identify a Bcl-2 interacting region in the regulatory and coupling domain of the IP3R. A peptide based on this IP3R sequence displaced Bcl-2 from the IP3R and reversed Bcl-2-mediated inhibition of IP3R channel activity in vitro, IP3-induced ER Ca2+ release in permeabilized cells, and cell-permeable IP3 ester-induced Ca2+ elevation in intact cells. This peptide also reversed Bcl-2's inhibition of T cell receptor-induced Ca2+ elevation and apoptosis. Thus, the interaction of Bcl-2 with IP3Rs contributes to the regulation of proapoptotic Ca2+ signals by Bcl-2, suggesting the Bcl-2-IP3R interaction as a potential therapeutic target in diseases associated with Bcl-2's inhibition of cell death.

+view abstract Molecular cell, PMID: 18657507 2008

F Benahmed, I Gross, SJ Gaunt, F Beck, F Jehan, C Domon-Dell, E Martin, M Kedinger, JN Freund, I Duluc

The Cdx2 homeobox gene exerts multiple functions including trophectoderm specification, antero-posterior patterning, and determination of intestinal identity. The aim of this study was to map genomic regions that regulate the transcription of Cdx2, with a particular interest in the gut.

+view abstract Gastroenterology, PMID: 18655789 2008

PM Coan, E Angiolini, I Sandovici, GJ Burton, M Constância, AL Fowden

Experimental reduction in placental growth often leads to increased placental efficiency measured as grams of fetus produced per gram of placenta, although little is known about the mechanisms involved. This study tested the hypothesis that the smallest placenta within a litter is the most efficient at supporting fetal growth by examining the natural intra-litter variation in placental nutrient transfer capacity in normal pregnant mice. The morphology, nutrient transfer and expression of key growth and nutrient supply genes (Igf2P0, Grb10, Slc2a1, Slc2a3, Slc38a1, Slc38a2 and Slc38a4) were compared in the lightest and heaviest placentas of a litter at days 16 and 19 of pregnancy, when mouse fetuses are growing most rapidly in absolute terms. The data show that there are morphological and functional adaptations in the lightest placenta within a litter, which increase active transport of amino acids per gram of placenta and maintain normal fetal growth close to term, despite the reduced placental mass. The specific placental adaptations differ with age. At E16, they are primarily morphological with an increase in the volume fraction of the labyrinthine zone responsible for nutrient exchange, whereas at E19 they are more functional with up-regulated placental expression of the glucose transporter gene, Slc2a1/GLUT1 and one isoform the System A family of amino acid transporters, Slc38a2/SNAT2. Thus, this adaptability in placental phenotype provides a functional reserve capacity for maximizing fetal growth during late gestation when placental growth is compromised.

+view abstract The Journal of physiology, PMID: 18653658 2008

TS Guillot, KR Shepherd, JR Richardson, MZ Wang, Y Li, PC Emson, GW Miller

The vesicular monoamine transporter 2 (VMAT2) controls the loading of dopamine (DA) into vesicles and therefore determines synaptic properties such as quantal size, receptor sensitivity, and vesicular and cytosolic DA concentration. Impairment of proper DA compartmentalization is postulated to underlie the sensitivity of DA neurons to oxidative damage and degeneration. It is known that DA can auto-oxidize in the cytosol to form quinones and other oxidative species and that this production of oxidative stress is thought to be a critical factor in DA terminal loss after methamphetamine (METH) exposure. Using a mutant strain of mice (VMAT2 LO), which have only 5-10% of the VMAT2 expressed by wild-type animals, we show that VMAT2 is a major determinant of METH toxicity in the striatum. Subsequent to METH exposure, the VMAT2 LO mice show an exacerbated loss of dopamine transporter and tyrosine hydroxylase (TH), as well as enhanced astrogliosis and protein carbonyl formation. More importantly, VMAT2 LO mice show massive argyrophilic deposits in the striatum after METH, indicating that VMAT2 is a regulator of METH-induced neurodegeneration. The increased METH neurotoxicity in VMAT2 LO occurs in the absence of any significant difference in basal temperature or METH-induced hyperthermia. Furthermore, primary midbrain cultures from VMAT2 LO mice show more oxidative stress generation and a greater loss of TH positive processes than wild-type cultures after METH exposure. Elevated markers of neurotoxicity in VMAT2 LO mice and cultures suggest that the capacity to store DA determines the amount of oxidative stress and neurodegeneration after METH administration.

