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Monocyte-driven atypical cytokine storm and
aberrant neutrophil activation as key mediators
of COVID-19 disease severity
L. Vanderbeke 1,26, P. Van Mol2,26, Y. Van Herck 3,26, F. De Smet 4,26, S. Humblet-Baron5,26,

K. Martinod 6,26, A. Antoranz4, I. Arijs 2, B. Boeckx2, F. M. Bosisio7, M. Casaer8, D. Dauwe 8,

W. De Wever9, C. Dooms10, E. Dreesen 11, A. Emmaneel 12, J. Filtjens13, M. Gouwy14, J. Gunst 8,

G. Hermans8, S. Jansen 15, K. Lagrou1, A. Liston 16, N. Lorent17, P. Meersseman18, T. Mercier 1,

J. Neyts 15, J. Odent19, D. Panovska 4, P. A. Penttila 20, E. Pollet19, P. Proost 14, J. Qian 2,

K. Quintelier 12, J. Raes 21, S. Rex22, Y. Saeys 12, J. Sprooten23, S. Tejpar24, D. Testelmans10,

K. Thevissen 25, T. Van Buyten15, J. Vandenhaute 13, S. Van Gassen 12, L. C. Velásquez Pereira6,

R. Vos 10, B. Weynand7, A. Wilmer18, J. Yserbyt10, A. D. Garg 23,27, P. Matthys 13,27, C. Wouters5,13,27,

D. Lambrechts 2,27, E. Wauters 10,27✉ & J. Wauters18,27

Epidemiological and clinical reports indicate that SARS-CoV-2 virulence hinges upon the

triggering of an aberrant host immune response, more so than on direct virus-induced cellular

damage. To elucidate the immunopathology underlying COVID-19 severity, we perform

cytokine and multiplex immune profiling in COVID-19 patients. We show that hypercytoki-

nemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage

activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19.

Systems modelling of cytokine levels paired with deep-immune profiling shows that classical

monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes

correlates with disease severity, with CD8+ cells being disproportionately affected. Antigen

presenting machinery expression is also reduced in critical disease. Furthermore, we report

that neutrophils contribute to disease severity and local tissue damage by amplification of

hypercytokinemia and the formation of neutrophil extracellular traps. Together our findings

suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an

ineffective adaptive immune system act as mediators of COVID-19 disease severity.
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S ince the first reports of a novel coronavirus outbreak in
Hubei, China at the end of 2019, SARS-CoV-2 has rapidly
spread across the globe, with more than 100 million people

having been infected worldwide resulting in over 2 million fatal
cases1. A broad spectrum of disease symptom manifestations and
varied severity has complicated patient care and put enormous
pressure on healthcare systems worldwide2–7. Our current
understanding of the pathophysiology underlying distinct
COVID-19 clinical phenotypes shows a clear link between the
host immune response and disease severity. Early reports of fever,
increased acute phase reactants and coagulopathy in severe
COVID-19 cases combined with hypercytokinemia have pointed
towards a so-called cytokine storm reminiscent of macrophage
activation syndrome (MAS)2,8,9. Importantly, this paradigm has
formed the basis for many interventional trials. However, it
remains unclear how the dysregulated cytokine release observed
in COVID-19 compares to other known cytokine storm
syndromes10,11.

It has become increasingly clear that the host response to
COVID-19 differs substantially from the antiviral response to
other respiratory viruses including influenza12. Decreased lym-
phocyte counts, reduced T-cell functionalities and increased
neutrophil-to-lymphocyte ratio are now well-established hall-
marks of COVID-1913–21. Despite a large-scale effort by the
global research community over the past year, the exact
mechanisms behind these innate and adaptive immune system
alterations and their interplay remain to be fully elucidated. Based
on results from plasma cytokine profiling, systems biology-driven
predictive modelling and multiplexed immunophenotyping, here
we show that (i) COVID-19 is characterized by an ‘atypical’
cytokine release with reduced type II interferon signalling,
refuting the canonical cytokine storm paradigm, (ii) antigen
presentation is impaired in critical disease and (iii) neutrophils
are important effectors of the resulting damage both locally in the
lung and systemically in circulation.

Results
Demographics and clinical data. We prospectively recruited 61
hospitalized COVID-19 patients in our single-centre clinical
study ‘COvid-19 Advanced Genetic and Immunologic Sampling
(COntAGIouS)’, with demographics and clinical data summar-
ized in Table 1. Routine clinical laboratory results at the time of
study sampling are summarized in supplementary table 1. Of
note, there was no significant difference in our patient population
in baseline demographic characteristics related to disease severity,
and all clinical findings are consistent with other published
clinical cohorts of COVID-19 patients2,22,23.

Hypercytokinemia in COVID-19 as a distinct cytokine release
syndrome. A multitude of interventional trials are based on the
paradigm of typical hypercytokinemia (such as in MAS) in cri-
tically ill COVID-19 patients, as a result thereby investigating
immunomodulatory therapies such as anti-IL-6 or IFN-γ/IL-1
blockade. Surprisingly, a direct comparison between cytokine
profiles in both disease entities has not been performed to date
and scientific data on the contribution of these cytokines to
COVID-19 is not unambiguous10. In an attempt to rationalise
immunomodulatory treatment for critically ill COVID-19
patients, we have performed the first direct comparison
between the plasma cytokine profiles in COVID-19 critical clin-
ical condition and MAS (clinical characteristics of MAS cohort
can be found in Suppl. Table 2).

Levels of IL-6, IL-10, IL-15, IFN-γ, TNF-α, CCL2, CCL3,
CCL4, CCL26, CXCL9 and CXCL10 were significantly elevated
both in COVID-19 critical clinical condition and in MAS patients

as compared to healthy controls. For the majority of these
cytokines and chemokines, including those that are typically
associated with MAS (IL-6, IL-18, IFN-γ, TNF-α, CXCL9) the
increase was less pronounced in COVID-19 critical condition
than in MAS patients (Fig. 1a). On the other hand, some markers
(i.e. IL-5, IL-7, IL-17A, CXCL8 and VEGF) were increased in
critical COVID-19 patients only and not in MAS (Fig. 1a and
Suppl. Fig. 1). Further comparison of the cytokine storm between
critical COVID-19 and MAS revealed three key differences. A
first feature distinct to COVID-19 is the relative absence of IFN-
γ-associated cytokines and chemokines as compared to MAS
patients. Indeed, levels of IL-18, a cytokine also known as IFN-γ-
inducing factor, were significantly lower in critical COVID-19
than in MAS patients (Fig. 1a). Even more striking were the 50-
fold lower plasma levels of IFN-γ in critical COVID-19 patients
as compared to MAS. In line with reduced IFN-γ, we found
markedly lower levels of CXCL9 (an IFN-γ-induced chemokine)
in COVID-19 critical patients compared to MAS, indicative of
decreased type II interferon signalling (Fig. 1a). IFN-γ is a central
cytokine in cell-mediated immune responses that acts as a
regulator of efficient antigen presentation and stimulator of
cytotoxic T-lymphocytes (CTL), and its relatively low level is a
key finding that differentiates critical COVID-19 hypercytokine-
mia from MAS cytokine storm. Secondly, levels of the main
neutrophil chemoattractant CXCL8 were more than 3-fold higher
in critical COVID-19 than in MAS, pointing toward a potential
neutrophil signature (Fig. 1a). A third distinct feature of COVID-
19 was the increased level of VEGF, indicating increased vascular
modulation that is not evident in MAS24. In addition to these
cytokine findings, we found acute phase reactants ferritin and D-
dimers to be markedly lower in critical COVID-19 patients
compared to MAS patients (Suppl. Table 1).

Next, we assessed whether this cytokine signature was
restricted to critically ill COVID-19 patients, or present regardless
of disease severity. A comparison between COVID-19 patients
with critical versus mild-moderate clinical condition revealed
significantly higher cytokine and chemoattractant levels (IL-5, IL-
6, IL-7, IL-13, IL-15, IL-18, TNF-α, CCL2, CCL3, CCL4) in
critical patients (Fig. 1b and Suppl. Fig. 2). Increased levels of IL-6
and TNF-α in critical patients could negatively affect the T-
lymphocyte compartment, and indeed inversely correlated with
clinical laboratory lymphocyte counts, with lymphocyte growth
factors IL-7 and IL-15 suggesting a compensatory response. The
chemokines CCL2 as well as CCL3 and CCL4 (also known as
macrophage inflammatory protein 1-alpha and beta) are involved
in the recruitment and activation of monocytes, macrophages and
neutrophils. Plasma levels of other cytokines and chemokines,
including IFN-γ, CXCL8 and CXCL9 were comparable between
COVID-19 patients with critical and mild-moderate clinical
condition (Fig. 1b and Suppl. Fig. 2).

