Life Sciences Research for Lifelong Health

Publications adrian-liston

Title / Authors / Details Open Access Download

Longitudinal In Vivo Assessment of Host-Microbe Interactions in a Murine Model of Pulmonary Aspergillosis.
Saini S, Poelmans J, Korf H, Dooley JL, Liang S, Manshian BB, Verbeke R, Soenen SJ, Vande Velde G, Lentacker I, Lagrou K, Liston A, Gysemans C, De Smedt SC, Himmelreich U

The fungus Aspergillus fumigatus is ubiquitous in nature and the most common cause of invasive pulmonary aspergillosis (IPA) in patients with a compromised immune system. The development of IPA in patients under immunosuppressive treatment or in patients with primary immunodeficiency demonstrates the importance of the host immune response in controlling aspergillosis. However, study of the host-microbe interaction has been hampered by the lack of tools for their non-invasive assessment. We developed a methodology to study the response of the host's immune system against IPA longitudinally in vivo by using fluorine-19 magnetic resonance imaging (F MRI). We showed the advantage of a perfluorocarbon-based contrast agent for the in vivo labeling of macrophages and dendritic cells, permitting quantification of pulmonary inflammation in different murine IPA models. Our findings reveal the potential of F MRI for the assessment of rapid kinetics of innate immune response against IPA and the permissive niche generated through immunosuppression.

+ View Abstract

iScience, 20, 2589-0042, 184-194, 2019

PMID: 31581067

Open Access

Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition.
Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, Narlawar R, Demeyer S, Dooley J, Liston A, Taghon T, Cools J, de Strooper B

Given the high frequency of activating mutations in T cell acute lymphoblastic leukemia (T-ALL), inhibition of the γ-secretase complex remains an attractive target to prevent ligand-independent release of the cytoplasmic tail and oncogenic NOTCH1 signaling. However, four different γ-secretase complexes exist, and available inhibitors block all complexes equally. As a result, these cause severe "on-target" gastrointestinal tract, skin, and thymus toxicity, limiting their therapeutic application. Here, we demonstrate that genetic deletion or pharmacologic inhibition of the presenilin-1 (PSEN1) subclass of γ-secretase complexes is highly effective in decreasing leukemia while avoiding dose-limiting toxicities. Clinically, T-ALL samples were found to selectively express only PSEN1-containing γ-secretase complexes. The conditional knockout of in developing T cells attenuated the development of a mutant NOTCH1-driven leukemia in mice in vivo but did not abrogate normal T cell development. Treatment of T-ALL cell lines with the selective PSEN1 inhibitor MRK-560 effectively decreased mutant NOTCH1 processing and led to cell cycle arrest. These observations were extended to T-ALL patient-derived xenografts in vivo, demonstrating that MRK-560 treatment decreases leukemia burden and increased overall survival without any associated gut toxicity. Therefore, PSEN1-selective compounds provide a potential therapeutic strategy for safe and effective targeting of T-ALL and possibly also for other diseases in which NOTCH signaling plays a role.

+ View Abstract

Science translational medicine, 11, 1946-6242, , 2019

PMID: 31142678

Inborn errors of immunity: single mutations unravel mechanisms of immune disease.
Liston A, Humblet-Baron S

Immunology and cell biology, , 1440-1711, , 2019

PMID: 30942931

The Aire family expands.
Liston A, Dooley J

T cell tolerance depends upon Aire-expressing cells to purge the T cell repertoire of autoreactive clones. Once thought to be the exclusive domain of thymic epithelial cells, a new study by Yamano et al. (https://doi.org/10.1084/jem.20181430) in this issue of identifies ILC3-like cells in the lymph nodes with similar properties.

+ View Abstract

The Journal of experimental medicine, , 1540-9538, , 2019

PMID: 30923044

Machine learning identifies an immunological pattern associated with multiple juvenile idiopathic arthritis subtypes.
Van Nieuwenhove E, Lagou V, Van Eyck L, Dooley J, Bodenhofer U, Roca C, Vandebergh M, Goris A, Humblet-Baron S, Wouters C, Liston A

Juvenile idiopathic arthritis (JIA) is the most common class of childhood rheumatic diseases, with distinct disease subsets that may have diverging pathophysiological origins. Both adaptive and innate immune processes have been proposed as primary drivers, which may account for the observed clinical heterogeneity, but few high-depth studies have been performed.