+view abstract Journal of neurochemistry, PMID: 18643795 2008

E Rossoni, J Feng, B Tirozzi, D Brown, G Leng, F Moos

When young suckle, they are rewarded intermittently with a let-down of milk that results from reflex secretion of the hormone oxytocin; without oxytocin, newly born young will die unless they are fostered. Oxytocin is made by magnocellular hypothalamic neurons, and is secreted from their nerve endings in the pituitary in response to action potentials (spikes) that are generated in the cell bodies and which are propagated down their axons to the nerve endings. Normally, oxytocin cells discharge asynchronously at 1-3 spikes/s, but during suckling, every 5 min or so, each discharges a brief, intense burst of spikes that release a pulse of oxytocin into the circulation. This reflex was the first, and is perhaps the best, example of a physiological role for peptide-mediated communication within the brain: it is coordinated by the release of oxytocin from the dendrites of oxytocin cells; it can be facilitated by injection of tiny amounts of oxytocin into the hypothalamus, and it can be blocked by injection of tiny amounts of oxytocin antagonist. Here we show how synchronized bursting can arise in a neuronal network model that incorporates basic observations of the physiology of oxytocin cells. In our model, bursting is an emergent behaviour of a complex system, involving both positive and negative feedbacks, between many sparsely connected cells. The oxytocin cells are regulated by independent afferent inputs, but they interact by local release of oxytocin and endocannabinoids. Oxytocin released from the dendrites of these cells has a positive-feedback effect, while endocannabinoids have an inhibitory effect by suppressing the afferent input to the cells.

+view abstract PLoS computational biology, PMID: 18636098 2008

AJ Bowen, AE Corcoran

Cellular identity is determined by the switching on and off of lineage-specific genes. This dynamic process is regulated by a highly co-ordinated series of chromatin remodelling mechanisms that control DNA accessibility to facilitate transcription, replication and recombination. The identity of an individual B-lymphocyte is defined by the expression of a unique antibody protein, composed of two identical immunoglobulin heavy and two identical light chain polypeptides, which recognize a single foreign antigen with high specificity. However, the mammalian adaptive immune system requires an enormous variety of antibody-expressing B cells to combat the millions of foreign antigens it may encounter. This diversity is generated primarily at the multigene immunoglobulin loci by V(D)J recombination, a specialised form of DNA recombination in which numerous variable (V), diversity (D) and joining (J) genes are cut and pasted together in a strict order to allow shuffling of immunoglobulin genes. The mouse immunoglobulin heavy chain (Igh) locus is the largest known multigene locus. It spans approximately 3 Mb and comprises more than 200 genes. Its size and complexity pose an enormous logistic challenge to the chromatin remodelling machinery, but recent major advances in our understanding of how the 200 genes are shuffled have begun to reveal an exquisitely co-ordinated set of chromatin remodelling mechanisms which exploit every aspect of nuclear dynamics, and provide a global view of multigene regulation. This review will explore the numerous processes implicated in opening up and positioning of the locus to enable shuffling of the Igh locus genes, including non-coding RNA transcription, histone modifications, transcription factors, nuclear relocation and locus contraction.

+view abstract Molecular bioSystems, PMID: 18633479 2008

DR Carter, C Eskiw, PR Cook

There is increasing evidence that different transcription units are transcribed together in discrete nuclear structures known as transcription factories. Various new techniques enable us to detect and characterize these structures. We review the latest findings and discuss how they support a model for transcription and chromosome organization.

