Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

H Ji, F Rintelen, C Waltzinger, D Bertschy Meier, A Bilancio, W Pearce, E Hirsch, MP Wymann, T Rückle, M Camps, B Vanhaesebroeck, K Okkenhaug, C Rommel Immunology

Mice lacking both the p110gamma and p110delta isoforms display severe impairment of thymocyte development. Here, we show that this phenotype is recapitulated in p110gamma-/-/p110delta(D910A/D910A) (p110gamma(KO)delta(D910A)) mice where the p110delta isoform has been inactivated by a point mutation. Moreover, we have examined the pathological consequences of the p110gammadelta deficiency, which include profound T-cell lymphopenia, T-cell and eosinophil infiltration of mucosal organs, elevated IgE levels, and a skewing toward Th2 immune responses. Using small-molecule selective inhibitors, we demonstrated that in mature T cells, p110delta, but not p110gamma, controls Th1 and Th2 cytokine secretion. Thus, the pathology in the p110gammadelta-deficient mice is likely to be secondary to a developmental block in the thymus that leads to lymphopenia-associated inflammatory responses.

+view abstract Blood, PMID: 17626838 2007

CS Osborne, L Chakalova, JA Mitchell, A Horton, AL Wood, DJ Bolland, AE Corcoran, P Fraser

Transcription in mammalian nuclei is highly compartmentalized in RNA polymerase II-enriched nuclear foci known as transcription factories. Genes in cis and trans can share the same factory, suggesting that genes migrate to preassembled transcription sites. We used fluorescent in situ hybridization to investigate the dynamics of gene association with transcription factories during immediate early (IE) gene induction in mouse B lymphocytes. Here, we show that induction involves rapid gene relocation to transcription factories. Importantly, we find that the Myc proto-oncogene on Chromosome 15 is preferentially recruited to the same transcription factory as the highly transcribed Igh gene located on Chromosome 12. Myc and Igh are the most frequent translocation partners in plasmacytoma and Burkitt lymphoma. Our results show that transcriptional activation of IE genes involves rapid relocation to preassembled transcription factories. Furthermore, the data imply a direct link between the nonrandom interchromosomal organization of transcribed genes at transcription factories and the incidence of specific chromosomal translocations.

+view abstract PLoS biology, PMID: 17622196 2007

M He, MW Wang

Recent advances in life science have led to great motivation for the development of protein arrays to study functions of genome-encoded proteins. While traditional cell-based methods have been commonly used for generating protein arrays, they are usually a time-consuming process with a number of technical challenges. Cell-free protein synthesis offers an attractive system for making protein arrays, not only does it rapidly converts the genetic information into functional proteins without the need for DNA cloning, but also presents a flexible environment amenable to production of folded proteins or proteins with defined modifications. Recent advancements have made it possible to rapidly generate protein arrays from PCR DNA templates through parallel on-chip protein synthesis. This article reviews current cell-free protein array technologies and their proteomic applications.

+view abstract Biomolecular engineering, PMID: 17604221 2007

IG Brons, LE Smithers, MW Trotter, P Rugg-Gunn, B Sun, SM Chuva de Sousa Lopes, SK Howlett, A Clarkson, L Ahrlund-Richter, RA Pedersen, L Vallier Epigenetics

Although the first mouse embryonic stem (ES) cell lines were derived 25 years ago using feeder-layer-based blastocyst cultures, subsequent efforts to extend the approach to other mammals, including both laboratory and domestic species, have been relatively unsuccessful. The most notable exceptions were the derivation of non-human primate ES cell lines followed shortly thereafter by their derivation of human ES cells. Despite the apparent common origin and the similar pluripotency of mouse and human embryonic stem cells, recent studies have revealed that they use different signalling pathways to maintain their pluripotent status. Mouse ES cells depend on leukaemia inhibitory factor and bone morphogenetic protein, whereas their human counterparts rely on activin (INHBA)/nodal (NODAL) and fibroblast growth factor (FGF). Here we show that pluripotent stem cells can be derived from the late epiblast layer of post-implantation mouse and rat embryos using chemically defined, activin-containing culture medium that is sufficient for long-term maintenance of human embryonic stem cells. Our results demonstrate that activin/Nodal signalling has an evolutionarily conserved role in the derivation and the maintenance of pluripotency in these novel stem cells. Epiblast stem cells provide a valuable experimental system for determining whether distinctions between mouse and human embryonic stem cells reflect species differences or diverse temporal origins.