+ View Abstract

Annals of the rheumatic diseases, , 1468-2060, , 2019

PMID: 30862608

Prospective study evaluating immune-mediated mechanisms and predisposing factors underlying persistent postinfectious abdominal complaints.
Florens MV, Van Wanrooy S, Dooley J, Aguilera-Lizarraga J, Vanbrabant W, Wouters MM, Van Oudenhove L, Peetermans WE, Liston A, Boeckxstaens GE

The role of persistent immune activation in postinfectious irritable bowel syndrome (PI-IBS) remains controversial. Here, we prospectively studied healthy subjects traveling to destinations with a high-risk to develop infectious gastroenteritis (IGE) in order to identify immune-mediated mechanisms and risk factors of PI-IBS.

+ View Abstract

Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society, 31, 1365-2982, e13542, 2019

PMID: 30657233

IFN-γ and CD25 drive distinct pathologic features during hemophagocytic lymphohistiocytosis.
Humblet-Baron S, Franckaert D, Dooley J, Ailal F, Bousfiha A, Deswarte C, Oleaga-Quintas C, Casanova JL, Bustamante J, Liston A

Inflammatory activation of CD8 T cells can, when left unchecked, drive severe immunopathology. Hyperstimulation of CD8 T cells through a broad set of triggering signals can precipitate hemophagocytic lymphohistiocytosis (HLH), a life-threatening systemic inflammatory disorder.

+ View Abstract

The Journal of allergy and clinical immunology, , 1097-6825, , 2018

PMID: 30578871

NFIL3 mutations alter immune homeostasis and sensitise for arthritis pathology.
Schlenner S, Pasciuto E, Lagou V, Burton O, Prezzemolo T, Junius S, Roca CP, Seillet C, Louis C, Dooley J, Luong K, Van Nieuwenhove E, Wicks IP, Belz G, Humblet-Baron S, Wouters C, Liston A

is a key immunological transcription factor, with knockout mice studies identifying functional roles in multiple immune cell types. Despite the importance of NFIL3, little is known about its function in humans.

+ View Abstract

Annals of the rheumatic diseases, 78, 1468-2060, 342-349, 2019

PMID: 30552177

Open Access

A robust pipeline with high replication rate for detection of somatic variants in the adaptive immune system as a source of common genetic variation in autoimmune disease.
Van Horebeek L, Hilven K, Mallants K, Van Nieuwenhuijze A, Kelkka T, Savola P, Mustjoki S, Schlenner SM, Liston A, Dubois B, Goris A

The role of somatic variants in diseases beyond cancer is increasingly being recognized, with potential roles in autoinflammatory and autoimmune diseases. However, as mutation rates and allele fractions are lower, studies in these diseases are substantially less tolerant of false positives and bio-informatics algorithms require high replication rates. We developed a pipeline combining two variant callers, MuTect2 and VarScan2, with technical filtering and prioritization. Our pipeline detects somatic variants with allele fractions as low as 0.5% and achieves a replication rate >55%. Validation in an independent dataset demonstrates excellent performance (sensitivity >57%, specificity >98%, replication rate >80%). We applied this pipeline to the autoimmune disease multiple sclerosis (MS) as a proof-of-principle. We demonstrate that 60% of MS patients carry 2-10 exonic somatic variants in their peripheral blood T and B cells, with the vast majority (80%) occurring in T cells and variants persisting over time. Synonymous variants significantly co-occur with nonsynonymous variants. Systematic characterization indicates somatic variants are enriched for being novel or very rare in public databases of germline variants and trend towards being more damaging and conserved, as reflected by higher CADD and GERP scores. Our pipeline and proof-of-principle now warrant further investigation of common somatic genetic variation on top of inherited genetic variation in the context of autoimmune disease, where it may offer subtle survival advantages to immune cells and contribute to the capacity of these cells to participate in the autoimmune reaction.