+view abstract Biochemical Society transactions, PMID: 18631121 2008

S Schoenfelder, P Fraser

Long-distance chromosomal interactions are emerging as a potential mechanism of gene expression control. In this issue, Apostolou and Thanos (2008) describe how viral infection elicits interchromosomal associations between the interferon-beta (IFN-beta) gene enhancer and DNA binding sites of the transcription factor NF-kappaB, resulting in the initiation of transcription and an antiviral response.

+view abstract Cell, PMID: 18614003 2008

J Kockskämper, AV Zima, HL Roderick, B Pieske, LA Blatter, MD Bootman

Inositol 1,4,5-trisphosphate (IP(3)) is a ubiquitous intracellular messenger regulating diverse functions in almost all mammalian cell types. It is generated by membrane receptors that couple to phospholipase C (PLC), an enzyme which liberates IP(3) from phosphatidylinositol 4,5-bisphosphate (PIP(2)). The major action of IP(3), which is hydrophilic and thus translocates from the membrane into the cytoplasm, is to induce Ca(2+) release from endogenous stores through IP(3) receptors (IP(3)Rs). Cardiac excitation-contraction coupling relies largely on ryanodine receptor (RyR)-induced Ca(2+) release from the sarcoplasmic reticulum. Myocytes express a significantly larger number of RyRs compared to IP(3)Rs (~100:1), and furthermore they experience substantial fluxes of Ca(2+) with each heartbeat. Therefore, the role of IP(3) and IP(3)-mediated Ca(2+) signaling in cardiac myocytes has long been enigmatic. Recent evidence, however, indicates that despite their paucity cardiac IP(3)Rs may play crucial roles in regulating diverse cardiac functions. Strategic localization of IP(3)Rs in cytoplasmic compartments and the nucleus enables them to participate in subsarcolemmal, bulk cytoplasmic and nuclear Ca(2+) signaling in embryonic stem cell-derived and neonatal cardiomyocytes, and in adult cardiac myocytes from the atria and ventricles. Intriguingly, expression of both IP(3)Rs and membrane receptors that couple to PLC/IP(3) signaling is altered in cardiac disease such as atrial fibrillation or heart failure, suggesting the involvement of IP(3) signaling in the pathology of these diseases. Thus, IP(3) exerts important physiological and pathological functions in the heart, ranging from the regulation of pacemaking, excitation-contraction and excitation-transcription coupling to the initiation and/or progression of arrhythmias, hypertrophy and heart failure.

+view abstract Journal of molecular and cellular cardiology, PMID: 18603259 2008

G Smits, AJ Mungall, S Griffiths-Jones, P Smith, D Beury, L Matthews, J Rogers, AJ Pask, G Shaw, JL VandeBerg, JR McCarrey, , MB Renfree, W Reik, I Dunham Epigenetics

Comparisons between eutherians and marsupials suggest limited conservation of the molecular mechanisms that control genomic imprinting in mammals. We have studied the evolution of the imprinted IGF2-H19 locus in therians. Although marsupial orthologs of protein-coding exons were easily identified, the use of evolutionarily conserved regions and low-stringency Bl2seq comparisons was required to delineate a candidate H19 noncoding RNA sequence. The therian H19 orthologs show miR-675 and exon structure conservation, suggesting functional selection on both features. Transcription start site sequences and poly(A) signals are also conserved. As in eutherians, marsupial H19 is maternally expressed and paternal methylation upstream of the gene originates in the male germline, encompasses a CTCF insulator, and spreads somatically into the H19 gene. The conservation in all therians of the mechanism controlling imprinting of the IGF2-H19 locus suggests a sequential model of imprinting evolution.