+view abstract Nature, PMID: 17597762 2007

D Bello, T Aslam, G Bultynck, AM Slawin, HL Roderick, MD Bootman, SJ Conway

The design of a range of 4-position-modified D-myo-inositol 1,4,5-trisphosphate derivatives is described. The enantioselective synthesis of these compounds is reported, along with initial biological analysis, which indicates that these compounds do not act as D-myo-inositol 1,4,5-trisphosphate receptor agonists or antagonists.

+view abstract The Journal of organic chemistry, PMID: 17585817 2007

M Hemberger Epigenetics

Formation of extraembryonic tissues, and in particular the placenta, is an absolute necessity to ensure growth and survival of the embryo during intrauterine development in mammals. To date, an intriguing number of genes have been identified that are essential for development of extraembryonic structures. However, the underlying genetic information must be interpreted by a set of epigenetic instructions to both establish and maintain lineage- and cell type-specific expression profiles. Based on accumulating data in particular from studies in the mouse, this article is aimed at highlighting the epigenetic machinery required for differentiation of extraembryonic cell types and formation of the placenta. An overview of knockout models reveals key stages in extraembryonic development that are particularly sensitive to alterations in the chromatin environment. The article also summarizes the importance of complex epigenetically controlled mechanisms for placental development, such as imprinted gene expression and imprinted X chromosome inactivation. These investigations of the epigenetic regulation of transcriptional states will provide valuable insights into the dynamic chromatin environment that is specific to extraembryonic tissues and determines gene expression patterns required for normal trophoblast differentiation.

+view abstract Cellular and molecular life sciences : CMLS, PMID: 17585370 2007

SE Ozanne, M Constância

There is accumulating evidence that many chronic diseases such as type 2 diabetes and coronary heart disease might originate during early life. This evidence gives rise to the developmental origins of disease hypothesis, and is supported by epidemiological data in humans and experimental animal models. A perturbed environment in early life is thought to elicit a range of physiological and cellular adaptive responses in key organ systems. These adaptive changes result in permanent alterations and might lead to pathology in later life. Aging organs and cells seem therefore to retain a 'memory' of their fetal history and adaptive responses. The mechanisms underlying the developmental origins of disease remain poorly defined. Epigenetic tagging of genes, such as DNA methylation and histone modification, controls the function of the genome at different levels and maintains cellular memory after many cellular divisions; importantly, tagging can be modulated by the environment and is involved in onset of diseases such as cancer. Here we review the evidence for the developmental origins of disease and discuss the role of the epigenotype as a contributing mechanism. Environmentally induced changes in the epigenotype might be key primary events in the developmental origins of disease, with important clinical implications.

+view abstract Nature clinical practice. Endocrinology & metabolism, PMID: 17581623 2007

D Bolland, A Corcoran

+view abstract Nature immunology, PMID: 17579643 2007

MD Bootman, D Harzheim, I Smyrnias, SJ Conway, HL Roderick

Endothelin-1 (ET-1) is a potent G(q)-coupled agonist with important physiological effects on the heart. In the present study, we characterised the effect of prolonged ET-1 stimulation on Ca(2+) signalling within acutely isolated atrial myocytes. ET-1 induced a reproducible and complex sequence of effects, including negative inotropy, positive inotropy and pro-arrhythmic spontaneous Ca(2+) transients (SCTs). The negative and positive inotropic effects correlated with the ability of Ca(2+) to propagate from the subsarcolemmal sites where EC-coupling initiates into the centre of the atrial cells. We examined the spatial and temporal properties of the SCTs and observed them to range from elementary Ca(2+) sparks, flurries of Ca(2+) sparks, to Ca(2+) waves and action potential-evoked global Ca(2+) transients. The positive inotropic effect of ET-1 and its ability to trigger SCTs were mimicked by direct stimulation of InsP(3)Rs. An antagonist of InsP(3)Rs prevented the generation of SCTs and partially reduced the positive inotropy evoked by ET-1. Our data suggest that ET-1 engages multiple signal transduction pathways to provoke a plethora of different responses within an atrial myocyte. Some of the actions of ET-1 appear to be due to stimulation of InsP(3)Rs.