+ View Abstract

Human molecular genetics, , 1460-2083, , 2018

PMID: 30541027

Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells.
Humblet-Baron S, Barber JS, Roca CP, Lenaerts A, Koni PA, Liston A

Dendritic cells (DCs) are a key cell type in the initiation of the adaptive immune response. Recently, an additional role for DCs in suppressing myeloproliferation was discovered. Myeloproliferative disorder (MPD) was observed in murine studies with constitutive depletion of DCs, as well as in patients with congenital deficiency in DCs caused by mutations in or The mechanistic link between DC deficiency and MPD was not predicted through the known biology and has remained an enigma. Prevailing models suggest numerical DC deficiency leads to MPD through compensatory myeloid differentiation. Here, we formally tested whether MPD can also arise through a loss of DC function without numerical deficiency. Using mice whose DCs are deficient in antigen presentation, we find spontaneous MPD that is characterized by splenomegaly, neutrophilia, and extramedullary hematopoiesis, despite normal numbers of DCs. Disease development was dependent on loss of the MHC class II (MHCII) antigen-presenting complex on DCs and was eliminated in mice deficient in total lymphocytes. Mice lacking MHCII and CD4 T cells did not develop disease. Thus, MPD was paradoxically contingent on the presence of CD4 T cells and on a failure of DCs to activate CD4 T cells, trapping the cells in a naive Flt3 ligand-expressing state. These results identify a novel requirement for intercellular collaboration between DCs and CD4 T cells to regulate myeloid differentiation. Our findings support a new conceptual framework of DC biology in preventing MPD in mice and humans.

+ View Abstract

Blood, 133, 1528-0020, 319-330, 2019

PMID: 30333120

Open Access

Genetic Architecture of Adaptive Immune System Identifies Key Immune Regulators.
Lagou V, Garcia-Perez JE, Smets I, Van Horebeek L, Vandebergh M, Chen L, Mallants K, Prezzemolo T, Hilven K, Humblet-Baron S, Moisse M, Van Damme P, Boeckxstaens G, Bowness P, Dubois B, Dooley J, Liston A, Goris A

The immune system is highly diverse, but characterization of its genetic architecture has lagged behind the vast progress made by genome-wide association studies (GWASs) of emergent diseases. Our GWAS for 54 functionally relevant phenotypes of the adaptive immune system in 489 healthy individuals identifies eight genome-wide significant associations explaining 6%-20% of variance. Coding and splicing variants in PTPRC and COMMD10 are involved in memory T cell differentiation. Genetic variation controlling disease-relevant T helper cell subsets includes RICTOR and STON2 associated with Th2 and Th17, respectively, and the interferon-lambda locus controlling regulatory T cell proliferation. Early and memory B cell differentiation stages are associated with variation in LARP1B and SP4. Finally, the latrophilin family member ADGRL2 correlates with baseline pro-inflammatory interleukin-6 levels. Suggestive associations reveal mechanisms of autoimmune disease associations, in particular related to pro-inflammatory cytokine production. Pinpointing these key human immune regulators offers attractive therapeutic perspectives.

+ View Abstract

Cell reports, 25, 2211-1247, 798-810.e6, 2018

PMID: 30332657

Open Access

Mice Deficient in Nucleoporin Nup210 Develop Peripheral T Cell Alterations.
van Nieuwenhuijze A, Burton O, Lemaitre P, Denton AE, Cascalho A, Goodchild RE, Malengier-Devlies B, Cauwe B, Linterman MA, Humblet-Baron S, Liston A

The nucleopore is an essential structure of the eukaryotic cell, regulating passage between the nucleus and cytoplasm. While individual functions of core nucleopore proteins have been identified, the role of other components, such as Nup210, are poorly defined. Here, through the use of an unbiased ENU mutagenesis screen for mutations effecting the peripheral T cell compartment, we identified a Nup210 mutation in a mouse strain with altered CD4/CD8 T cell ratios. Through the generation of Nup210 knockout mice we identified Nup210 as having a T cell-intrinsic function in the peripheral homeostasis of T cells. Remarkably, despite the deep evolutionary conservation of this key nucleopore complex member, no other major phenotypes developed, with viable and healthy knockout mice. These results identify Nup210 as an important nucleopore complex component for peripheral T cells, and raise further questions of why this nucleopore component shows deep evolutionary conservation despite seemingly redundant functions in most cell types.