+view abstract Nature genetics, PMID: 18587395 2008

X Zou, JA Smith, D Corcos, LS Matheson, MJ Osborn, M Brüggemann

Nascent, full length, immunoglobulin (Ig) heavy (H)-chains are post-translationally associated with H-chain-binding protein (BiP or GRP78) in the endoplasmic reticulum (ER). The first constant (C) domain, CH1 of a C gene (Cmu, Cgamma, Calpha), is important for this interaction. The contact is released upon BiP replacement by conventional Ig light (L)-chain (kappa or lambda). Incomplete or mutated H-chains with removed variable (VH) and/or C(H)1 domain, as found in H-chain disease (HCD), can preclude stable BiP interaction. Progression in development after the preB cell stage is dependent on surface expression of IgM when association of a micro H-chain with a L-chain overcomes the retention by BiP. We show that IgM lacking the BiP-binding domain is displayed on the cell surface and elicits a signal that allows developmental progression even without the presence of L-chain. The results are reminiscent of single chain Ig secretion in camelids where developmental processes leading to the generation of fully functional H-chain-only antibodies are not understood. Furthermore, in the mouse the largest secondary lymphoid organ, the spleen, is not required for H-chain-only Ig expression and the CD5 survival signal may be obsolete for cells expressing truncated IgM.

+view abstract Molecular immunology, PMID: 18584871 2008

CR Farthing, G Ficz, RK Ng, CF Chan, S Andrews, W Dean, M Hemberger, W Reik Epigenetics,Bioinformatics

DNA methylation patterns are reprogrammed in primordial germ cells and in preimplantation embryos by demethylation and subsequent de novo methylation. It has been suggested that epigenetic reprogramming may be necessary for the embryonic genome to return to a pluripotent state. We have carried out a genome-wide promoter analysis of DNA methylation in mouse embryonic stem (ES) cells, embryonic germ (EG) cells, sperm, trophoblast stem (TS) cells, and primary embryonic fibroblasts (pMEFs). Global clustering analysis shows that methylation patterns of ES cells, EG cells, and sperm are surprisingly similar, suggesting that while the sperm is a highly specialized cell type, its promoter epigenome is already largely reprogrammed and resembles a pluripotent state. Comparisons between pluripotent tissues and pMEFs reveal that a number of pluripotency related genes, including Nanog, Lefty1 and Tdgf1, as well as the nucleosome remodeller Smarcd1, are hypomethylated in stem cells and hypermethylated in differentiated cells. Differences in promoter methylation are associated with significant differences in transcription levels in more than 60% of genes analysed. Our comparative approach to promoter methylation thus identifies gene candidates for the regulation of pluripotency and epigenetic reprogramming. While the sperm genome is, overall, similarly methylated to that of ES and EG cells, there are some key exceptions, including Nanog and Lefty1, that are highly methylated in sperm. Nanog promoter methylation is erased by active and passive demethylation after fertilisation before expression commences in the morula. In ES cells the normally active Nanog promoter is silenced when targeted by de novo methylation. Our study suggests that reprogramming of promoter methylation is one of the key determinants of the epigenetic regulation of pluripotency genes. Epigenetic reprogramming in the germline prior to fertilisation and the reprogramming of key pluripotency genes in the early embryo is thus crucial for transmission of pluripotency.

+view abstract PLoS genetics, PMID: 18584034 2008

SJ Gaunt, D Drage, RC Trubshaw

To investigate the link between Cdx protein concentration and axial patterning in embryos, we made lines of mice OE1, OE2 and OE4 that overexpress each of the Cdx genes Cdx1, Cdx2 and Cdx4, respectively. The lines carry Cdx transgenes under the transcriptional control of their own promoter/enhancer elements. Transgenic embryos show Cdx transcription at 8.5 to 8.7 days within normal spatial domains for Cdx expression (primitive streak/tailbud), yet, overall, they contain elevated levels of Cdx proteins. Increased doses of Cdx proteins result in homeotic shifts in vertebral types along most of the vertebral column, with transformations being most obvious within the cervical region. Most of the shifts are anterior-to-posterior transformations and the anterior limits of these are commonly skull/vertebra 1 (v1) for OE1, v1/v2 for OE2 and v7 for OE4. OE embryos display anterior shifts in the expression of a Hoxa7/lacZ reporter within neural, paraxial and lateral plate mesoderm tissues. Hoxa7/lacZ expression commences at the normal time in OE1 and OE4 embryos. OE2 embryos display a forward shift in the gradient of Cdx2 protein along the axis, suggesting that a Cdx morphogen gradient model could account, at least in part, for the homeotic shifts in vertebral types. OE mice display additional defects: forelimb deficiencies in OE1, multiple tail axes, vertebral mis-alignments and axial truncations in OE2.

