Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

JA Wickenden, H Jin, M Johnson, AS Gillings, C Newson, M Austin, SD Chell, K Balmanno, CA Pritchard, SJ Cook Signalling

The RAF-mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated kinase 1/2 (RAF-MEK1/2-ERK1/2) pathway is activated in many human tumours and can protect cells against growth factor deprivation; however, most such studies have relied upon overexpression of RAF or MEK constructs that are not found in tumours. Here we show that expression of the endogenous BRAF(V600E) allele in mouse embryonic fibroblasts from conditional knock-in transgenic mice activates ERK1/2, represses the BH3-only protein BIM and protects cells from growth factor withdrawal. Human colorectal cancer (CRC) cell lines harbouring BRAF(V600E) are growth factor independent for the activation of ERK1/2 and survival. However, treatment with the MEK1/2 inhibitors U0126, PD184352 or the novel clinical candidate AZD6244 (ARRY-142886) overcomes growth factor independence, causing CRC cell death. BIM is de-phosphorylated and upregulated following MEK1/2 inhibition in all CRC cell lines studied and knockdown of BIM reduces cell death, indicating that repression of BIM is a major part of the ability of BRAF(V600E) to confer growth factor-independent survival. We conclude that a single endogenous BRAF(V600E) allele is sufficient to repress BIM and prevent death arising from growth factor withdrawal, and CRC cells with BRAF(V600E) mutations are addicted to the ERK1/2 pathway for repression of BIM and growth factor-independent survival.

+view abstract Oncogene, PMID: 18806830 2008

van Hamburg JP, de Bruijn MJ, Ribeiro de Almeida C, van Zwam M, van Meurs M, de Haas E, Boon L, Samsom JN, Hendriks RW Immunology

The zinc-finger transcription factor GATA3 serves as a master regulator of T-helper-2 (Th2) differentiation by inducing expression of the Th2 cytokines IL-4, IL-5 and IL-13 and by suppressing Th1 development. Here, we investigated how GATA3 affects Th17 differentiation, using transgenic mice with enforced GATA3 expression. We activated naïve primary T cells in vitro in the presence of transforming growth factor-beta and IL-6, and found that enforced GATA3 expression induced co-expression of Th2 cytokines in IL-17-producing T cells. Although the presence of IL-4 hampered Th17 differentiation, transforming growth factor-beta/IL-6 cultures from GATA3 transgenic mice contained substantial numbers of IL-17(+) cells, partially because GATA3 supported Th17 differentiation by limiting IL-2 and IFN-gamma production. GATA3 additionally constrained Th17 differentiation in vitro through IL-4-independent mechanisms, involving downregulating transcription of STAT3, STAT4, NFATc2 and the nuclear factor RORgammat, which is crucial for Th17 differentiation. Remarkably, upon myelin oligodendrocyte glycoprotein immunization in vivo, GATA3 transgenic mice contained similar numbers of IL-17-producing T cells in their lymph nodes as wild-type mice, but were not susceptible to autoimmune encephalomyelitis, possibly due to concomitant production of IL-4 and IL-10 induction. We therefore conclude that although GATA3 allows Th17 differentiation, it acts as an inhibitor of Th17-mediated pathology, through IL-4-dependent and IL-4-independent pathways.

+view abstract European journal of immunology, PMID: 18792410 2008

T Gogishvili, F Elias, JL Emery, K McPherson, K Okkenhaug, T Hünig, KM Dennehy Immunology

Almost all responses of naive T cells require co-stimulation, i.e. engagement of the clonotypic TCR with relevant antigen/MHC and the co-stimulatory molecule CD28. How CD28 contributes to T-cell proliferation remains poorly understood, with widely conflicting reports existing which may reflect different methods of co-ligating receptors. Some CD28 mAb, however, can stimulate T-cell proliferation without the need for TCR co-ligation, and thus provide unique tools to dissect proliferative signals mediated through CD28 alone. Using primary peripheral T cells from CD28-transgenic mice, we show that both the YMNM and Lck-binding motifs, but not the Itk-binding motif, in CD28 are required for proliferation. Given that the YMNM motif recruits both phosphoinositide 3-kinase (PI3K) and the exchange factor Vav1, we investigated the role of these two molecules in CD28-mediated proliferation. In p110delta(D910A/D910A) transgenic T cells, which are defective in PI3K activation following CD28 ligation, proliferation was comparable to that in wild-type cells. By contrast, T-cell proliferation was abolished in Vav1(-/-) cells. Although we did not address the role of Grb2 in CD28 signalling, these results indicate that CD28 can mediate Lck- and Vav1-dependent proliferative signals independently of PI3K.