+ View Abstract

Frontiers in immunology, 9, 1664-3224, 2234, 2018

PMID: 30323813

Open Access

The Long Non-coding RNA Anticipates Foxp3 Expression in Regulatory T Cells.
Brajic A, Franckaert D, Burton O, Bornschein S, Calvanese AL, Demeyer S, Cools J, Dooley J, Schlenner S, Liston A

Mammalian genomes encode a plethora of long non-coding RNA (lncRNA). These transcripts are thought to regulate gene expression, influencing biological processes from development to pathology. Results from the few lncRNA that have been studied in the context of the immune system have highlighted potentially critical functions as network regulators. Here we explored the nature of the lncRNA transcriptome in regulatory T cells (Tregs), a subset of CD4 T cells required to establish and maintain immunological self-tolerance. The identified Treg lncRNA transcriptome showed distinct differences from that of non-regulatory CD4 T cells, with evidence of direct shaping of the lncRNA transcriptome by Foxp3, the master transcription factor driving the distinct mRNA profile of Tregs. Treg lncRNA changes were disproportionally reversed in the absence of Foxp3, with an enrichment for colocalisation with Foxp3 DNA binding sites, indicating a direct coordination of transcription by Foxp3 independent of the mRNA coordination function. We further identified a novel lncRNA , as a member of the core Treg lncRNA transcriptome. expression anticipates Foxp3 expression during Treg conversion, and -deficient mice show a mild delay in and peripheral Treg induction. These results implicate as part of the upstream cascade leading to Treg conversion, and may provide clues as to the nature of this process.

+ View Abstract

Frontiers in immunology, 9, 1664-3224, 1989, 2018

PMID: 30319599

Open Access

Insufficient IL-10 Production as a Mechanism Underlying the Pathogenesis of Systemic Juvenile Idiopathic Arthritis.
Imbrechts M, Avau A, Vandenhaute J, Malengier-Devlies B, Put K, Mitera T, Berghmans N, Burton O, Junius S, Liston A, de Somer L, Wouters C, Matthys P

Systemic juvenile idiopathic arthritis (sJIA) is a childhood-onset immune disorder of unknown cause. One of the concepts is that the disease results from an inappropriate control of immune responses to an initially harmless trigger. In the current study, we investigated whether sJIA may be caused by defects in IL-10, a key cytokine in controlling inflammation. We used a translational approach, with an sJIA-like mouse model and sJIA patient samples. The sJIA mouse model relies on injection of CFA in IFN-γ-deficient BALB/c mice; corresponding wild type (WT) mice only develop a subtle and transient inflammatory reaction. Diseased IFN-γ-deficient mice showed a defective IL-10 production in CD4 regulatory T cells, CD19 B cells, and CD3CD122CD49b NK cells, with B cells as the major source of IL-10. In addition, neutralization of IL-10 in WT mice resulted in a chronic immune inflammatory disorder clinically and hematologically reminiscent of sJIA. In sJIA patients, IL-10 plasma levels were strikingly low as compared with proinflammatory mediators. Furthermore, CD19 B cells from sJIA patients showed a decreased IL-10 production, both ex vivo and after in vitro stimulation. In conclusion, IL-10 neutralization in CFA-challenged WT mice converts a transient inflammatory reaction into a chronic disease and represents an alternative model for sJIA in IFN-γ-competent mice. Cell-specific IL-10 defects were observed in sJIA mice and patients, together with an insufficient IL-10 production to counterbalance their proinflammatory cytokines. Our data indicate that a defective IL-10 production contributes to the pathogenesis of sJIA.