+view abstract Cell calcium, PMID: 17574672 2007

, O Adewumi, B Aflatoonian, L Ahrlund-Richter, M Amit, PW Andrews, G Beighton, PA Bello, N Benvenisty, LS Berry, S Bevan, B Blum, J Brooking, KG Chen, AB Choo, GA Churchill, M Corbel, I Damjanov, JS Draper, P Dvorak, K Emanuelsson, RA Fleck, A Ford, K Gertow, M Gertsenstein, PJ Gokhale, RS Hamilton, A Hampl, LE Healy, O Hovatta, J Hyllner, MP Imreh, J Itskovitz-Eldor, J Jackson, JL Johnson, M Jones, K Kee, BL King, BB Knowles, M Lako, F Lebrin, BS Mallon, D Manning, Y Mayshar, RD McKay, AE Michalska, M Mikkola, M Mileikovsky, SL Minger, HD Moore, CL Mummery, A Nagy, N Nakatsuji, CM O'Brien, SK Oh, C Olsson, T Otonkoski, KY Park, R Passier, H Patel, M Patel, R Pedersen, MF Pera, MS Piekarczyk, RA Pera, BE Reubinoff, AJ Robins, J Rossant, P Rugg-Gunn, TC Schulz, H Semb, ES Sherrer, H Siemen, GN Stacey, M Stojkovic, H Suemori, J Szatkiewicz, T Turetsky, T Tuuri, S van den Brink, K Vintersten, S Vuoristo, D Ward, TA Weaver, LA Young, W Zhang Epigenetics

The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue-nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.

+view abstract Nature biotechnology, PMID: 17572666 2007

DV Dear, DS Young, J Kazlauskaite, F Meersman, D Oxley, J Webster, TJ Pinheiro, AC Gill, I Bronstein, CR Lowe Mass Spectrometry

Prion diseases, or transmissible spongiform encephalopathies (TSEs) are typically characterised by CNS accumulation of PrP(Sc), an aberrant conformer of a normal cellular protein PrP(C). It is thought PrP(Sc) is itself infectious and the causative agent of such diseases. To date, no chemical modifications of PrP(Sc), or a sub-population thereof, have been reported. In this study we have investigated whether chemical modification of amino acids within PrP might cause this protein to exhibit aberrant properties and whether these properties can be propagated onto unmodified prion protein. Of particular interest were post-translational modifications resulting from physiological conditions shown to be associated with TSE disease. Here we report that in vitro exposure of recombinant PrP to conditions that imitate the end effects of oxidative/nitrative stress in TSE-infected mouse brains cause the protein to adopt many of the physical characteristics of PrP(Sc). Most interestingly, these properties could be propagated onto unmodified PrP protein when the modified protein was used as a template. These data suggest that post-translational modifications of PrP might contribute to the initiation and/or propagation of prion protein-associated plaques in vivo during prion disease, thereby high-lighting novel biochemical pathways as possible therapeutic targets for these conditions.

+view abstract Biochimica et biophysica acta, PMID: 17572162 2007

Le Novère N Signalling

Computational neurobiology was born over half a century ago, and has since been consistently at the forefront of modelling in biology. The recent progress of computing power and distributed computing allows the building of models spanning several scales, from the synapse to the brain. Initially focused on electrical processes, the simulation of neuronal function now encompasses signalling pathways and ion diffusion. The flow of quantitative data generated by the "omics" approaches, alongside the progress of live imaging, allows the development of models that will also include gene regulatory networks, protein movements and cellular remodelling. A systems biology of brain functions and disorders can now be envisioned. As it did for the last half century, neuroscience can drive forward the field of systems biology.

+view abstract BMC systems biology, PMID: 17567903 2007

L Trabace, KM Kendrick, S Castrignanò, M Colaianna, A De Giorgi, S Schiavone, C Lanni, V Cuomo, S Govoni

Several studies suggest a pivotal role of amyloid beta (Abeta)(1-42) and nitric oxide (NO) in the pathogenesis of Alzheimer's disease. NO also possess central neuromodulatory properties. To study the soluble Abeta(1-42) effects on dopamine concentrations in rat prefrontal cortex, microdialysis technique was used. We showed that i.c.v. injection or retrodialysis Abeta(1-42) administration reduced basal and K(+)-stimulated dopamine levels, measured 2 and 48 h after peptide administration. Immunofluorescent experiments revealed that after 48 h from i.c.v. injection Abeta(1-42) was no longer detectable in the ventricular space. We then evaluated the role of NO on Abeta(1-42)-induced reduction in dopamine concentrations. Subchronic L-arginine administration decreased basal dopamine levels, measured either 2 h after i.c.v. Abeta(1-42) or on day 2 post-injection, whereas subchronic 7-nitroindazole administration increased basal dopamine concentrations, measured 2 h after i.c.v. Abeta(1-42) injection, and decreased them when measured on day 2 post-Abeta(1-42)-injection. No dopaminergic response activity was observed after K(+) stimulation in all groups. These results suggest that the dopaminergic system seems to be acutely vulnerable to soluble Abeta(1-42) effects. Finally, the opposite role of NO occurring at different phases might be regarded as a possible link between Abeta(1-42)-induced effects and dopaminergic dysfunction.