Taken together, the plasma cytokine and chemokine profiles of
COVID-19 described here are indicative of inflammatory myeloid
cell and neutrophil involvement, which is most pronounced in
critically ill patients. The compromised production of IFN-γ, a
key cytokine in antigen presentation and development of adaptive
immune responses, is striking in all COVID-19 patients
regardless of disease severity.

Classical monocytes orchestrate atypical COVID-19 cytokine
release syndrome. To identify the immune cells responsible for
COVID-19 hypercytokinemia, we first performed unbiased
immune prediction modelling using our experimental cytokine
data. A (computational) predictive correlation network was
constructed per immune cell type, based on expression profiles
derived from 4639 human immune cell reference samples
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assembled from 191 independently published studies25. This
analysis creates a correlation network of input genes (in this case,
genes coding for plasma cytokines detected in our COVID-19
study population), where only those genes that have a high
probability of co-expression (based on extensive immune cells’
reference-gene profiles) are connected. This reveals a high
probability for these genes to associate with overlapping immuno-
regulatory modules specific for each immune cell type. As
expected, our predictions pointed towards dominant myeloid-
driven inflammation in COVID-19, with most extensive corre-
lation networks of cytokine and chemokine-coding gene profiles
formed within macrophages and neutrophils, and limited pre-
dictions within various lymphocytes. Interestingly, mild-
moderate COVID-19 patients could be distinguished from cri-
tical COVID-19 patients by a higher cytokine/chemokine-coding
gene connectivity in plasmacytoid dendritic cells (DCs) and
particularly reduced connectivity in neutrophils (Suppl. Fig. 3a).

To validate the hypothesis of myeloid-driven immunopathol-
ogy generated by these quantitative cytokine and qualitative
computational immunology analyses, we subsequently performed
immunophenotyping experiments on circulating immune cells
using three complementary techniques. Mass cytometry of whole
blood was used to quantify and profile general leucocyte cell types
including peripheral blood mononuclear cells (PBMCs) and
granulocytes, while scRNA-seq of PBMCs allowed for their
characterization at the RNA level and identified cellular sources
of cytokine expression. In addition, classical flow cytometry after
PMA/ionomycin stimulation of lymphocytes isolated from
PBMCs allowed functional characterization of the adaptive

immune system. Overall, mass cytometry showed a decrease of
most immune populations in COVID-19 patients compared to
healthy controls, with more pronounced reductions in the critical
than in the mild-moderate group; a finding in line with clinical
reports2,22,23. However, contradicting the paradigm of overall
immune cell decrease in COVID-19, plasmablast and neutrophil
counts increased compared to healthy controls, more so in
patients in critical as compared to in mild-moderate condition
(Fig. 2a).

Substantiating our hypotheses on the cellular origin of cytokine
production, scRNA-seq of PBMCs showed that classical mono-
cytes were the main source of major COVID-19 mediating
cytokines, including the monocyte chemoattractant CCL2 and its
receptor CCR2, the neutrophil chemoattractant CXCL8, and
TNF-α. The pro-inflammatory nature of this cell subset is further
highlighted by its high expression of inflammasome-associated
cytokine coding genes IL1B and IL18 (Fig. 2b, c). Furthermore,
although monocytes showed the most notable drop in cell count
when comparing critical to mild-moderate condition evaluated by
CyTOF and scRNA-seq, the latter revealed a significant decrease
in non-classical monocytes (based on C1AQ, C1BQ and LSTB1
marker expression) and a corresponding relative increase of
classical monocytes (based on S100A8, S100A9 and S100A12
marker expression) in critical COVID-19 (Fig. 2a and Suppl.
Fig. 4d). Classical monocytes have previously been shown to have
a pro-inflammatory phenotype, with non-classical monocytes
being recognized as patrolling phagocytosing and anti-
inflammatory cells that play an important role in antiviral
defence26,27. Moreover, classical monocytes show a higher

Table 1 Demographics and characteristics of patients infected with COVID-19.

All patients
(n= 61)

Mild-moderate clinical condition
(n= 39)

Critical clinical condition
(n= 22)

p-value

Baseline characteristics
Age, years 62 [54–69] 61 [56–69] 63 [53–68] 0.814
Sex 0.173
Men 36 20 16
Women 25 19 6
Comorbidity
Arterial hypertension 32 (52) 21 (54) 11 (50) 0.983
Diabetes mellitus 11 (18) 7 (18) 4 (18) 1.000
Chronic kidney failure 8 (13) 5 (13) 3 (14) 1.000
Atrial fibrillation 3 (5) 3 (8) 0 (0) 0.547
Obesity (BMI≥ 30 kg/m²) 20 (33) 13 (33) 7 (32) 1.000
Haematological malignancy 1 (2) 1 (3) 0 (0) 1.000
Oncological malignancy 6 (10) 4 (10) 2 (9) 1.000
Clinical characteristics
APACHE II 16 [11–21] NA 16 [11–21] -
Diagnosis of SARS-CoV-2
CT compatible 49 (80) 29 (74) 20 (91) 0.182
CT severity score 9 (7–13) 8 (5–10) 13 (9–16) <0.0001
qRT-PCR nasopharyngeal swab 51 (84) 33 (85) 18 (82) 1.000
qRT-PCR BAL fluid 6 (10) 1 (3) 5 (23) 0.0198
Respiratory support 45 (74) 23 (59) 22 (100) 0.0005b

<0.0001c

Oxygen via nasal cannula 23 (38) 23 (59) 0 (0)
High flow oxygen support 14 (23) 0 (0) 14 (64)
Invasive ventilation 6 (10) 0 (0) 6 (27)
Prone ventilation 2 (3) 0 (0) 2 (9)
Time from illness onset to
sampling (days)

9 [6–11] 8 [5–11] 10 [8–11] 0.110

Length of hospital stay (days) ((n)) 11 [5–22] ((59)) 6 [4–11] ((37)) 24 [12–36] ((22)) <0.0001

Data are median [IQR], or n (%). The p-values comparing patients with mild-moderate and critical clinical condition are from Mann–Whitney U testa for continuous data, Cochran-Armitage test for trendb

for ordered categorical data, and Pearson’s χ2 or Fisher’s exact testc for non-ordered categorical data, all based on a two-sided hypothesis. Chronic kidney failure was defined as eGFR <60mL/min/1.73m2

during 3 months or structural renal disease under nephrology follow-up. Bold font is used to highlight statistically significant findings.
BAL bronchoalveolar lavage, BMI body mass index, NA not applicable.
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expression of the monocyte chemoattractant CCR2 compared to
non-classical monocytes, with anti-CCR2 treatment ameliorating
SARS-CoV-1 disease course in preclinical models28. The
importance of non-classical monocyte depletion in COVID-19
immunopathology has been demonstrated in an independent
cohort of patients with COVID-19, as evidenced by recovery of
this cell population during later stages of disease19.

Interferon-γ was, expectedly, predominantly found in cytotoxic
CD8+ T and NK cells, and to a lesser extent in CD4+ T cells
(Fig. 2c). These immune cell populations were shown to be
globally decreased in COVID-19 compared to healthy controls

(Fig. 2a). However, an increased CD4+/CD8+ T-cell ratio was
seen, which was most pronounced in the critical disease group.
This contrasts with typical findings during viral respiratory
infection, such as influenza or SARS, or sepsis where lympho-
cytopenia is evident but CD4+/CD8+ ratios are decreased29–31.
At the single-cell RNA-seq level, the increased CD4+/CD8+ T-
cell ratio was confirmed when comparing COVID-19 patients to
healthy controls (Fig. 2d).