+view abstract European journal of immunology, PMID: 18792405 2008

MJ Berridge

Smooth muscle cell (SMC) contraction is controlled by the Ca2+ and Rho kinase signalling pathways. While the SMC Rho kinase system seems to be reasonably constant, there is enormous variation with regard to the mechanisms responsible for generating Ca2+ signals. One way of dealing with this diversity is to consider how this system has been adapted to control different SMC functions. Phasic SMCs (vas deferens, uterus and bladder) rely on membrane depolarization to drive Ca2+ influx across the plasma membrane. This depolarization can be induced by neurotransmitters or through the operation of a membrane oscillator. Many tonic SMCs (vascular, airway and corpus cavernosum) are driven by a cytosolic Ca2+ oscillator that generates periodic pulses of Ca2+. A similar oscillator is present in pacemaker cells such as the interstitial cells of Cajal (ICCs) and atypical SMCs that control other tonic SMCs (gastrointestinal, urethra, ureter). The changes in membrane potential induced by these cytosolic oscillators does not drive contraction directly but it functions to couple together individual oscillators to provide the synchronization that is a characteristic feature of many tonic SMCs.

+view abstract The Journal of physiology, PMID: 18787034 2008

M He

Protein production is one of the key steps in biotechnology and functional proteomics. Expression of proteins in heterologous hosts (such as in E. coli) is generally lengthy and costly. Cell-free protein synthesis is thus emerging as an attractive alternative. In addition to the simplicity and speed for protein production, cell-free expression allows generation of functional proteins that are difficult to produce by in vivo systems. Recent exploitation of cell-free systems enables novel development of technologies for rapid discovery of proteins with desirable properties from very large libraries. This article reviews the recent development in cell-free systems and their application in the large scale protein analysis.

+view abstract New biotechnology, PMID: 18786663 0

B Beirowski, E Babetto, MP Coleman, KR Martin Signalling

Glaucoma is a leading cause of blindness caused by progressive degeneration of retinal ganglion cells (RGCs) and their axons. The pathogenesis of glaucoma remains incompletely understood, but optic nerve (ON) axonal injury appears to be an important trigger of RGC axonal and cell body degeneration. Rat models are widely used in glaucoma research to explore pathogenic mechanisms and to test novel neuroprotective approaches. Here we investigated the mechanism of axon loss in glaucoma, studying axon degeneration in slow Wallerian degeneration (Wld(S)) rats after increasing intraocular pressure. Wld(S) delays degeneration of experimentally transected axons for several weeks, so it can provide genetic evidence for Wallerian-like degeneration in disease. As apoptosis is unaffected, Wld(S) also provides information on whether cell death results from axon degeneration or arises independently, an important question yet to be resolved in glaucoma. Having confirmed expression of Wld(S) protein, we found that Wld(S) delayed ON axonal degeneration in experimental rat glaucoma for at least 2 weeks, especially in proximal ON where wild-type axons are most severely affected. The duration of axonal protection is similar to that after ON transection and crush, suggesting that axonal degeneration in glaucoma follows a Wallerian-like mechanism. Axonal degeneration must be prevented for RGCs to remain functional, so pharmacologically mimicking and enhancing the protective mechanism of Wld(S) could offer an important route towards therapy. However, Wld(S) did not protect RGC bodies in glaucoma or after ON lesion, suggesting that combination treatments protecting both axons and cell bodies offer the best therapeutic prospects.