+view abstract Development (Cambridge, England), PMID: 18579683 2008

RA Keenan, A De Riva, B Corleis, L Hepburn, S Licence, TH Winkler, IL Mårtensson

Antibody diversity occurs randomly as B cells recombine their immunoglobulin (Ig) heavy- and light-chain genes during development. This process inevitably generates reactivity against self structures, and several mechanisms prevent the development of autoreactive B cells. We report here a role for the pre-B cell receptor, composed of Ig heavy and surrogate light chains, in the negative selection of cells expressing Ig heavy chains with the potential to generate autoantibodies. Surrogate light-chain-deficient (SLC-/-) mice harbored elevated levels of antinuclear antibodies (ANAs) in their serum and showed evidence of escape of pre-B cells expressing prototypic autoantibody heavy chains from negative selection, leading to mature autoantibody secreting CD21-CD23- B cells in the periphery. Thus, the pre-B cell receptor appears to censor the development of certain autoantibody-secreting cells and may represent an important factor in multifactorial autoimmune diseases.

+view abstract Science (New York, N.Y.), PMID: 18566249 2008

MR Branco, M Oda, W Reik Epigenetics

During early mammalian embryogenesis, the genome undergoes global epigenetic reprogramming, losing most of its methylation before re-establishing it de novo at implantation. However, faithful maintenance of methylation at imprinted genes during this process is vital for embryonic development, but the DNA methyltransferase responsible for this maintenance has remained unknown. In this issue of Genes & Development, Hirasawa and colleagues (pp. 1607-1616) show that Dnmt1, and not Dnmt3a or Dnmt3b, maintains methylation at genomic imprints during preimplantation development.

+view abstract Genes & development, PMID: 18559472 2008

Ward DG, Nyangoma S, Joy H, Hamilton E, Wei W, Tselepis C, Steven N, Wakelam MJ, Johnson PJ, Ismail T, Martin A Signalling

Colorectal cancer is the second most common cause of cancer related death in the developed world. To date, no blood or stool biomarkers with both high sensitivity and specificity for potentially curable early stage disease have been validated for clinical use. SELDI and MALDI profiling are being used increasingly to search for biomarkers in both blood and urine. Both techniques provide information predominantly on the low molecular weight proteome (<15 kDa). There have been several reports that colorectal cancer is associated with changes in the serum proteome that are detectable by SELDI and we hypothesised that proteomic changes would also be detectable in urine.

+view abstract Proteome science, PMID: 18558005 2008

Liston A, Enders A, Siggs OM Immunology

Partial T-cell immunodeficiencies constitute a heterogeneous cluster of disorders characterized by an incomplete reduction in T-cell number or activity. The immune deficiency component of these diseases is less severe than that of the severe T-cell immunodeficiencies and therefore some ability to respond to infectious organisms is retained. Unlike severe T-cell immunodeficiencies, however, partial immunodeficiencies are commonly associated with hyper-immune dysregulation, including autoimmunity, inflammatory diseases and elevated IgE production. This causative association is counter-intuitive--immune deficiencies are caused by loss-of-function changes to the T-cell component, whereas the coincident autoimmune symptoms are the consequence of gain-of-function changes. This Review details the genetic basis of partial T -cell immunodeficiencies and draws on recent advances in mouse models to propose mechanisms by which a reduction in T-cell numbers or function may disturb the population-dependent balance between activation and tolerance.