We further explored specific CD4+ and CD8+ T-cell subsets
using our flow cytometry data (publicly available at https://
flowrepository.org/experiments/2713). In line with Neumann

Fig. 1 Hypercytokinemia in COVID-19 as a distinct cytokine release syndrome. Comparison of plasma levels of selected cytokines and chemokines from
healthy controls (HC, n= 10), COVID-19 critical condition (CCC, n= 22) and MAS patients (n= 10) (a) and COVID-19 subgroups (for mild-moderate
(CMM), n= 39; for critical (CCC), n= 22) versus healthy controls (n= 10) (b). Plasma concentrations were measured by MSD (Meso Scale Discovery).
Boxplot representation (centre line, mean; box limits, upper and lower quartiles; whiskers, range; points, data points per patient). A two-sided
Kruskal–Wallis test with Dunn’s correction for multiple comparisons was used; IL-6: p < 0.0001 HC vs CCC, p= 0.003 HC vs MAS; IL-18: p < 0.0001 HC vs
MAS, p= 0.005 CCC vs MAS; IFNg: p= 0.014 HC vs CCC, p < 0.0001 HC vs MAS, p= 0.008 CCC vs MAS; TNF-a: p= 0.004 HC vs CCC, p < 0.0001 HC
vs MAS, p= 0.015 CCC vs MAS; CXCL8: p= 0.008 HC vs CCC, p= 0.002 CCC vs MAS; CXCL9: p= 0.007 HC vs CCC, p < 0.0001 HC vs MAS, p=
0.014 CCC vs MAS; VEGF: p= 0.049 HC vs CCC, p= 0.0004 CCC vs MAS (a) and IL-6: p= 0.0009 HC vs CMM, p < 0.0001 HC vs CCC, p= 0.014
CMM vs CCC; IL-18: p= 0.019 HC vs CCC, p= 0.024 CMM vs CCC; IFNg: p= 0.004 HC vs CMM, p= 0.003 HC vs CCC; TNF-a: p= 0.009 HC vs CMM,
p < 0.0001 HC vs CCC, p= 0.038 CMM vs CCC; CCL2: p= 0.003 HC vs CMM, p < 0.0001 HC vs CCC, p= 0.026 CMM vs CCC; CCL3: p= 0.006 HC vs
CMM, p < 0.0001 HC vs CCC, p= 0.016 CMM vs CCC; CXCL8: p= 0.007 HC vs CMM, p= 0.0005 HC vs CCC (b). Significance is shown as *p < 0.05;
**p < 0.01; ***p < 0.001 and ****p < 0.0001. MAS=macrophage activation syndrome. See Figs. S1 and S2 for additional cytokine results. Source data are
provided as a Source data file.
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Fig. 2 Peripheral blood immunophenotyping. a Heatmap representation of immune cell subset changes between healthy controls (n= 8), COVID-19 mild-
moderate (n= 32) and critical (n= 14) condition based on mass cytometry measurements on whole blood; representation shows relative fold change
compared to healthy per cell subset. A two-sided Wilcoxon rank-sum test with Benjamini–Hochberg correction for multiple group comparisons was used.
b scRNA-seq data of COVID-19 PBMCs: UMAP plot of 83,524 single cells, colour-coded per cell type. c Violin plots of expression level of key cytokine/
chemokine/chemokine receptor coding genes in the cell types identified in PBMCs from COVID-19 patients, as shown in (b). d CD4+/CD8+ ratios in
healthy controls (HC, n= 6), mild-moderate (CMM, n= 13) and critical (CCC, n= 10) COVID-19 cases, based on scRNA-seq. Healthy control data were
derived from a publicly available dataset (GSE150728). Boxplot representation (centre line, mean; box limits, upper and lower quartiles; whiskers, range;
points, data points per patient). A two-sided Wilcoxon rank-sum test with Benjamini–Hochberg correction for multiple group comparisons was used. p=
0.002 HC vs CMM, p= 0.011 HC vs CCC. Significance is shown as *p < 0.05; **p < 0.01. See Figs. S4 and S5 for further supporting data. Source data are
provided as a Source data file.
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et al.32, there was no significant difference in T-helper and
cytotoxic T-cell counts between the COVID-19 disease severity
groups. However, we found the T-helper 1 subset (defined as
CD4+ T cells secreting IFN-γ) significantly decreased when
comparing all COVID-19 patients to healthy controls. Interest-
ingly, PD-1 was highly expressed in most of the effector T cells
with a predominance in CD8+ TEMRA cells, attesting for the
higher activation of these cells without a strong Th1/Tc1
polarisation (Suppl. Fig. 6a, b). Taken together, the relatively
low IFN-γ signalling identified in COVID-19 could be explained
by reduced lymphocyte counts, with CD8+ T cells most affected
in critical condition.

Reduced MHC class II on antigen-presenting cells marks cri-
tical COVID-19. Having identified (quantitative) shifts in
immune cell populations underlying cytokine changes seen in
COVID-19, we looked at putative downstream effects of these
cytokine alterations. Specifically, given the relatively reduced IFN-
γ signalling and the importance of this cytokine in antigen pre-
sentation, we analysed presence of relevant antigen presentation
molecules in COVID-19 by mass and flow cytometry. When
comparing monocyte populations between critical and mild-
moderate COVID-19, mass cytometry results indeed revealed an
overall shift towards reduced expression of molecules typically
involved in antigen presentation (Fig. 3a). Further evidence was
obtained by flow cytometric analysis that showed significantly
decreased intensity of HLA-DR staining on CD14hi monocytes in
COVID-19 patients compared to healthy controls (Fig. 3b). A
similar trend was seen in classical monocytes using scRNA-seq,
though not reaching statistical significance (p= 0.06; Fig. 3c).

Next, we investigated whether antigen-presenting capacity was
also reduced in ‘true’ professional antigen-presenting cells
(APCs). Mass cytometric analysis showed a significant decrease
in HLA-DR on myeloid dendritic cells from critical compared to
mild-moderate COVID-19 patients (Fig. 3d). Single-cell RNA-seq
confirmed significant downregulation of genes encoding HLA-
DR on dendritic cells in critically ill patients (Fig. 3c). Moreover,
expression of co-stimulatory factors CD83, CD86, ICOSLG and
ICAM1 on dendritic cells was also decreased in critical patients
(Fig. 3e). Given the inflammatory context, these findings strongly
suggest that antigen-presenting capacity of dendritic cells is
differentially affected in critical COVID-19 cases.

Disturbed immuno-regulation in severe COVID-19. In order to
evaluate relationships between cytokine and immune cell shifts
and assess qualitative differences between mild-moderate and
critical COVID-19 patients in an unbiased fashion, we performed
similarity matrix-based statistical correlation modelling analyses
(Pearson correlation-driven) to decipher statistically-stable clus-
tering patterns between plasma-screening-derived cytokines/
chemokines and mass cytometry-derived whole-blood peripheral
immune cell enrichments (Fig. 4a, b).

At the level of cytokines/chemokines, patients with critical
COVID-19, compared to mild-moderate COVID-19 patients,
showed a tendency to gain a highly correlated (and expanded)
cluster of IL-1 cytokines as well as a tendency of an IFN-γ/IL-6
cluster to gain correlation with TNF-α (Fig. 4a, b). Overall, this
points to a highly pro-inflammatory cytokine co-association
profile as a distinguishing characteristic of COVID-19 disease
severity.

Within the lymphoid compartment, mild-moderate COVID-19
patients had better correlation between CD4+/CD8+ T cells and
some B-cell subsets, whereas in critical COVID-19 patients such
correlations between these lymphocyte subpopulations became
more fragmented. Specifically, CD4+ T cells and CD8+ T cells

did not exhibit a tendency to correlate with each other, which can
cause major dysregulation of lymphocyte functioning and
communication. These trends highlight the disparities in qualita-
tive functional cross-talk within the lymphoid compartment of
critical COVID-19 patients (Fig. 4a, b). In line, network analyses
of cytokines correlating with these lymphocytes (while integrating
Gene Ontology/GO-based immunological biological processes)
showed that, cytokines correlating with CD4+/CD8+/B-lympho-
cytes in mild-moderate COVID-19 patients (e.g. IL-16) had a clear
pro-effector orientation (enriching for GO terms for effector,
activation or defense response functions), whereas cytokines
correlating with these lymphocytes in critical COVID-19 patients
(e.g. IL-1α, CCL22, CCL17) had characteristics of activation-
associated stress/cell death (enriching for GO terms for defense
response and also cell death or cell stress) (Suppl. Fig. 3b).

Unlike most lymphocytes, various myeloid cells showed
differential tendencies to positively correlate with different
cytokines; especially plasmacytoid DCs and neutrophils. How-
ever, mild-moderate COVID-19 patients had better correlation
between neutrophils and NK-/Th17 cells, whereas in critical
COVID-19 patients, such correlations became more fragmented.
As such, neutrophils gained considerable correlation with specific
cytokines in critical patients and did not correlate sufficiently
with NK-/Th17 cells—this possibly suggests disruption of an
immune-regulatory loop (where Th17-neutrophil cross-talk can
enable a more controlled or immune-regulated inflammatory
reaction) and may indicate unleashing of detrimental neutrophil-
based inflammation33. Network analyses of cytokines correlating
with these neutrophil-based clusters reinforced this hypothesis
(Suppl. Fig. 3b). Here, we noted that the GO biological process
terms most often enriched by cytokines that correlate with
neutrophil clusters in mild-moderate COVID-19 patients, mainly
included “defense response”, “positive regulation of immune
system”, “cell motility” and “leucocyte migration”, a sign of a
normal innate immune response. A similar analysis in critical
COVID-19 patients showed enrichment of GO biological process
terms similar to the ones stated above, but further combined with
“regulation of programmed cell death”. This suggested the
possibility of increased cellular stress or cell death in neutrophils
brought about by increased inflammation.