+ View Abstract

Journal of immunology (Baltimore, Md. : 1950), 201, 1550-6606, 2654-2663, 2018

PMID: 30266771

ADA2 Deficiency Mimicking Idiopathic Multicentric Castleman Disease.
Van Nieuwenhove E, Humblet-Baron S, Van Eyck L, De Somer L, Dooley J, Tousseyn T, Hershfield M, Liston A, Wouters C

Multicentric Castleman disease (MCD) is a rare entity that, unlike unicentric Castleman disease, involves generalized polyclonal lymphoproliferation, systemic inflammation, and multiple-organ system failure resulting from proinflammatory hypercytokinemia, including, in particular, interleukin-6. A subset of MCD is caused by human herpesvirus-8 (HHV-8), although the etiology for HHV-8-negative, idiopathic MCD (iMCD) cases is unknown at present. Recently, a consensus was reached on the diagnostic criteria for iMCD to aid in diagnosis, recognize mimics, and initiate prompt treatment. Pediatric iMCD remains particularly rare, and differentiation from MCD mimics in children presenting with systemic inflammation and lymphoproliferation is a challenge. We report on a young boy who presented with a HHV-8-negative, iMCD-like phenotype and was found to suffer from the monogenic disorder deficiency of adenosine deaminase 2 (DADA2), which is caused by loss-of-function mutations in DADA2 prototypic features include early-onset ischemic and hemorrhagic strokes, livedoid rash, systemic inflammation, and polyarteritis nodosa vasculopathy, but marked clinical heterogeneity has been observed. Our patient's presentation remains unique, with predominant systemic inflammation, lymphoproliferation, and polyclonal hypergammaglobulinemia but without apparent immunodeficiency. On the basis of the iMCD-like phenotype with elevated interleukin-6 expression, treatment with tocilizumab was initiated, resulting in immediate normalization of clinical and biochemical parameters. In conclusion, iMCD and DADA2 should be considered in the differential diagnosis of children presenting with systemic inflammation and lymphoproliferation. We describe the first case of DADA2 that mimics the clinicopathologic features of iMCD, and our report extends the clinical spectrum of DADA2 to include predominant immune activation and lymphoproliferation.

+ View Abstract

Pediatrics, 142, 1098-4275, , 2018

PMID: 30139808

An avian foundation for dominant tolerance.
Liston A

Nature reviews. Immunology, 18, 1474-1741, 601, 2018

PMID: 30097638

Phenotype molding of stromal cells in the lung tumor microenvironment.
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den Eynde K, Weynand B, Verbeken E, De Leyn P, Liston A, Vansteenkiste J, Carmeliet P, Aerts S, Thienpont B

Cancer cells are embedded in the tumor microenvironment (TME), a complex ecosystem of stromal cells. Here, we present a 52,698-cell catalog of the TME transcriptome in human lung tumors at single-cell resolution, validated in independent samples where 40,250 additional cells were sequenced. By comparing with matching non-malignant lung samples, we reveal a highly complex TME that profoundly molds stromal cells. We identify 52 stromal cell subtypes, including novel subpopulations in cell types hitherto considered to be homogeneous, as well as transcription factors underlying their heterogeneity. For instance, we discover fibroblasts expressing different collagen sets, endothelial cells downregulating immune cell homing and genes coregulated with established immune checkpoint transcripts and correlating with T-cell activity. By assessing marker genes for these cell subtypes in bulk RNA-sequencing data from 1,572 patients, we illustrate how these correlate with survival, while immunohistochemistry for selected markers validates them as separate cellular entities in an independent series of lung tumors. Hence, in providing a comprehensive catalog of stromal cells types and by characterizing their phenotype and co-optive behavior, this resource provides deeper insights into lung cancer biology that will be helpful in advancing lung cancer diagnosis and therapy.