+view abstract Nature reviews. Immunology, PMID: 18551129 2008

J Guillermet-Guibert, K Bjorklof, A Salpekar, C Gonella, F Ramadani, A Bilancio, S Meek, AJ Smith, K Okkenhaug, B Vanhaesebroeck Immunology

The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 18544649 2008

L Stephens, L Milne, P Hawkins Signalling

Eukaryotic cells are thought to move across supporting surfaces through a combination of coordinated processes: polarisation; extension of dynamic protrusions from a leading edge; adhesion-associated stabilisation of some protrusions; centripetal pulling against those leading adhesions; and de-adhesion at the rear. Gradients of extracellular ligands can be detected by cells and then used to guide them either towards the source (in the case of a chemoattractant) or away from the source (in the case of a chemorepellent)--such migration is termed chemotaxis. Recent work suggests that chemotaxis probably emerges from the ability of cells to spatially encode extracellular gradients of ligands, a process for which phosphoinositide 3'-kinase (PI3K) signals alone are insufficient, and to use that vectorial information to bias movement by enhancing the survival, and not the formation, of the protrusions that experience the greatest stimulation.

+view abstract Current biology : CB, PMID: 18522824 2008

S Sauer, L Bruno, A Hertweck, D Finlay, M Leleu, M Spivakov, ZA Knight, BS Cobb, D Cantrell, E O'Connor, KM Shokat, AG Fisher, M Merkenschlager

Regulatory T (Treg) cells safeguard against autoimmunity and immune pathology. Because determinants of the Treg cell fate are not completely understood, we have delineated signaling events that control the de novo expression of Foxp3 in naive peripheral CD4 T cells and in thymocytes. We report that premature termination of TCR signaling and inibition of phosphatidyl inositol 3-kinase (PI3K) p110alpha, p110delta, protein kinase B (Akt), or mammalian target of rapamycin (mTOR) conferred Foxp3 expression and Treg-like gene expression profiles. Conversely, continued TCR signaling and constitutive PI3K/Akt/mTOR activity antagonised Foxp3 induction. At the chromatin level, di- and trimethylation of lysine 4 of histone H3 (H3K4me2 and -3) near the Foxp3 transcription start site (TSS) and within the 5' untranslated region (UTR) preceded active Foxp3 expression and, like Foxp3 inducibility, was lost upon continued TCR stimulation. These data demonstrate that the PI3K/Akt/mTOR signaling network regulates Foxp3 expression.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 18509048 2008

S Guo, AK Seth, KM Kendrick, C Zhou, J Feng

Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.

+view abstract Journal of neuroscience methods, PMID: 18508128 2008

E Walters, A Segonds-Pichon, AU Nicol Bioinformatics

We present a statistical approach to the identification of correlated activity in multineuron spike data, based on the value of the correlation determinant. This approach is not compromised by the lack of independence often encountered in this kind of data. We illustrate our method by applying it both to simulated data and to data recorded from neurons in a forebrain region (intermediate medial mesopallium, IMM) of the behaving domestic chick and simultaneously from the corresponding contralateral region. There is no direct anatomical connection between the two sites, and the validity of this technique is strongly supported by the observation that when the test indicates significantly correlated activity for neurons within either hemisphere, this correlation is greatly reduced, and ultimately obliterated, by serial incorporation of activity from neurons in the opposite hemisphere. Since the value of individual correlation coefficients allied to the Bonferroni correction is often used as a diagnostic tool, we also present comparisons of that approach with our correlation determinant approach.

+view abstract Journal of neuroscience methods, PMID: 18499264 2008

R Mansson, S Zandi, K Anderson, IL Martensson, SE Jacobsen, D Bryder, M Sigvardsson

Commitment of hematopoietic progenitor cells to B-lymphoid cell fate has been suggested to coincide with the development of PAX5-expressing B220(+)CD19(+) pro-B cells. We have used a transgenic reporter mouse, expressing human CD25 under the control of the B-lineage-restricted Igll1 (lambda5) promoter to investigate the lineage potential of early progenitor cells in the bone marrow. This strategy allowed us to identify a reporter expressing LIN(-)B220(-)CD19(-)CD127(+)FLT3(+)SCA1(low)KIT(low) population that displays a lack of myeloid and a 90% reduction in in vitro T-cell potential compared with its reporter-negative counterpart. Gene expression analysis demonstrated that these lineage-restricted cells express B-lineage-associated genes to levels comparable with that observed in pro-B cells. These data suggest that B-lineage commitment can occur before the expression of B220 and CD19.

+view abstract Blood, PMID: 18495958 2008