Overall, these computational systems and network biology
assessments predicted that mild-moderate COVID-19 patients
could be characterized by more functional/regulated immuno-
pathology (i.e. effector lymphocyte cross-talk and immune-
regulated inflammatory reactions), whereas critical COVID-19
patients might be marked by dysfunctional/dysregulated immu-
nopathology. The latter is immunologically distinguished by
dysregulation of the lymphoid compartment (e.g. fragmented
cross-talk and signs of inflammation-induced stress) and
extremely high (unregulated) neutrophil-driven inflammation.

Neutrophil extracellular trap formation in severe COVID-19.
The above predictions clearly pointed to a qualitatively differ-
ential immunological activity of neutrophils as one of the most
important determinants of critical COVID-19 immunopathology.
This urged us to perform more in-depth (quantitative and
functional) evaluation of this immune subset.

First, we examined neutrophil activation status and neutrophil
extracellular trap (NET) formation in COVID-19 as compared to
healthy subjects, by assessing myeloperoxidase (MPO), MPO-
DNA and citrullinated histone H3 levels, respectively34 (Suppl.
Fig. 7a–c). We additionally compared these levels between
COVID-19 patients and patients with non-COVID pneumonia
(all hospitalised, non-ventilated patients; for clinical character-
istics see Suppl. Table 2), showing significantly higher neutrophil
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Fig. 3 Reduced MHC class II on antigen-presenting cells marks critical COVID-19. a Heatmap of differential monocyte clusters between healthy (n= 8),
mild-moderate (n= 32) and critical (n= 14) COVID-19 groups based on mass cytometry measurements on whole blood. Rows indicate monocyte
subclusters. Columns indicate patient groups (left) and cell surface markers (right). A two-sided Wilcoxon rank-sum test with Benjamini–Hochberg
correction for multiple group comparisons was used. b HLA-DR expression on CD14hi monocytes in healthy (HC, n= 6; mean 95,72%), mild-moderate
(CMM, n= 21; mean 84,14%) and critical (CCC, n= 20; mean 70,97%) groups based on flow cytometric analyses of PBMCs. Boxplot representation
(centre line, mean; box limits, upper and lower quartiles; whiskers, range; points, data points per patient). A two-sided Wilcoxon rank-sum test with
Benjamini–Hochberg correction for multiple group comparisons was used; p= 0.0014 HC vs CCC, p= 0.046 CMM vs CCC. c Gene set enrichment
analysis of HLA-DR complex coding genes in professional antigen-presenting cells, comparing scRNA-seq data from mild-moderate (n= 13) and critical (n
= 10) COVID-19 cases. Boxplot representation (centre line, mean; box limits, upper and lower quartiles; whiskers, range; points, data points per patient). A
two-sided Wilcoxon rank-sum test was used, p= 0.0303 for dendritic cells (DC). d Expression of HLA-DR on myeloid DC based on mass cytometry
measurements (mild-moderate n= 32, critical n= 14). Boxplot representation (centre line, mean; box limits, upper and lower quartiles; whiskers, range;
points, data points per patient). A two-sided Wilcoxon rank-sum test was used, p= 0.0098. e Heatmap of genes coding for co-stimulatory molecules
involved in MHC class II-restricted antigen presentation by dendritic cells, comparing mild-moderate versus critical COVID-19. Individual dots in boxplots
represent data points per patient. Source data are provided as a Source data file. Statistical significance is shown as *p < 0.05; **p < 0.01.
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activation and circulating NETs in the COVID-19 cohort (Suppl.
Fig. 7d–f). Within the COVID-19 cohort, the highest levels were
noted in the critical disease group (Suppl. Fig. 7g–i). Overall,
these data show that, besides an increase in neutrophil counts,
there is increased neutrophil activation and NET release in
COVID-19 linked to disease severity. Importantly, these evalua-
tions were performed in plasma, clearly indicating that circulating
NETs contribute to systemic inflammatory responses and this is
likely not resulting from mechanical ventilation-induced pul-
monary stress.

Based on these results and previously published autopsy
reports, we aimed to confirm that hyperactivated neutrophils not
only play an important role in systemic COVID-19 disease
manifestations, but also contribute to severe COVID-19
pneumonia35,36. We therefore performed scRNA-seq on fresh
BAL fluid from 6 COVID-19 and 5 non-COVID pneumonia
cases, sequencing the transcriptomes of 26,605 cells in total
(Fig. 5a and Suppl. Fig. 8a–c). We observed a striking enrichment
of neutrophils in the lungs of COVID-19 patients compared to
non-COVID pneumonia cases (Fig. 5e). Moreover, a much larger
proportion of these neutrophils was in a hyperactivated state in
COVID-19 patients, marked by upregulated IL1B, CXCL8 and
S100A12 expression (Fig. 5b–d). In-depth differential gene-
expression analysis revealed upregulation of other activation
markers (e.g. S100A8, S100A9, FPR1, SOD2) as well as
inflammasome-stimulating genes (NEAT1)37. Intriguingly, so-
called resting neutrophils showed relative upregulation of genes
coding for HLA-DR receptors (Suppl. Fig. 8f). Although
neutrophils are typically considered poor antigen-presenters,
our findings suggest that, similar to what we observed in
circulating myeloid cells, ‘active’ neutrophils in the lungs of
critical COVID-19 patients have further lost antigen-presenting
capacity and have adopted a deleterious phenotype that
contributes to inflammatory cytokine signalling (IL1B, CXCL8,
NEAT1) and local tissue damage (FPR1).

To investigate NET formation as a component of neutrophil-
induced lung tissue damage in severe COVID-19, we selected 18
genes with an established role in NET formation, adapted from

Gardinassi et al.38, and then calculated a NET score based on the
average up- or downregulation of their expression. This score was
significantly higher in the active neutrophil population (Suppl.
Fig. 8g). Based on this, we suggest that hyperactivated neutrophils
and resulting NET formation not only contribute to systemic
illness, but also to lung damage in severe COVID-19.

Discussion
In this prospective, case-control study of 61 patients with varying
degrees of COVID-19 disease severity and 31 control patients, we
used a quantitative and integrative qualitative immunopheno-
typing approach to characterize the cytokine responses in
COVID-19, the upstream mechanisms and downstream effects
with emphasis on their impact on disease severity. Our results
identified a myeloid-driven atypical cytokine storm that is dis-
tinctly different from MAS, with specific contributions of classical
pro-inflammatory monocytes and neutrophils dominating
COVID-19 immunopathology in the most critical cases.

The first line of an effective antiviral defense consists of
immune sensing of viral RNA by pattern recognition receptors
(PRR) on innate immune and epithelial cells. Downstream sig-
nalling results in early IFN type I–III secretion, which raises an
adaptive immune response and recruits specific leucocyte subsets
to the site of inflammation. These leucocytes create a pro-
inflammatory milieu (through secretion of IL-6, IL-8 and TNF-α
amongst others) later in the disease course3,39,40. Current state of
the art shows that the host innate immune response in COVID-
19 patients is both ineffective at timely stimulation of the adaptive
immune system, attributed to a delayed type I and type III IFN
signature, and excessive causing local (lung) tissue damage and a
systemic cytokine storm with fever, increased acute phase reac-
tants and multiple organ involvement in severely affected
cases2,14,40–42. Importantly, Galani et al. have shown that the
pathogenicity of influenza virus, a major cause of severe viral
pneumonia, does not depend on disturbing this antiviral
cascade40. How exactly pathogenic coronaviruses trigger this
imbalanced myeloid activation, which is very pronounced in

Fig. 4 Disturbed immune regulation in severe COVID-19. Pearson correlation-driven similarity/correlation matrix analysis of cytokines/chemokines and
mass cytometry data in critical (n= 14) (a) and mild-moderate (n= 31) (b) COVID-19 patient subgroups. This correlation matrix analysis is a form of
statistical modelling by which statistically stable relationships between the different variables (i.e. cytokines/chemokines and immune cell subpopulations)
allows their categorization into different clusters indicating high levels of correlation (indicated by the clustering dendrograms). Of note, the diagonal
correlation value is 1, which denotes the highest possible statistically significant correlation value between the given variables and represents the highest
comparative threshold that “centers” the correlation network. See also Fig. S3. Source data are provided as a Source data file.
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COVID-19, remains a matter of debate. Mechanisms of immune
evasion by SARS-CoV-2 have extensively been documented by
Lei et al.43. The resulting delayed IFN signalling and sustained
viral replication might promote cytolysis. This in turn might
recruit immune cells and induce their cytokine production in a

feedforward-loop manner40,44. A direct effect of SARS-CoV-2
proteins on cytokine production by epithelial and myeloid cells
was put forward in an elegant proteomic study, suggesting that
SARS-CoV-2 nsp9 and nsp10 can interfere with NKRF (an NF-
kB repressor), thereby stimulating IL-6 and IL-8 production39,45.