+view abstract Neuroscience, PMID: 17560043 2007

S Kulkarni, KJ Woollard, S Thomas, D Oxley, SP Jackson Mass Spectrometry

The ability of platelets to provide a highly reactive surface for the recruitment of other platelets and leukocytes to sites of vascular injury is critical for hemostasis, atherothrombosis, and a variety of inflammatory diseases. The mechanisms coordinating platelet-platelet and platelet-leukocyte interactions have been well defined and, in general, it is assumed that increased platelet activation correlates with enhanced reactivity toward other platelets and neutrophils. In the current study, we demonstrate a differential role for platelets in supporting platelet and neutrophil adhesive interactions under flow. We demonstrate that the conversion of spread platelets to microvesiculated procoagulant (annexin A5-positive [annexin A5+ve]) forms reduces platelet-platelet adhesion and leads to a paradoxical increase in neutrophil-platelet interaction. This enhancement in neutrophil adhesion and spreading is partially mediated by the proinflammatory lipid, platelet-activating factor (PAF). PAF production, unlike other neutrophil chemokines (IL-8, GRO-alpha, NAP-2, IL-1beta) is specifically and markedly up-regulated in annexin A5+ve cells. Physiologically, this spatially controlled production of PAF plays an important role in localizing neutrophils on the surface of thrombi. These studies define for the first time a specific proinflammatory function for annexin A5+ve platelets. Moreover, they demonstrate an important role for platelet-derived PAF in spatially regulating neutrophil adhesion under flow.

+view abstract Blood, PMID: 17548580 2007

D Trivedi, R Padinjat

The RdgBs are a group of evolutionarily conserved molecules that contain a phosphatidylinositol transfer protein (PITP) domain. However in contrast to classical PITPs (PITPalpha) with whom they share the conserved PITP domain, these proteins also contain several additional sequence elements whose functional significance remains unknown. The founding member of the family DrdgB alpha (Drosophila rdgB) appears to be essential for sensory transduction and maintenance of ultra structure in photoreceptors (retinal sensory neurons). Although proposed to support the maintenance of phosphatidylinositol 4, 5 bisphosphate [PI (4, 5) P(2)] levels during G-protein coupled phospholipase C activity in these cells, the biochemical mechanism of DrdgB alpha function remains unresolved. More recently, a mammalian RdgB protein has been implicated in the maintenance of diacylglycerol (DAG) levels and secretory function at Golgi membranes. In this review we discuss existing work on the function of RdgB proteins and set out future challenges in understanding this group of lipid transfer proteins.

+view abstract Biochimica et biophysica acta, PMID: 17543578 2007

YM Yang, TJ Barankiewicz, M He, MJ Taussig, SS Chen

Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (Ckappa) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes on either GFP (5') or Ckappa (3') were selected by anti-GFP or anti-Ckappa antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10fg of the 1kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins.

+view abstract Biochemical and biophysical research communications, PMID: 17537405 2007

DJ Bolland, AL Wood, R Afshar, K Featherstone, EM Oltz, AE Corcoran

V(D)J recombination is believed to be regulated by alterations in chromatin accessibility to the recombinase machinery, but the mechanisms responsible remain unclear. We previously proposed that antisense intergenic transcription, activated throughout the mouse Igh VH region in pro-B cells, remodels chromatin for VH-to-DJH recombination. Using RNA fluorescence in situ hybridization, we now show that antisense intergenic transcription occurs throughout the Igh DHJH region before D-to-J recombination, indicating that this is a widespread process in V(D)J recombination. Transcription initiates near the Igh intronic enhancer Emu and is abrogated in mice lacking this enhancer, indicating that Emu regulates DH antisense transcription. Emu was recently demonstrated to regulate DH-to-JH recombination of the Igh locus. Together, these data suggest that Emu controls DH-to-JH recombination by activating this form of germ line Igh transcription, thus providing a long-range, processive mechanism by which Emu can regulate chromatin accessibility throughout the DH region. In contrast, Emu deletion has no effect on VH antisense intergenic transcription, which is rarely associated with DH antisense transcription, suggesting differential regulation and separate roles for these processes at sequential stages of V(D)J recombination. These results support a directive role for antisense intergenic transcription in enabling access to the recombination machinery.