+view abstract The European journal of neuroscience, PMID: 18783366 2008

S Walker, N Cunniffe, M Bootman, HL Roderick Imaging

+view abstract BioTechniques, PMID: 18778263 2008

M Screen, W Dean, JC Cross, M Hemberger Epigenetics

Trophoblast giant cells are instrumental in promoting blood flow towards the mouse embryo by invading the uterine endometrium and remodelling the maternal vasculature. This process involves the degradation of the perivascular smooth muscle layer and the displacement of vascular endothelial cells to form trophoblast-lined blood sinuses. How this vascular remodelling is achieved at the molecular level remains largely elusive. Here, we show that two placenta-specific cathepsins, Cts7 and Cts8, are expressed in distinct but largely overlapping subsets of giant cells that are in direct contact with maternal arteries. We find that Cts8, but not Cts7, has the capacity to mediate loss of smooth muscle alpha-actin and to disintegrate blood vessels. Consequently, conditional ubiquitous overexpression of Cts8 leads to midgestational embryonic lethality caused by severe vascularization defects. In addition, both cathepsins determine trophoblast cell fate by inhibiting the self-renewing capacity of trophoblast stem cells when overexpressed in vitro. Similarly, transgenic overexpression of Cts7 and Cts8 affects trophoblast proliferation and differentiation by prolonging mitotic cell cycle progression and promoting giant cell differentiation, respectively. We also show that the cell cycle effect is directly caused by some proportion of CTS7 localizing to the nucleus, highlighting the emerging functional diversity of these typically lysosomal proteases in distinct intracellular compartments. Our findings provide evidence for the highly specialized functions of closely related cysteine cathepsin proteases in extra-embryonic development, and reinforce their importance for a successful outcome of pregnancy.

+view abstract Development (Cambridge, England), PMID: 18776147 2008

Le Novère N Signalling

Most neurological diseases are multifactorial diseases, where environmental conditions combine with genetic background or somatic mutations to trigger a pathological state. In the case of Parkinson's Disease and Schizophrenia, recent research revealed that susceptibility genes coded for proteins involved at different steps of specific metabolic networks and cellular processes. Comprehension of the pathology of those diseases is therefore very likely to benefit from Systems approaches. This is also true of their symptomatology, affecting neurological systems at molecular, cellular, and microcircuit levels.

+view abstract Pharmacopsychiatry, PMID: 18756417 2008

KE Anderson, KB Boyle, K Davidson, TA Chessa, S Kulkarni, GE Jarvis, A Sindrilaru, K Scharffetter-Kochanek, O Rausch, LR Stephens, PT Hawkins Signalling

Phagocytosis and activation of the NADPH oxidase are important mechanisms by which neutrophils and macrophages engulf and kill microbial pathogens. We investigated the role of PI3K signaling pathways in the regulation of the oxidase during phagocytosis of Staphylococcus aureus and Escherichia coli by mouse and human neutrophils, a mouse macrophage-like cell line and a human myeloid-like cell line. Phagocytosis of these bacteria was promoted by serum, independent of serum-derived antibodies, and effectively abolished in mouse neutrophils lacking the beta(2)-integrin common chain, CD18. A combination of PI3K isoform-selective inhibitors, mouse knock-outs, and RNA-interference indicated CD18-dependent activation of the oxidase was independent of class I and II PI3Ks, but substantially dependent on the single class III isoform (Vps34). Class III PI3K was responsible for the synthesis of PtdIns(3)P on phagosomes containing either bacteria. The use of mouse neutrophils carrying an appropriate knock-in mutation indicated that PtdIns(3)P binding to the PX domain of their p40(phox) oxidase subunit is important for oxidase activation in response to both S aureus and E coli. This interaction does not, however, account for all the PI3K sensitivity of these responses, particularly the oxidase response to E coli, suggesting that additional mechanisms for PtdIns(3)P-regulation of the oxidase must exist.