Fig. 5 Contribution of neutrophils to COVID-19 immunopathology at a local level: scRNA-seq data of COVID-19 BAL fluid. UMAP plot of 26,605 single
cells (from 11 patients, n= 6 for COVID-19, n= 5 for non-COVID pneumonia), colour-coded per cell type (a) and UMAP showing active and resting
neutrophil subclusters (b) present in the bronchoalveolar lavage fluid of COVID-19 and non-COVID pneumonia patients. c Feature plots of key differentially
expressed genes, with IL1B, CXCL8 and S100A12 being upregulated in the active neutrophil population. d Boxplots showing a significant abundance of active
neutrophils in COVID-19 pneumonitis, as compared to non-COVID pneumonia. Boxplot representation (centre line, mean; box limits, upper and lower
quartiles; whiskers, range; points, data points per patient). A two-sided Wilcoxon rank-sum test was used, p= 0.009 active neutrophils COVID vs Non-
COVID pneumonia. e Relative immune cell type abundance in bronchoalveolar lavage fluid of COVID-19, compared to non-COVID pneumonia. Boxplot
representation (centre line, mean; box limits, upper and lower quartiles; whiskers, range; points, data points per patient). A two-sided Wilcoxon rank-sum
test was used, p= 0.017 neutrophils COVID vs non-Covid pneumonia. Source data are provided as a Source data file. Significance is shown as *p < 0.05;
**p < 0.01. See also Fig. S8.
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SARS-CoV and SARS-CoV-2, but not MERS-CoV, binding to
and subsequent downregulation of ACE2 contributes to this pro-
inflammatory signalling46,47.

Excessive cytokine release is seen as a key driver of immuno-
pathology in critically ill COVID-19 patients, and many inter-
ventional immunomodulatory trials are underway targeting
MAS-like cytokine signalling pathways, despite the fact that
their similarity has never been formally investigated10,11. We
performed, to our knowledge, the first direct comparison between
COVID-19 critical illness and the typical cytokine release syn-
drome MAS. Although we identified some parallels, the dysre-
gulated cytokine release in COVID-19 was shown here to be
distinctly different from that in MAS2,48,49. Most strikingly, we
found markedly reduced type II IFN signalling, which was also
evident in a comparison of SARS-CoV-2 and influenza as pub-
lished by Mudd et al.50. This highlights the significance of this
cytokine in COVID-19 immunopathology. In addition, despite
defective interferon production after SARS-CoV-2 infection, the
presence of highly elevated monocyte and neutrophil chemoat-
tractants advocates a strong case for myeloid-driven innate
immune hyperactivity in COVID-19. Lastly, vascular remodel-
ling, as suggested by elevated VEGF levels in the systemic cir-
culation, further distinguishes COVID-19 from MAS
hypercytokinemia, findings consistent with autopsy reports on
immunothrombosis and microcoagulopathy35,51. Our results
support the concept that “cytokine storm” is too broad a term to
be used for the many types of hypercytokinemia, which was
recently corroborated by a comparison of IL-1β, IL-6, IL-8 and
TNF-α levels in COVID-19 and CAR T-cell therapy induced
cytokine release52.

We had hypothesized that a major myeloid cell-driven foot-
print would be underlying these cytokine changes, and we sys-
tematically confirmed this by multiplexed immunophenotyping
analyses. Here, we identified a pro-inflammatory monocyte sub-
set, the classical monocytes, as the most important source of
inflammatory cytokines within PBMCs collected from COVID-19
patients. Their relative increase and cytokine production paired to
a decrease of non-classical monocytes, an anti-inflammatory
myeloid cell type, is a key determinant of severe COVID-19; now
a well-substantiated finding in the COVID-19 literature53,54

(although not confirmed in another recently published small
transcriptomic cohort55).

At the other end of this hyperinflammatory innate immune
response, lies a defective virus-directed response of the adaptive
immune system. Because IFN-γ is a key factor enabling efficient
antigen presentation via MHC class II molecules, we speculated
adaptive immune priming would be impaired in COVID-19.
Impaired antigen presentation by CD14+ monocytes in COVID-
19 has previously been suggested, mediated by IL-65. Importantly,
we showed the antigen presentation pathway, including co-
stimulatory receptors, to be even more affected in ‘true’ profes-
sional antigen-presenting cells (i.e. dendritic cells). As such, the
host likely fails to mount an adequate adaptive antiviral immune
response, in line with published flow cytometry data56. In addition
to this putative reduced T-cell function, there is a clear global
quantitative reduction of T-lymphocytes in COVID-19, related to
disease severity and inversely related to levels of IL-6 and TNF-α
(as previously reported14). Importantly, CD8+ T cells were more
affected, leading to an increased CD4+/CD8+ T-cell ratio espe-
cially in critical disease. This distinguishes COVID-19 from other
viral respiratory infections and bacterial sepsis, where lymphocy-
topenia is evident but CD4+/CD8+ ratios are decreased29–31.
This could explain the relatively reduced IFN-γ levels we observed;
a hypothesis that is reinforced by our single-cell RNA-seq data.

Finally, our computational prediction analyses suggested that
neutrophils could be important effector cells for distinguishing

mild-moderate from critical disease. We confirmed this experi-
mentally by determining surrogate neutrophil activation and
NET forming activity in the circulation, and showed these were
elevated in COVID-19, particularly with increased disease
severity. Our findings are in line with recent publications34,57,58,
with the addition of a non-COVID pneumonia control group
indicating COVID-specificity for these high NET levels in our
hospitalized cohort. Mechanical ventilation has been shown to
induce NET formation in the alveolar space59, yet our analyses
were performed in plasma, evidencing the importance of this
process in systemic COVID-19 immunopathology. Moreover, our
scRNA-seq data showed activated neutrophils to be key effectors,
not only of systemic inflammation, but also of lung damage in
severe COVID-19. Indeed, lung neutrophils have a highly acti-
vated phenotype and show upregulation of NET formation rela-
ted genes. Formation of NETs in the lungs and bloodstream will
have clear pathological consequences, inducing epithelial/endo-
thelial cell death, contributing to thrombotic complications, and
potentially having future implications for fibrotic remodelling in
the lung60.

This study has some limitations. First, our study cohort only
includes COVID-19 cases requiring hospitalisation in our tertiary
care centre. Thus, it does not cover the entire disease severity
spectrum. Second, all samples were intentionally collected at the
same timepoint, as the immune response to COVID-19 is a
dynamic process; however, this makes it difficult to draw con-
clusions about causality of our findings. Expansion of our study
cohort and longitudinal sample analyses are ongoing. Third, the
comparison between COVID-19 and MAS plasma cytokine levels
is not patient-matched, though this is intrinsic to MAS being a
predominantly paediatric condition. Using linear regression
analysis to assess influence of demographic variables on our key
cytokine findings (based on Del Valle et al.52), significant dif-
ferences for CXCL8, IFN-γ and VEGF remained apparent (see
Suppl. Table 3). Our study was not powered, however, to adjust
for potential confounders using robust (multivariable) regression
analysis. Also, although the experimental procedures to obtain
cytokine levels in both cohorts were identical, plasma samples of
MAS patients were stored for a longer period of time which might
minimally impact results. Our findings on cytokine profiles,
however, find resonance in the immune cell populations’ abun-
dance and functionality we extensively studied. Fourth, most of
our analyses were performed on PBMCs, which not always reflect
the ongoing disease processes at the site of infection. Never-
theless, these findings were complemented with plasma cytokine
and NET biomarker measurements. Moreover, myeloid-driven
inflammation was also evident from scRNA-seq data of COVID-
19 BAL fluid, thereby expanding our observations to the local
inflammatory compartment at the site of infection61. Lastly, the
scope of our cytokine measurements and functional analyses of
innate immune cells was narrow. For example, we cannot com-
ment on the (direct) contribution of myeloid phagocytosis or
respiratory burst-activity of neutrophils, nor on the relative
contribution of different neutrophil-modulating molecules (e.g.
C5a, CXCL8 isoforms)62,63. We do want to point out, however,
that our focus on NET formation as one end-product of neu-
trophil hyperactivation is robust, as it is supported by our com-
putation biology analysis evidencing neutrophil contribution to
immunopathology in critical disease state, the link between NET
formation and thrombosis64 and evidence of NET formation in
critical influenza immunopathology65.