+view abstract Molecular and cellular biology, PMID: 17526723 2007

KE Ewings, K Hadfield-Moorhouse, CM Wiggins, JA Wickenden, K Balmanno, R Gilley, K Degenhardt, E White, SJ Cook Signalling

The proapoptotic protein Bim is expressed de novo following withdrawal of serum survival factors. Here, we show that Bim-/- fibroblasts and epithelial cells exhibit reduced cell death following serum withdrawal in comparison with their wild-type counterparts. In viable cells, Bax associates with Bcl-2, Bcl-x(L) and Mcl-1. Upon serum withdrawal, newly expressed Bim(EL) associates with Bcl-x(L) and Mcl-1, coinciding with the dissociation of Bax from these proteins. Survival factors can prevent association of Bim with pro-survival proteins by preventing Bim expression. However, we now show that even preformed Bim(EL)/Mcl-1 and Bim(EL)/Bcl-x(L) complexes can be rapidly dissociated following activation of ERK1/2 by survival factors. The dissociation of Bim from Mcl-1 is specific for Bim(EL) and requires ERK1/2-dependent phosphorylation of Bim(EL) at Ser(65). Finally, ERK1/2-dependent dissociation of Bim(EL) from Mcl-1 and Bcl-x(L) may play a role in regulating Bim(EL) degradation, since mutations in the Bim(EL) BH3 domain that disrupt binding to Mcl-1 cause increased turnover of Bim(EL). These results provide new insights into the role of Bim in cell death and its regulation by the ERK1/2 survival pathway.

+view abstract The EMBO journal, PMID: 17525735 2007

W Reik Epigenetics

During development, cells start in a pluripotent state, from which they can differentiate into many cell types, and progressively develop a narrower potential. Their gene-expression programmes become more defined, restricted and, potentially, 'locked in'. Pluripotent stem cells express genes that encode a set of core transcription factors, while genes that are required later in development are repressed by histone marks, which confer short-term, and therefore flexible, epigenetic silencing. By contrast, the methylation of DNA confers long-term epigenetic silencing of particular sequences--transposons, imprinted genes and pluripotency-associated genes--in somatic cells. Long-term silencing can be reprogrammed by demethylation of DNA, and this process might involve DNA repair. It is not known whether any of the epigenetic marks has a primary role in determining cell and lineage commitment during development.

+view abstract Nature, PMID: 17522676 2007

P Fraser, W Bickmore

Much work has been published on the cis-regulatory elements that affect gene function locally, as well as on the biochemistry of the transcription factors and chromatin- and histone-modifying complexes that influence gene expression. However, surprisingly little information is available about how these components are organized within the three-dimensional space of the nucleus. Technological advances are now helping to identify the spatial relationships and interactions of genes and regulatory elements in the nucleus and are revealing an unexpectedly extensive network of communication within and between chromosomes. A crucial unresolved issue is the extent to which this organization affects gene function, rather than just reflecting it.

+view abstract Nature, PMID: 17522674 2007

Foley DA, Sharpe HJ, Otte S Signalling

Secretory proteins are transported from the endoplasmic reticulum to the Golgi apparatus via COPII-coated intermediates. Yeast Erv29p is a transmembrane protein cycling between these compartments. It is conserved across species, with one ortholog found in each genome studied, including the surf-4 protein in mammals. Yeast Erv29p acts as a receptor, loading a specific subset of soluble cargo, including glycosylated alpha factor pheromone precursor and carboxypeptidase Y, into vesicles. As the eukaryotic secretory pathway is highly conserved, mammalian surf-4 may perform a similar role in the transport of unknown substrates. Here we report the membrane topology of yeast Erv29p, which we solved by minimally invasive cysteine accessibility scanning using thiol-specific biotinylation and fluorescent labeling methods. Erv29p contains four transmembrane domains with both termini exposed to the cytosol. Two luminal loops may contain a recognition site for hydrophobic export signals on soluble cargo.