+view abstract Blood, PMID: 18755982 2008

JH Clarke, PC Emson, RF Irvine

PIP4Ks (type II phosphatidylinositol 4-phosphate kinases) are phosphatidylinositol 5-phosphate (PtdIns5P) 4-kinases, believed primarily to regulate cellular PtdIns5P levels. In this study, we investigated the expression, localization, and associated biological activity of the least-studied PIP4K isoform, PIP4Kgamma. Quantitative RT-PCR and in situ hybridization revealed that compared with PIP4Kalpha and PIP4Kbeta, PIP4Kgamma is expressed at exceptionally high levels in the kidney, especially the cortex and outer medulla. A specific antibody was raised to PIP4Kgamma, and immunohistochemistry with this and with antibodies to specific kidney cell markers showed a restricted expression, primarily distributed in epithelial cells in the thick ascending limb and in the intercalated cells of the collecting duct. In these cells, PIP4Kgamma had a vesicular appearance, and transfection of kidney cell lines revealed a partial Golgi localization (primarily the matrix of the cis-Golgi) with an additional presence in an unidentified vesicular compartment. In contrast to PIP4Kalpha, bacterially expressed recombinant PIP4Kgamma was completely inactive but did have the ability to associate with active PIP4Kalpha in vitro. Overall our data suggest that PIP4Kgamma may have a function in the regulation of vesicular transport in specialized kidney epithelial cells.

+view abstract American journal of physiology. Renal physiology, PMID: 18753295 2008

Liston A, Lu LF, O'Carroll D, Tarakhovsky A, Rudensky AY Immunology

Regulatory T (T reg) cells are indispensable for preventing autoimmunity. Incumbent to this role is the ability of T reg cells to exert their suppressor function under inflammatory conditions. We found that T reg cell-mediated tolerance is critically dependent on the Dicer-controlled microRNA (miRNA) pathway. Depletion of miRNA within the T reg cell lineage resulted in fatal autoimmunity indistinguishable from that in T reg cell-deficient mice. In disease-free mice lacking Dicer in all T cells or harboring both Dicer-deficient and -sufficient T reg cells, Dicer-deficient T reg cells were suppressive, albeit to a lesser degree, whereas their homeostatic potential was diminished as compared with their Dicer-sufficient counterparts. However, in diseased mice, Dicer-deficient T reg cells completely lost suppressor capacity. Thus, miRNA preserve the T reg cell functional program under inflammatory conditions.

+view abstract The Journal of experimental medicine, PMID: 18725526 2008

Guerlet G, Taly A, Prado de Carvalho L, Martz A, Jiang R, Specht A, Le Novère N, Grutter T Signalling

ATP-gated P2X receptors (P2XRs) are ligand-gated ion channels (LGICs) presumably trimeric. To date, no experimental high-resolution structures are available. Recent X-ray structure of the acid-sensing ion channel 1 (ASIC1) revealed an unexpected trimeric ion channel. Beside their quaternary structure, P2XR and ASIC1 share common membrane topologies, but no significant sequence similarity. In order to overcome this low sequence resemblance, we have developed comparative models of P2X(2)R based on secondary structure predictions using the crystal structure of ASIC1 as template. These models were constrained to be consistent with known arrangement of disulfide bridges. They agreed with cross-linking experiments and supported inter-subunit ATP-binding sites. One of our models reconciled most existing data and provides new structural insights for a plausible mechanism of gating, thus encouraging new experiments.

+view abstract Biochemical and biophysical research communications, PMID: 18718445 2008

Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP, Koni PA, Rudensky AY Immunology

Regulatory Foxp3(+) T cells (T(R)) are indispensable for preventing autoimmune pathology in multiple organs and tissues. During thymic differentiation T cell receptor (TCR)-ligand interactions within a certain increased affinity range, in conjunction with gammac-containing cytokine receptor signals, induce Foxp3 expression and thereby commit developing thymocytes to the T(R) lineage. The contribution of distinct MHC class II-expressing accessory cell types to the differentiation process of Foxp3(+) thymocytes remains controversial, because a unique role in this process has been ascribed to either thymic dendritic cells (tDC) or to medullary thymic epithelial cells (mTEC). Furthermore, it was suggested that the thymic medulla, where the bulk of the negative selection of self-reactive thymocytes takes place, provides a specialized microenvironment supporting T(R) differentiation. Here, we report that the cortex, as defined by cortical thymic epithelial cells (cTEC), is sufficient for supporting T(R) differentiation. MHC class II expression restricted to both cTEC and mTEC or to cTEC alone did not significantly affect the numbers of Foxp3(+) thymocytes. Furthermore, genetic or pharmacologic blockade of thymocyte migration resulted in a prominent accumulation of Foxp3(+) thymocytes in the cortex, demonstrating that secondary signals required for Foxp3 up-regulation exist in the cortex. Our results suggest that mTEC or tDC do not serve as a cell type singularly responsible for T(R) differentiation and that neither the cortex nor the medulla exclusively provides an environment suitable for Foxp3 induction. Instead, multiple accessory cell types probably contribute to the thymic generation of regulatory Foxp3(+) T cells.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 18695219 2008

Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz PA, Bogue M, Booth T, Brazma A, Brinkman RR, Michael Clark A, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Le Novère N, Leebens-Mack J, Lewis SE, Lord P, Mallon AM, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert CJ, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S Signalling

+view abstract Nature biotechnology, PMID: 18688244 2008

C Colas, P James, L Howes, R Jones, JA Cebrian-Perez, T Muiño-Blanco

Unlike most other species, ram spermatozoa are difficult to capacitate in vitro. Bicarbonate and Ca(2+) are necessary, whereas bovine serum albumin does not appear to be obligatory. In the present investigation we have assessed (1) the ability of the cholesterol-sequestering agent, methyl-beta-cyclodextrin (M-beta-CD), to initiate protein tyrosine phosphorylation, and (2) the importance of phosphodiesterases (PDEs) in controlling the levels of cAMP. Results show that despite removing significant amounts of membrane cholesterol, as assessed by filipin staining, M-beta-CD treatment did not stimulate major increases in protein tyrosine phosphorylation. Addition of a cocktail of PDE inhibitors (theophylline and caffeine), a phosphatase inhibitor (okadaic acid) and dibutyryl-cAMP (db-cAMP), however, stimulated specific tyrosine phosphorylation of several proteins between 30 and 120 kDa. On their own, none of the above reagents were effective but a combination of db-cAMP + PDE inhibitors was sufficient to achieve a maximal response. H-89, a protein kinase-A inhibitor, suppressed tyrosine phosphorylation significantly. Immunofluorescence revealed that the newly-phosphorylated proteins localised mainly in the sperm tail. These findings suggest that in ram spermatozoa cAMP levels are too low to initiate tyrosine phosphorylation of flagellar proteins that are indicative of the capacitation state and that this is caused by unusually high levels of intracellular PDEs.

+view abstract Reproduction, fertility, and development, PMID: 18671912 2008

AE Ewence, M Bootman, HL Roderick, JN Skepper, G McCarthy, M Epple, M Neumann, CM Shanahan, D Proudfoot

Vascular calcification is associated with an increased risk of myocardial infarction; however, the mechanisms linking these 2 processes are unknown. Studies in macrophages have suggested that calcium phosphate crystals induce the release of proinflammatory cytokines; however, no studies have been performed on the effects of calcium phosphate crystals on vascular smooth muscle cell function. In the present study, we found that calcium phosphate crystals induced cell death in human aortic vascular smooth muscle cells with their potency depending on their size and composition. Calcium phosphate crystals of approximately 1 microm or less in diameter caused rapid rises in intracellular calcium concentration, an effect that was inhibited by the lysosomal proton pump inhibitor, bafilomycin A1. Bafilomycin A1 also blocked vascular smooth muscle cell death suggesting that crystal dissolution in lysosomes leads to an increase in intracellular calcium levels and subsequent cell death. These studies give novel insights into the bioactivity of calcified deposits and suggest that small calcium phosphate crystals could destabilize atherosclerotic plaques by initiating inflammation and by causing vascular smooth muscle cell death.

+view abstract Circulation research, PMID: 18669918 2008

Stefan MI, Edelstein SJ, Le Novère N Signalling

Calmodulin plays a vital role in mediating bidirectional synaptic plasticity by activating either calcium/calmodulin-dependent protein kinase II (CaMKII) or protein phosphatase 2B (PP2B) at different calcium concentrations. We propose an allosteric model for calmodulin activation, in which binding to calcium facilitates the transition between a low-affinity [tense (T)] and a high-affinity [relaxed (R)] state. The four calcium-binding sites are assumed to be nonidentical. The model is consistent with previously reported experimental data for calcium binding to calmodulin. It also accounts for known properties of calmodulin that have been difficult to model so far, including the activity of nonsaturated forms of calmodulin (we predict the existence of open conformations in the absence of calcium), an increase in calcium affinity once calmodulin is bound to a target, and the differential activation of CaMKII and PP2B depending on calcium concentration.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 18669651 2008