+ View Abstract

Nature medicine, 24, 1546-170X, 1277-1289, 2018

PMID: 29988129

A kindred with mutant IKAROS and autoimmunity.
Van Nieuwenhove E, Garcia-Perez JE, Helsen C, Rodriguez PD, van Schouwenburg PA, Dooley J, Schlenner S, van der Burg M, Verhoeyen E, Gijsbers R, Frietze S, Schjerven H, Meyts I, Claessens F, Humblet-Baron S, Wouters C, Liston A

The Journal of allergy and clinical immunology, 142, 1097-6825, 699-702.e12, 2018

PMID: 29705243

A Framework for Understanding the Evasion of Host Immunity by Biofilms.
Garcia-Perez JE, Mathé L, Humblet-Baron S, Braem A, Lagrou K, Van Dijck P, Liston A

biofilms are a major cause of nosocomial morbidity and mortality. The mechanism by which biofilms evade the immune system remains unknown. In this perspective, we develop a theoretical framework of the three, not mutually exclusive, models, which could explain biofilm evasion of host immunity. First, biofilms may exhibit properties of immunological silence, preventing immune activation. Second, biofilms may produce immune-deviating factors, converting effective immunity into ineffective immunity. Third, biofilms may resist host immunity, which would otherwise be effective. Using a murine subcutaneous biofilm model, we found that mice infected with biofilms developed sterilizing immunity effective when challenged with yeast form . Despite the induction of effective anti- immunity, no spontaneous clearance of the biofilm was observed. These results support the immune resistance model of biofilm immune evasion and demonstrate an asymmetric relationship between the host and biofilms, with biofilms eliciting effective immune responses yet being resistant to immunological clearance.

+ View Abstract

Frontiers in immunology, 9, 1664-3224, 538, 2018

PMID: 29616035

Open Access

The origins of diversity in human immunity.
Liston A, Goris A

Nature immunology, 19, 1529-2916, 209-210, 2018

PMID: 29476185

Abnormal differentiation of B cells and megakaryocytes in patients with Roifman syndrome.
Heremans J, Garcia-Perez JE, Turro E, Schlenner SM, Casteels I, Collin R, de Zegher F, Greene D, Humblet-Baron S, Lesage S, Matthys P, Penkett CJ, Put K, Stirrups K, , Thys C, Van Geet C, Van Nieuwenhove E, Wouters C, Meyts I, Freson K, Liston A

Roifman syndrome is a rare inherited disorder characterized by spondyloepiphyseal dysplasia, growth retardation, cognitive delay, hypogammaglobulinemia, and, in some patients, thrombocytopenia. Compound heterozygous variants in the small nuclear RNA gene RNU4ATAC, which is necessary for U12-type intron splicing, were identified recently as driving Roifman syndrome.

+ View Abstract

The Journal of allergy and clinical immunology, 142, 1097-6825, 630-646, 2018

PMID: 29391254

Multiple sclerosis risk variants alter expression of co-stimulatory genes in B cells.
Smets I, Fiddes B, Garcia-Perez JE, He D, Mallants K, Liao W, Dooley J, Wang G, Humblet-Baron S, Dubois B, Compston A, Jones J, Coles A, Liston A, Ban M, Goris A, Sawcer S

The increasing evidence supporting a role for B cells in the pathogenesis of multiple sclerosis prompted us to investigate the influence of known susceptibility variants on the surface expression of co-stimulatory molecules in these cells. Using flow cytometry we measured surface expression of CD40 and CD86 in B cells from 68 patients and 162 healthy controls that were genotyped for the multiple sclerosis associated single nucleotide polymorphisms (SNPs) rs4810485, which maps within the CD40 gene, and rs9282641, which maps within the CD86 gene. We found that carrying the risk allele rs4810485*T lowered the cell-surface expression of CD40 in all tested B cell subtypes (in total B cells P ≤ 5.10 × 10-5 in patients and ≤4.09 × 10-6 in controls), while carrying the risk allele rs9282641*G increased the expression of CD86, with this effect primarily seen in the naïve B cell subset (P = 0.048 in patients and 5.38 × 10-5 in controls). In concordance with these results, analysis of RNA expression demonstrated that the risk allele rs4810485*T resulted in lower total CD40 [removed]P = 0.057) but with an increased proportion of alternative splice-forms leading to decoy receptors (P = 4.00 × 10-7). Finally, we also observed that the risk allele rs4810485*T was associated with decreased levels of interleukin-10 (P = 0.020), which is considered to have an immunoregulatory function downstream of CD40. Given the importance of these co-stimulatory molecules in determining the immune reaction that appears in response to antigen our data suggest that B cells might have an important antigen presentation and immunoregulatory role in the pathogenesis of multiple sclerosis.