+view abstract Molecular membrane biology, PMID: 17520482 0

SL Lambourne, T Humby, AR Isles, PC Emson, MG Spillantini, LS Wilkinson

Abnormalities in microtubule-associated tau protein are a key neuropathological feature of both Alzheimer's disease and many frontotemporal dementias (FTDs), including hereditary FTD with Parkinsonism linked to chromosome 17 (FTDP-17). In these disorders, tau becomes aberrantly phosphorylated, leading to the development of filamentous neurofibrillary tangles in the brain. Here we report, in a longitudinal ageing study, the sensorimotor and cognitive assessment of transgenic mice expressing the human tau(V337M) ('Seattle Family A') FTDP-17 mutation, which we have previously shown to demonstrate abnormalities in brain tau phosphorylation. The data indicated highly specific effects of transgene expression on the ability to withhold responding in a murine version of the 5-choice serial reaction time task, behaviour consistent with deficits in impulse control. Ageing exacerbated these effects. In young tau(V337M) mice, increased impulsivity was present under task conditions making inhibition of premature responding more difficult (longer inter-trial intervals) but not under baseline conditions. However, when older, the tau(V337M) mice showed further increases in premature responding, including under baseline conditions. These impulse control deficits were fully dissociable from sensorimotor or motivation effects on performance. The findings recapitulate core abnormalities in impulsive responding observed in both frontal variant FTD and FTDP-17 linked to the tau(V337M) mutation in humans.

+view abstract Human molecular genetics, PMID: 17517691 2007

S Higashi, S Biskup, AB West, D Trinkaus, VL Dawson, RL Faull, HJ Waldvogel, H Arai, TM Dawson, DJ Moore, PC Emson

Mutations in the LRRK2 gene cause autosomal dominant, late-onset parkinsonism, which presents with pleomorphic pathology including alpha-synucleopathy. To promote our understanding of the biological role of LRRK2 in the brain we examined the distribution of LRRK2 mRNA and protein in postmortem human brain tissue from normal and neuropathological subjects. In situ hybridization and immunohistochemical analysis demonstrate the expression and localization of LRRK2 to various neuronal populations in brain regions implicated in Parkinson's disease (PD) including the cerebral cortex, caudate-putamen and substantia nigra pars compacta. Immunofluorescent double labeling studies additionally reveal the prominent localization of LRRK2 to cholinergic-, calretinin- and GABA(B) receptor 1-positive, dopamine-innervated, neuronal subtypes in the caudate-putamen. The distribution of LRRK2 in brain tissue from sporadic PD and dementia with Lewy bodies (DLB) subjects was also examined. In PD brains, LRRK2 immunoreactivity localized to nigral neuronal processes is dramatically reduced which reflects the disease-associated loss of dopaminergic neurons in this region. However, surviving nigral neurons occasionally exhibit LRRK2 immunostaining of the halo structure of Lewy bodies. Moreover, LRRK2 immunoreactivity is not associated with Lewy neurites or with cortical Lewy bodies in sporadic PD and DLB brains. These observations indicate that LRRK2 is not a primary component of Lewy bodies and does not co-localize with mature fibrillar alpha-synuclein to a significant extent. The localization of LRRK2 to key neuronal populations throughout the nigrostriatal dopaminergic pathway is consistent with the involvement of LRRK2 in the molecular pathogenesis of familial and sporadic parkinsonism.

+view abstract Brain research, PMID: 17512502 2007

CR Quilter, SC Blott, AE Wilson, MR Bagga, CA Sargent, GL Oliver, OI Southwood, CL Gilbert, A Mileham, NA Affara

Childbirth is a period of substantial rapid biological and psychological change and a wide range of psychotic disorders can occur ranging from mild 'baby blues' to severe episodes of psychotic illnesses. Puerperal psychosis is the most extreme form of postnatal psychosis, occurring in 1 in 1,000 births. In this study, we have used the pig as an animal model for human postnatal psychiatric illness. Our aim was to identify quantitative trait loci (QTL) associated with maternal (infanticide) sow aggression. This is defined by sows attacking and killing their own newborn offspring, within 24 hr of birth. An affected sib pair whole genome linkage analysis was carried out with 80 microsatellite markers covering the 18 porcine autosomes and the X chromosome, with the aim of identifying chromosomal regions responsible for this abnormal behavior. Analysis was carried out using the non-parametric linkage test of Whittemore and Halpern, as implemented in the Merlin software. The results identified 4 QTL mapping on Sus scrofa chromosomes 2 (SSC2), 10 (SSC10), and X (SSCX). The peak regions of these QTL are syntenic to HSA 5q14.3-15, 1q32, Xpter-Xp2.1, and Xq2.4-Xqter, respectively. Several potential candidate genes lie in these regions in addition to relevant abnormal behavioral QTL, found in humans and rodents.

+view abstract American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics, PMID: 17503476 2007