RM Densham, DE Todd, K Balmanno, SJ Cook Signalling

The conditional kinase DeltaMEKK3:ER allows activation of JNK, p38 and ERK1/2 without overt cellular stress or damage and has proved useful in understanding how these pathways regulate apoptosis and cell cycle progression. We have previously shown that activation of DeltaMEKK3:ER causes a sustained G(1) cell cycle arrest which requires p21(CIP1), with ERK1/2 and p38 cooperating to promote p21(CIP1) expression. In cells lacking p21(CIP1), DeltaMEKK3:ER causes only a transient delay in cell cycle re-entry. We now show that this delay in cell cycle re-entry is due to a reduction in cyclin D1 levels. Activation of DeltaMEKK3:ER promotes the proteasome-dependent turnover of cyclin D1; this requires phosphorylation of threonine 286 (T(286)) and expression of cyclin D1T(286)A rescues the delay in G(1)/S progression. DeltaMEKK3:ER-dependent phosphorylation of T(286) does not appear to be mediated by GSK3beta but requires activation of the ERK1/2 and p38 pathways. ERK1/2 can physically associate with cyclin D1 but activation of ERK1/2 alone is not sufficient for phosphorylation of T(286). Rather, cyclin D1 phosphorylation appears to require coincident activation of ERK1/2 and p38. Thus activation of DeltaMEKK3:ER promotes a sustained G(1) cell cycle arrest by a bipartite mechanism involving the rapid destruction of cyclin D1 and the slower more prolonged expression of p21(CIP1). This has parallels with the bipartite response to ionizing radiation and p53-independent mechanisms of G(1) cell cycle arrest in simple organisms such as yeast.

+view abstract Cellular signalling, PMID: 18664382 2008

YP Rong, AS Aromolaran, G Bultynck, F Zhong, X Li, K McColl, S Matsuyama, S Herlitze, HL Roderick, MD Bootman, GA Mignery, JB Parys, H De Smedt, CW Distelhorst

The antiapoptotic protein Bcl-2 inhibits Ca2+ release from the endoplasmic reticulum (ER). One proposed mechanism involves an interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel localized with Bcl-2 on the ER. Here we document Bcl-2-IP3R interaction within cells by FRET and identify a Bcl-2 interacting region in the regulatory and coupling domain of the IP3R. A peptide based on this IP3R sequence displaced Bcl-2 from the IP3R and reversed Bcl-2-mediated inhibition of IP3R channel activity in vitro, IP3-induced ER Ca2+ release in permeabilized cells, and cell-permeable IP3 ester-induced Ca2+ elevation in intact cells. This peptide also reversed Bcl-2's inhibition of T cell receptor-induced Ca2+ elevation and apoptosis. Thus, the interaction of Bcl-2 with IP3Rs contributes to the regulation of proapoptotic Ca2+ signals by Bcl-2, suggesting the Bcl-2-IP3R interaction as a potential therapeutic target in diseases associated with Bcl-2's inhibition of cell death.

+view abstract Molecular cell, PMID: 18657507 2008

F Benahmed, I Gross, SJ Gaunt, F Beck, F Jehan, C Domon-Dell, E Martin, M Kedinger, JN Freund, I Duluc

The Cdx2 homeobox gene exerts multiple functions including trophectoderm specification, antero-posterior patterning, and determination of intestinal identity. The aim of this study was to map genomic regions that regulate the transcription of Cdx2, with a particular interest in the gut.