Based on our data, we propose that increased pro-
inflammatory cytokine signalling parallel to a defective type II
IFN response is a key mediator of critical COVID-19 patho-
physiology; thereby making (a combination of) specific anti-
cytokine monoclonal antibodies (e.g. anti-IL-6) or broad-activity
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immunomodulatory drugs (e.g. colchicine, azithromycin) inter-
esting candidates for interventional clinical trials. Moreover,
systemic hyperinflammation might be prevented by targeting
neutrophils or NETs (e.g. DNase therapy) in the lung (early in the
disease course) to prevent clinical deterioration. The demon-
strated efficacy of dexamethasone66, whose mechanism of action
is poorly understood but likely dampens both the dysregulated
immune response and neutrophil activation seen in our study,
supports further investigation along these avenues.

Methods
Patient cohort, sampling and data collection. In this prospective single-centre
study, adult COVID-19 patients were recruited at the COVID-19 hospitalisation
wards of our tertiary care centre in Leuven (Belgium) between March 27 and April
17 2020. COVID-19 was defined as a positive qRT-PCR on respiratory sample and/
or CT imaging compatible with SARS-CoV-2 disease. Patients with (i) active
haematological malignancy; (ii) active infectious/inflammatory conditions other
than COVID-19; (iii) calcineurin-inhibitor treatment, or (iv) patients or legal
representatives unable or unwilling to give informed consent were excluded. The
control population consisted of (i) 10 healthy controls recruited among hospital
staff (negative COVID-19 serology); (ii) a historical cohort of 10 patients with
macrophage activation syndrome (MAS) and (iii) 11 patients with non-COVID
pneumonia.

COVID-19 patients were stratified by clinical status at the time of study
sampling, in particular, two groups were made: mild-moderate group (either
receiving no respiratory support or oxygen via nasal cannula) and critical condition
group (receiving high flow oxygen support or mechanical ventilation). Blood
samples from all patients were collected at the earliest possible timepoint after
admission, as per study protocol. EDTA, heparin and citrate tubes were collected.
Separation of plasma and PBMCs from EDTA tubes was performed using a
lymphocyte separation medium (LSM, MP Biomedicals). PBMCs were frozen in
10% dimethyl sulfoxide (Sigma) and stored in liquid nitrogen for a maximum of
3 weeks, until further processing. Plasma was kept at −80 °C until processing. All
patient samples were aliquoted at collection for subsequent single analytical
purposes. If bronchoscopy with BAL was performed as part of the standard of
medical care, a dedicated aliquot of this sample was collected and freshly processed
for single-cell RNA sequencing.

Demographic, clinical, laboratory, radiologic, treatment and outcome data from
patient electronic medical records (KWS v.3.3.0) were obtained through a
standardized research form in Research Electronic Data Capture Software
(REDCAP v.10.6.13, Vanderbilt University). Outcome data were evaluated until
May 4 2020. All study procedures were in accordance with the Declaration of
Helsinki and approved by the Ethics Committee of the University Hospitals
Leuven. Informed consent was obtained from all individuals or their legal
guardians. Research was performed as part of the COntAGIouS observational
clinical trial: https://clinicaltrials.gov/ct2/show/NCT04327570.

Chemokine and cytokine assays. Chemokine and cytokine levels in plasma were
assessed by Meso Scale Discovery using the V-plex human cytokine 30-plex kit,
complemented with Human IL-1RA (V-plex), human IL-18 (U-plex) and Human
CXCL9 (R-plex) kits.

Computation systems biology. Unbiased computational systems biology-driven
modelling was performed to predict cell types responsible for COVID-19 cytokine
release, using our cytokine/chemokine plasma data as input and human immune
cell-type expression profiles derived from 4639 human immune cell samples
assembled from 191 independently published studies. We first calculated the fold
change (FC) between COVID-19 patient subgroups (mild-moderate and severe)
and healthy controls for screening-derived cytokine/chemokine values. These FC
values were log2 transformed and, per COVID-19 subgroup, only those cytokines/
chemokines were selected that had final log2FC > 1; a validated threshold67. These
target genes were then entered into the Immuno-Navigator computational pipeline
to create correlation networks per human immune cell-type gene-expression
profiles. Briefly, we created co-expression networks for specific genes, wherein the
genes were linked based on Pearson correlation coefficient (PCC) thresholds for
creating edges. Thicker edges indicated (statistical) significance of the PCC
threshold; the default Immuno-Navigator settings were used per cell. These sta-
tistical thresholds, based on primarily false discovery rates, per reference immune
cell type are: B cells (edge correlation threshold= 0.4; significance correlation
threshold= 0.47), CD4 T cells (0.4; 0.4), CD8 T cells (0.4; 0.49), cDCs (0.4; 0.46),
macrophages (0.4; 0.43), neutrophils (0.4; 0.54), NK cells (0.4; 0.45) and pDCs (0.4;
1). To create similarity matrix analyses between cytokine/chemokine data and mass
cytometry-derived peripheral immune cell enrichments per COVID-19 patient
subgroup (i.e. mild-moderate vs. severe), we utilized the Morpheus software
(version 1, https://software.broadinstitute.org/morpheus and https://github.com/
cmap/morpheus.js) whilst considering Pearson correlation metric for correlation
matrix creation and one minus Pearson correlation metric for hierarchical

clustering. Values were considered for only those COVID-19 patients who had
matched analyses for both cytokine/chemokine screening as well as mass cyto-
metry. For network analyses integrating the Gene Ontology (GO) terms specific for
immunology-related biological processes, we entered the specified genes into the
GOnet computational pipeline (Ontology version: 2019-07-01 and Human anno-
tation version: 2019-07-01)68. Within the GOnet, the input human genes were
computed for GO biological process term annotation based on predefined GO slim
subset for immunology (experimental; process only) and represented via the Euler
force-directed (physics simulation) layout (wherein gene-unconnected terms were
hidden). This analysis reconstructs relationship between genes and GO terms
thereby giving a better idea of the functional immunological impact of specific
input genes.

Mass cytometry
Sample processing and staining procedure. Whole-blood (WB) samples were col-
lected into Lithium heparin tubes and processed for mass cytometry staining
within 2–4 h of isolation. WB was stained with the Maxpar Direct Immune Pro-
filing Assay (DIPA) kit from Fluidigm© by following the workflow outlined for
whole-blood staining. The last step of the protocol was performed overnight at 4 °
C. Alternatively, samples that could not be acquired on the instrument the next
day, were cryopreserved in the same solution at −80 °C. The cryopreservation
technique was validated in triplicate by dividing aliquots of donor samples stained
on the same day and comparing cell viability and immune profiles between fresh
and cryopreserved samples. Batch effects were evaluated by daily running a
reference sample derived from an aliquot of the same healthy donor over the period
of the study.

Data acquisition. Cells stained for mass cytometry were acquired the day after
staining or within 1 week of cryopreservation. For CyTOF acquisition, cells were
pelleted in Milli-Q water on the day of acquisition and transferred to the KU
Leuven Flow and Mass Cytometry Facility to be acquired on a Helios mass cyt-
ometer (Fluidigm©). Cells were resuspended into a 1 million/ml concentration
with Maxpar Cell Acquisition Solution containing EQ beads diluted at 1:10.
Samples were filtered directly prior to acquisition through 35 µm cell strainer cap
tubes. Cells were acquired at a rate of 250–300 events per second. CyTOF software
version 6.7.1016 and the Maxpar Direct Immune Profiling Assay.tem template
were used to acquire and normalize data from the stained samples.