+ View Abstract

Brain : a journal of neurology, 141, 1460-2156, 786-796, 2018

PMID: 29361022

Open Access

NOD mice, susceptible to pancreatic autoimmunity, demonstrate delayed growth of pancreatic cancer.
Dooley J, Pasciuto E, Lagou V, Lampi Y, Dresselaers T, Himmelreich U, Liston A

Pancreatic cancer is a high mortality form of cancer, with a median survival only six months. There are multiple associated risk factors associated, most importantly type 2 diabetes, obesity, pancreatitis and smoking. The relative rarity of the disease, however, has made it difficult to dissect causative risk factors, especially with related risk factors. A major unanswered question with important therapeutic implications is the effect of immunological responses on pancreatic cancer formation, with data from other cancers suggesting the potential for local immunological responses to either increase cancer development or increase cancer elimination. Due to the rarity and late diagnosis of pancreatic cancer direct epidemiological evidence is lacking, thus necessitating a reliance on animal models. Here we investigated the relationship between pancreatic autoimmunity and cancer by backcrossing the well characterised Ela1-Tag transgenic model of pancreatic cancer onto the pancreatic autoimmune susceptible NOD mouse strain. Through longitudinal magnetic resonance imaging we found that the NOD genetic background delayed the onset of pancreatic tumours and substantially slowed the growth rate of tumours after development. These results suggest that elevated autoimmune surveillance of the pancreas limits tumour formation and growth, identifying pancreatic cancer as a promising target for immune checkpoint blockade therapies that unleash latent autoimmunity.

+ View Abstract

Oncotarget, 8, 1949-2553, 80167-80174, 2017

PMID: 29113292

Open Access

CCR7 Modulates the Generation of Thymic Regulatory T Cells by Altering the Composition of the Thymic Dendritic Cell Compartment.
Hu Z, Li Y, Van Nieuwenhuijze A, Selden HJ, Jarrett AM, Sorace AG, Yankeelov TE, Liston A, Ehrlich LIR

Upon recognition of auto-antigens, thymocytes are negatively selected or diverted to a regulatory T cell (Treg) fate. CCR7 is required for negative selection of auto-reactive thymocytes in the thymic medulla. Here, we describe an unanticipated contribution of CCR7 to intrathymic Treg generation. Ccr7 mice have increased Treg cellularity because of a hematopoietic but non-T cell autonomous CCR7 function. CCR7 expression by thymic dendritic cells (DCs) promotes survival of mature Sirpα DCs. Thus, CCR7 deficiency results in apoptosis of Sirpα DCs, which is counterbalanced by expansion of immature Sirpα DCs that efficiently induce Treg generation. CCR7 deficiency results in enhanced intrathymic generation of Tregs at the neonatal stage and in lymphopenic adults, when Treg differentiation is critical for establishing self-tolerance. Together, these results reveal a complex function for CCR7 in thymic tolerance induction, where CCR7 not only promotes negative selection but also governs intrathymic Treg generation via non-thymocyte intrinsic mechanisms.

+ View Abstract

Cell reports, 21, 2211-1247, 168-180, 2017

PMID: 28978470

Open Access

Murine Pancreatic Acinar Cell Carcinoma Growth Kinetics Are Independent of Dietary Vitamin D Deficiency or Supplementation.
Dooley J, Lagou V, Heirman N, Dresselaers T, Himmelreich U, Liston A

Vitamin D has been proposed as a therapeutic strategy in pancreatic cancer, yet evidence for an effect of dietary vitamin D on pancreatic cancer is ambiguous, with conflicting data from human epidemiological and intervention studies. Here, we tested the role of dietary vitamin D in the context of the well-characterized Ela1-TAg transgenic mouse model of pancreatic acinar cell carcinoma. Through longitudinal magnetic resonance imaging of mice under conditions of either dietary vitamin D deficiency (

+ View Abstract

Frontiers in oncology, 7, 2234-943X, 133, 2017

PMID: 28702373

Open Access