+view abstract Gastroenterology, PMID: 18655789 2008

PM Coan, E Angiolini, I Sandovici, GJ Burton, M Constância, AL Fowden

Experimental reduction in placental growth often leads to increased placental efficiency measured as grams of fetus produced per gram of placenta, although little is known about the mechanisms involved. This study tested the hypothesis that the smallest placenta within a litter is the most efficient at supporting fetal growth by examining the natural intra-litter variation in placental nutrient transfer capacity in normal pregnant mice. The morphology, nutrient transfer and expression of key growth and nutrient supply genes (Igf2P0, Grb10, Slc2a1, Slc2a3, Slc38a1, Slc38a2 and Slc38a4) were compared in the lightest and heaviest placentas of a litter at days 16 and 19 of pregnancy, when mouse fetuses are growing most rapidly in absolute terms. The data show that there are morphological and functional adaptations in the lightest placenta within a litter, which increase active transport of amino acids per gram of placenta and maintain normal fetal growth close to term, despite the reduced placental mass. The specific placental adaptations differ with age. At E16, they are primarily morphological with an increase in the volume fraction of the labyrinthine zone responsible for nutrient exchange, whereas at E19 they are more functional with up-regulated placental expression of the glucose transporter gene, Slc2a1/GLUT1 and one isoform the System A family of amino acid transporters, Slc38a2/SNAT2. Thus, this adaptability in placental phenotype provides a functional reserve capacity for maximizing fetal growth during late gestation when placental growth is compromised.

+view abstract The Journal of physiology, PMID: 18653658 2008

TS Guillot, KR Shepherd, JR Richardson, MZ Wang, Y Li, PC Emson, GW Miller

The vesicular monoamine transporter 2 (VMAT2) controls the loading of dopamine (DA) into vesicles and therefore determines synaptic properties such as quantal size, receptor sensitivity, and vesicular and cytosolic DA concentration. Impairment of proper DA compartmentalization is postulated to underlie the sensitivity of DA neurons to oxidative damage and degeneration. It is known that DA can auto-oxidize in the cytosol to form quinones and other oxidative species and that this production of oxidative stress is thought to be a critical factor in DA terminal loss after methamphetamine (METH) exposure. Using a mutant strain of mice (VMAT2 LO), which have only 5-10% of the VMAT2 expressed by wild-type animals, we show that VMAT2 is a major determinant of METH toxicity in the striatum. Subsequent to METH exposure, the VMAT2 LO mice show an exacerbated loss of dopamine transporter and tyrosine hydroxylase (TH), as well as enhanced astrogliosis and protein carbonyl formation. More importantly, VMAT2 LO mice show massive argyrophilic deposits in the striatum after METH, indicating that VMAT2 is a regulator of METH-induced neurodegeneration. The increased METH neurotoxicity in VMAT2 LO occurs in the absence of any significant difference in basal temperature or METH-induced hyperthermia. Furthermore, primary midbrain cultures from VMAT2 LO mice show more oxidative stress generation and a greater loss of TH positive processes than wild-type cultures after METH exposure. Elevated markers of neurotoxicity in VMAT2 LO mice and cultures suggest that the capacity to store DA determines the amount of oxidative stress and neurodegeneration after METH administration.

+view abstract Journal of neurochemistry, PMID: 18643795 2008

E Rossoni, J Feng, B Tirozzi, D Brown, G Leng, F Moos

When young suckle, they are rewarded intermittently with a let-down of milk that results from reflex secretion of the hormone oxytocin; without oxytocin, newly born young will die unless they are fostered. Oxytocin is made by magnocellular hypothalamic neurons, and is secreted from their nerve endings in the pituitary in response to action potentials (spikes) that are generated in the cell bodies and which are propagated down their axons to the nerve endings. Normally, oxytocin cells discharge asynchronously at 1-3 spikes/s, but during suckling, every 5 min or so, each discharges a brief, intense burst of spikes that release a pulse of oxytocin into the circulation. This reflex was the first, and is perhaps the best, example of a physiological role for peptide-mediated communication within the brain: it is coordinated by the release of oxytocin from the dendrites of oxytocin cells; it can be facilitated by injection of tiny amounts of oxytocin into the hypothalamus, and it can be blocked by injection of tiny amounts of oxytocin antagonist. Here we show how synchronized bursting can arise in a neuronal network model that incorporates basic observations of the physiology of oxytocin cells. In our model, bursting is an emergent behaviour of a complex system, involving both positive and negative feedbacks, between many sparsely connected cells. The oxytocin cells are regulated by independent afferent inputs, but they interact by local release of oxytocin and endocannabinoids. Oxytocin released from the dendrites of these cells has a positive-feedback effect, while endocannabinoids have an inhibitory effect by suppressing the afferent input to the cells.

+view abstract PLoS computational biology, PMID: 18636098 2008