Data analysis (Suppl. Fig. 5). Normalized .fcs files were transferred to the Maxpar
Pathsetter™ software (version 2.0.45) for QC (including bead removal and high-
quality singlet selection). In-depth data analysis was subsequently done using three
parallel strategies. First, the built-in immunoprofiling tools of the Maxpar Path-
setter™ software were used to analyse the overall immune cell population in a highly
standardized and automated way. Second, we used 123 cleaned .fcs files, including
8 healthy controls and 115 COVID-19 patients, through various stages of the
disease. Samples were manually gated for live single cells, and samples with fewer
than 50,000 cells were discarded. Samples were then preprocessed: margin events
were filtered out, data was transformed with an arcsinh transformation with
cofactor 5 and the PeacoQC algorithm (v.0.99.30) was applied to remove any
unstable signal regions during the measurement69. A principal component analysis
of the 25, 50 and 75 percent quantiles of the marker values marked 4 additional
files as outliers, which were not taken along further in the analysis. On this cleaned
data a first FlowSOM model (v.2.1.8) was trained70, using a random selection of
cells for all samples, resulting in 3,000,093 cells to train on. The clustering made use
of 11 markers (CD45, CD66b, CD3, CD4, CD8a, TCRgd, NCAM, CD11c, CD19,
CD14 and CD20), mapped the data onto a 10 by 10 SOM grid and resulted in 30
meta-clusters. Twenty-two meta-clusters were selected as having CD66b values
lower than 2 or CD45 values higher than 4, corresponding to non-granulocytes,
while 8 meta-clusters were labelled as granulocytes. The full files were mapped onto
this model, and for each of them new fcs files were generated corresponding to the
two subsets of cells. A second FlowSOM model was built including only the non-
granulocyte cells (or only granulocyte cells), again using only a subset of 2,949,946
(granulocyte: 3,000,093) cells for training mapped onto a 10 by 10 SOM grid, this
time using 33 markers (CD45, CCR6, IL-3R, CD19, CD4, CD8a, CD11c, CD16,
CD45RO, CD45RA, CD161, CCR4, IL-2Ra, CD27, CD57, CXCR3, CXCR5, CD28,
CD38, CD69, NCAM, TCRgd, CD163, CD294, CCR7, CD14, NKG2A, CD3, CD20,
CD66b, HLA-DR, IgD and IL-7Ra). To be able to identify small populations, no
meta-clustering was applied on these second models, and the 100 clusters were
manually annotated by 3 independent experts according to their mean fluorescence
intensity (MFI) values. In the non-granulocyte model, 6 clusters were manually
identified as still being mixtures of different cell types, and split into 2 or 3 clusters,
resulting in 107 non-granulocyte clusters and 100 granulocyte clusters. These were
themselves clustered by hierarchical clustering with complete linkage. Finally,
54 samples (8 healthy controls, 32 selected patient samples labelled as mild-
moderate and 14 selected samples labelled as critical disease) were mapped onto
these models to identify their immune profiles. Because different clustering
methods can generate different results, we applied 3 clustering methods (Pheno-
Graph, FlowSom, and KMeans71) and followed a wisdom-of-the-crowds type of
approach to identify the different immune cell populations. Briefly, MFIs were
asinh transformed and each marker was normalized in the [0–5] range using q99
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normalization. A randomly sampled subset of 1e5 cells was used for the initial
clustering using a subset of 12 markers (CD19, CD3, CD14, CD11c, CD4, CD45,
CD20, CD8, CD56, TCRgd, CD66b, and CD294) and the three clustering
methods abovementioned. Clusters were manually annotated to known cell
phenotypes by two independent experts (FMB, FDS). To perform a comparative
assessment, we correlated the various approaches. Overall, all clustering algo-
rithms concurred very well. Final annotations were defined by a consensus-based
approach where only those cells that agreed over at least 2 algorithms were
pertained. As such, we observed that >92% of the cells showed agreement across
all clustering methods, ~7% of the cells showed agreement in 2 of 3 clustering
methods, and ~1% of the cells were discarded due to annotation disagreement.
Cell phenotypes were represented by an expression fingerprint summarizing the
average expression of all its cells for each of the 12 markers. These fingerprints
were used to make predictions on the whole population of cells. Each identified
main population was further clustered using the PhenoGraph clustering method
and the whole set of markers. Cluster annotation, fingerprint construction, and
population prediction was performed in the same way as the first iteration. Once
annotated in all 3 approaches, cluster percentages, MFI values and between-
cluster-ratios and sums (according to the merge-hierarchy of the hierarchical
clustering) were compared between the groups with Wilcoxon rank tests and
fold changes of the group medians. In addition, a UMAP dimensionality
reduction was computed on a subset of 50,000 cells from these samples (using
the uwot R package with default parameters). The code used to generate these
results is available at https://github.com/saeyslab/CYTOF_covid19_study. Ana-
lyses were performed in R version 4.0.

Flow cytometry
Sample processing and staining procedure. Frozen PBMCs were thawed, plated and
incubated for 4 h with complete RPMI containing phorbol myristate acetate (PMA
50 ng/mL), ionomycin (500 ng/mL) and Brefeldin A (8 μg/mL; all Tocris
Bioscience, Bristol, UK) at 37 °C with 5% CO2. Cells were then washed twice with
PBS (Fisher Scientific, Hampton, NH, USA) and stained with live/dead marker
(fixable viability dye eFluor780; eBioscience, San Diego, CA, USA) and
fluorochrome-conjugated antibodies against surface markers: anti-CD14 (TuK4,
1:200, MHCD1418), anti-CCR7 (G043H7, 1:50, 25-1979) (eBioscience); anti-CD3
(REA613, 1:50, 130-113) (Miltenyi Biotec, Bergisch Gladbach, Germany); anti‐CD4
(SK3, 1:50, 564651), anti‐CD8 (SK1, 1:200, 564912), anti‐PD-1 (EH12.1, 1:25,
customed Ab), anti‐CD45RA (HI100, 1:50, 612926) (all from BDBiosciences, San
Jose, CA, USA); and anti‐CD25 (BC96, 1:25, 302636), anti‐HLA‐DR (L243, 1:40,
307638), anti‐CD40L (24–31, 1:25, 310842), anti‐4‐1BB (4B4‐1, 1:25, 309822), anti‐
CD19 (HIB19, 1:20, 302242) (all from BioLegend, San Diego, CA, USA). Cells were
fixed with 2% Formaldehyde (VWR chemicals, Radnor, Pennsylvania, PA, USA)
and then permeabilised with eBioscience permeabilisation buffer according to
manufacturer’s instructions. Cells were stained overnight at 4 °C with anti‐IFNγ (4
S.B3, 1:75, 564620), anti‐IL‐6 (MQ2‐13A5, 1:75, 563543), anti‐IL17a (N49‐653,
1:50, 565163), anti‐RORγt (Q21‐559, 1:75, 563081), anti‐IL‐2 (MQ1‐17H12,
1:75, customed Ab), anti‐IL‐10 (JES3‐9D7, 1:50, 564051), anti‐T‐bet (4B10, 1:50,
customed Ab), anti‐CTLA‐4 (BNI3, 1:75, 555854), anti‐GATA3 (L50‐823, 1:50,
565448) (all from BDBiosciences); anti‐IL‐4 (MP4‐25D2, 1:75, 500826), anti‐
TNFα (Mab11, 1:50, 502915), anti‐FOXP3 (206D, 1:50, 320114) (all from
BioLegend).

Data acquisition and analysis (Suppl. Fig. 6c–e). Data were acquired on a BD
Symphony, up to 5 × 105 cells were acquired for each sample. Classical manual
gating strategy was applied in FlowJo (version 10.6.1) and cell subsets were defined
by well-described surface markers. Compensation was performed using Autospill72.
The complete set of FCS files used for the COVID-19 cytokine immune pheno-
typing has been deposited on FlowRepository and annotated in accordance with
the MIFlowCyt standard. These files may be downloaded for further analysis from
https://flowrepository.org/experiments/2713.

Single-cell RNA sequencing. Single-cell RNA sequencing was performed on 13
‘mild-moderate’ and 10 ‘critical’ disease PBMC samples as well as 11 fresh BAL
samples, sequencing 60675, 22849 and 26605 cells, respectively (Suppl. Figs. 4a and
8a). Single-cell suspensions were converted to barcoded scRNA-seq libraries by
using the Chromium Single Cell 5′ library and Gel Bead & Multiplex Kit from 10x
Genomics. Libraries were sequenced on an Illumina NovaSeq6000, and mapped to
the human genome GRCh38 using CellRanger (10x Genomics). Raw gene-
expression matrices generated per sample were merged and analysed with the
Seurat package (v3.1.4).

Preparation of single-cell suspensions. BAL fluid: Approximately 10 ml of BALF was
obtained and placed on ice, with processing within 3 h in a BSL-3 laboratory. BAL
fluid was centrifuged and the supernatant was frozen at −80 °C for further
experiments. The cellular fraction was resuspended in ice-cold PBS and samples
were filtered using 40 µm nylon mesh (ThermoFisher Scientific). Following cen-
trifugation, the supernatant was decanted and discarded, and the cell pellet was
resuspended in red blood cell lysis buffer. Following a 5-min incubation at room
temperature, samples were centrifuged and resuspended in PBS containing

UltraPure BSA (AM2616, ThermoFisher Scientific) and filtered over Flowmi 40 µm
cell strainers (VWR) using wide-bore 1 ml low-retention filter tips (Mettler-
Toledo). Next, 10 µl of this cell suspension was counted using an automated cell
counter to determine the concentration of live cells. The entire procedure was
completed in <1.5 h.

PBMCs: PBMC samples were thawed, centrifuged and the resulting cellular
fraction resuspended in PBS containing UltraPure BSA. This was followed by
filtering and counting, according to BALF protocol. The entire procedure was
completed in <1 h.

Single-cell RNA-seq data acquisition and pre-processing. Libraries for scRNA-seq
were generated using the Chromium Single Cell 5′ library and Gel Bead & Mul-
tiplex Kit from 10x Genomics. We aimed to profile 5000 cells per library. All
libraries were sequenced on Illumina NovaSeq6000 until sufficient saturation was
reached. After quality control, raw sequencing reads were aligned to the human
reference genome GRCh38 and processed to a matrix representing the UMI’s per
cell barcode per gene using CellRanger (10x Genomics, v3.1). Multiplex sequencing
was performed for PBMC samples, pooling 2 donors. Data were deconvolved using
SCsplit73 and annotated using SNPs and sex chromosomes.

Single-cell RNA analysis to determine major cell types and cell phenotypes. Raw
gene-expression matrices generated per sample were merged and analysed with the
Seurat package (v3.1.4). PBMC matrices were filtered by removing cell barcodes
with <401 UMIs, <201 expressed genes, >6000 expressed genes or >25% of reads
mapping to mitochondrial RNA. The remaining cells were normalized and the
2000 most variable genes were selected to perform a PCA analysis after regression
for confounding factors: number of UMIs, % of mitochondrial RNA, patient ID,
cell cycle (S and G2M phase), hypoxia, stress and interferon score. PCs (n= 11)
covering the highest variance in the dataset were selected based on an elbow plot.
Clusters were calculated by the FindClusters function with a resolution between 0.1
and 1.5, and visualised using the UMAP dimensional reduction method, a reso-
lution of 1.0 was selected since all known cell types were identified as a cluster at
this given resolution. Clusters were annotated based on the expression of marker
genes (Suppl. Fig. 4a–c).

To preserve neutrophils, which are transcriptionally less active (lower
transcripts and genes detected), we slightly modified the filtering parameters for
BAL fluid samples and removed cell barcodes with <301 UMIs, <151 expressed
genes or >20% of reads mapping to mitochondrial RNA. Similar PCA and graph-
based clustering approach resulted in some highly patient-specific clusters, which
prompted us to perform a data integration using CCA in Seurat(v3) package
between patients to reduce the patient-specific bias. After data integration,
mitochondrial, cell cycle, hypoxia, stress and interferon response genes were
removed from the variable genes used for downstream PCA, graph-based
clustering and marker gene-based cluster annotation (Suppl. Fig. 8a–c).

Neutrophils in BAL fluid samples and T cells and monocytes in PBMCs were
further subclustered using the same strategy. Neutrophil subclustering revealed one
low quality and one doublet cluster (266 cells in total), which were removed for
further analyses, identifying an ‘active’ and ‘resting’ neutrophil population. Doublet
clusters expressed marker genes from other cell lineages, and had a higher than
expected doublets rate, as predicted by the artificial k-nearest neighbours algorithm
implemented in DoubletFinder (v2).

Net analysis. Platelet-poor plasma was prepared from freshly drawn citrate blood
tubes centrifuged at 400 × g for 7 min at room temperature, followed by a second
centrifugation of the supernatant at 3000 × g for 7 min. Plasma was collected and
stored at −80 °C until analysis.

Plasma was diluted 1:100 for analysis of myeloperoxidase antigen levels using
the LEGEND MAXTM Human Myeloperoxidase ELISA kit (Biolegend) according
to manufacturer instructions, and diluted 1:4 for analysis of NET biomarkers
(MPO-DNA complexes and citrullinated histone H3). MPO-DNA complexes were
measured using an in-house ELISA modified from the Cell Death Detection ELISA
(Roche). A 96-well Nunc immunoassay plate (MediSORP, ThermoFisher) was
coated overnight with polyclonal anti-myeloperoxidase antibody (1:1000 dilution,
ThermoFisher PA5-16672) in 0.05M sodium carbonate/sodium bicarbonate buffer
(pH 9.6). After 4 washes with PBS containing 0.05% Tween-20, wells were blocked
with 3% bovine serum albumin. Samples were diluted in assay buffer (0.3% BSA)
and incubated for 2 h in duplicate wells. Following extensive washing, wells were
incubated with mouse anti-DNA monoclonal antibody conjugated with peroxidase
from the Roche Cell Death Detection ELISA, washed, and detected with ready-to-
use TMB substrate (Life Technologies, 2023). The reaction was stopped with 1 N
hydrochloric acid and the plate read at 450 nM with 630 nM background
subtraction using a Biotek Gen5 microplate reader. Values were normalized to a
plasma pool from 10 healthy volunteers as multiple plates were needed to perform
the full analysis. An in vitro prepared positive-control standard using the MPO
standard from the LEGEND MAXTM Human Myeloperoxidase ELISA kit
incubated with native human nucleosomes (Merck Millipore, 14-1057) confirmed
specificity of the assay and provided an estimated detection range from 49.79 to
183.3 ng/ml. Citrullinated histone H3 levels were measured according to
manufacturer instructions with the Citrullinated Histone H3 [clone 11D3] ELISA
kit from Cayman Chemicals.
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Chest computed tomography and score assessment. All CT scans were per-
formed using a Siemens SOMATOM Definition Flash, dedicated to the COVID-19
emergency department of our institution.

Chest radiologists performed qualitative and quantitative evaluations of lung
parenchyma opacities on CT scan. A CT score was assigned by converting
percentage of lung parenchyma opacity for each lobe into a 5-points Likert scale: a
score of 0 for 0% lung opacity (LO), 1 for 1% to <5% LO, 2 for 5–25% LO, 3 for
26–50% LO, 4 for 51–75% LO, and 5 for 76–100 LO. The total CT score is the sum
of the individual lobar scores and can range from 0 (no area with increase in lung
opacity) to 25 (all five lobes show more than 75% increase in lung opacity).

Quantification and statistical analysis. Descriptive statistics are presented as
median [interquartile range; IQR] and n (%) for continuous and categorical vari-
ables, respectively. The Mann–Whitney U test and Kruskal–Wallis test with Dunn’s
correction for multiple comparisons were used to compare differences in con-
tinuous data between groups as appropriate. Pearson’s χ2 or Fisher’s Exact test was
used to compare differences in non-ordered categorical data between patient
groups. Available case analysis was implemented to address data missingness where
appropriate. Correlation analyses were tested by simple linear regression. Statistical
analyses were performed using R (version 3.6.3, R Foundation for Statistical
Computing, R Core Team, Vienna, Austria) in the RStudio integrated development
environment (version 2.2.1; RStudio, Inc., Boston, MA, USA) and Graphpad Prism
version 8.4.2. Statistical analyses were performed with a two-sided alternative
hypothesis at the 5% significance level.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings regarding cytokine and neutrophil activation biomarker
experiments, are available within the paper and its supplementary information files. The
mass cytometry raw data files are publicly available on FlowRepository with Repository
ID FR-FCM-Z2MW (https://flowrepository.org/experiments/2770). Regarding flow
cytometry data, the complete set of FCS files has been deposited on FlowRepository with
Repository ID FR-FCM-Z2KP and may be downloaded for further analysis from https://
flowrepository.org/experiments/2713. Raw sequencing reads of the scRNA-seq
experiments generated for this study have been deposited in the EGA European Genome-
Phenome Archive database (EGAS00001005039 for PBMC data accessible at: https://ega-
archive.org/studies/EGAS00001005039; EGAS00001004717 for BAL fluid data accessible
at: https://ega-archive.org/studies/EGAS00001004717). Based on SCope, which is an
interactive web server for scRNA-seq data visualisation, a download of the scRNA-seq
read count matrices is also available at http://covid19.lambrechtslab.org/. Publicly
available data that were used to support this study are available from Gene Expression
Omnibus GSE150728. Source data are provided with this paper.

Code availability
Data processing steps are described in the “Methods” section. R scripts to analyse the
mass cytometry data can be found at https://github.com/saeyslab/
CYTOF_covid19_study.
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