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Summary

Leptin is an adipokine that regulates metabolism and plays an important

role as a neuroendocrine hormone. Leptin mediates these functions via

the leptin receptor, and deficiency in either leptin or its receptor leads to

obesity in humans and mice. Leptin has far reaching effects on the

immune system, as observed in obese mice, which display decreased thy-

mic function and increased inflammatory responses. With expression of

the leptin receptor on T cells and supporting thymic epithelium, aberrant

signalling through the leptin receptor has been thought to be the direct

cause of thymic involution in obese mice. Here, we demonstrate that the

absence of leptin receptor on either thymic epithelial cells or T cells does

not lead to the loss of thymic function, demonstrating that the thymopro-

tective effect of leptin is mediated by obesity suppression rather than

direct signalling to the cellular components of the thymus.
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Introduction

Leptin is an adipokine and neuroendocrine hormone

inextricably linked to obesity. Genetic defects in either

leptin or leptin receptor drive excessive food consump-

tion and severe obesity in both humans1,2 and mice,3,4

suggesting a function for leptin as an appetite suppres-

sant. Conversely, leptin levels are raised in obese individ-

uals and deficient in anorexic individuals,5 suggesting that

leptin is a signal reporting on the quantity of adipose tis-

sue. A reconciliation of these data suggests a complex role

for leptin in regulating both satiety and energy expendi-

ture, with obesity potentially being driven by shifts in lep-

tin sensitivity in different tissues.5

The direct mediators of leptin function in obesity have

come under intensive scrutiny in recent years, with the

availability of mice bearing a floxed allele of the leptin

receptor.6 The function of leptin in suppression of appe-

tite and adipose expansion has been demonstrated to be

mediated through a subset of neurons in the lateral

hypothalamic area expressing neuronal nitric oxide syn-

thase, which in turn are capable of inhibiting orexin-

producing neurons following leptin signalling.7,8 In addi-

tion, leptin inhibits neurons of the parabrachial nucleus,

suppressing the counter-regulatory response and inhibit-

ing energy use,9 while also activating neurons of the

dorsomedial hypothalamic nucleus and promoting

thermogenesis.10

Beyond regulating adipogenesis and energy balance,

leptin has been proposed to have many additional roles.

A variety of tissues beyond adipocytes are capable of

secreting leptin, and likewise many cell types beyond

hypothalamic neurons express the leptin receptor,11–13

consistent with leptin functioning across multiple systems.

Furthermore, the structural and sequence homology to

interleukin-6 supports a function as a cytokine as well as

a hormone. The extra-metabolic functions of leptin are

suggested through the phenotype of leptin-deficient mice,

which exhibit (in addition to obesity) phenotypes includ-

ing excessive inflammation,14 defects in reproduction,15

altered bone metabolism,16 altered angiogenesis17 and

reduced function of the thymus (the primary site of T-

cell production).18

A role for leptin in maintaining the function of the

thymus is supported by the observation of an involuted

low cellularity thymus in leptin-deficient obese mice.18–20

This role has been proposed to be a direct function of

leptin because of the observed expression of the leptin

receptor on the medullary thymic epithelium,21 suggesting

direct communication between leptin-producing adipo-

cytes and thymus-supporting epithelium. As thymic func-

tion is critical for the continued production of T cells,
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and becomes limiting in post-pubescent individuals, this

leptin–thymus axis has the potential to alter the quality

of the adaptive immune response, particularly in aged

individuals where thymic function is reduced.22 Despite

the importance of this interaction, it has never been for-

mally demonstrated that leptin directly acts on the thy-

mus in a thymoprotective fashion. Here we used the Cre-

Lox system to specifically excise the leptin receptor from

both the epithelial and lymphocytic compartments of the

thymus. We show that while global leptin receptor-defi-

ciency results in thymic involution, thymic-specific loss of

leptin receptor does not alter thymus function. These

results demonstrate that the thymic involution described

in leptin-deficient mice reflects indirect effects of obesity

rather than loss of a direct thymoprotective function of

leptin.

Materials and methods

Mice

LepRdb/db,3 LepRflox,6 Foxn1Cre23 and CD127Cre mice24 were

all used on the C57BL/6 background. All experiments

were carried out in agreement with the University of Leu-

ven Ethics committee. Mice were housed in a specific

pathogen-free environment.

Flow cytometry

Thymus and spleen were analysed by flow cytometry. Sam-

ples were blocked in 2.4G2 (anti-CD16/32, hybridoma

supernantent, clone 2.4G2, obtained from American Type

Culture Collection (ATCC), Manassas, VA) before surface
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Figure 1. The thymoprotective effect of leptin is independent of leptin receptor expression on thymic epithelial cells. (a) Thymic cellularity of

wild-type, LepRdb/db mice and Foxn1Cre LepRflox mice at 6–8 weeks (n = 21, 8, 8), 10–18 weeks (n = 26, 6, 10), 6 months (n = 29, 5, 6) and

1 year of age (n = 20, 17, 7), respectively. (b–e) The percentage of thymocytes from wild-type, LepRdb/db and Foxn1Cre LepRflox mice that are (b)

double-negative (DN) T cells, (c) double-positive (DP) T cells, (d) CD4 single-positive (CD4 SP) T cells, and (e) CD8 single-positive (CD8 SP)

T cells at 6–8 weeks (n = 8, 8, 3), 10–18 weeks (n = 26, 6, 10), 6 months (n = 29, 5, 6) and 1 year of age (n = 20, 17, 7), respectively. (f) Repre-

sentative flow cytometry plots for wild-type, LepRdb/db and Foxn1Cre LepRflox mice at 10–18 weeks of age. Mean � SEM; *P < 0�05, **P < 0�005.
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staining with anti-CD4–allophycocyanin-Cy7 (GK1.5) and

–efluor 450 (RM4-5), anti-CD8–phycoerythin (PE)-Cy7

and -allophycocyanin (53-6.7), anti-CD44-peridinin chlo-

rophyll protein-Cy5.5 (IM7), anti-CD25-PE (IL-2Ra; p55),
anti-CD62L-PE-Cy-7 (MEL-14), all from eBioscience (San

Diego, CA). Cells were fixed and permeabilized using the

Foxp3 staining buffer set (eBioscience, San Diego, CA)

before staining with anti-Foxp3-FITC (FJK-16s). The data

were collected on a CantoII flow cytometer (Becton Dickin-

son, Erembodegem, Belgium) and analysed using FLOWJO

(Treestar, Ashland, OR).

Statistics

The statistics were calculated using an unpaired Student’s

t-test. Values with P < 0�05 were considered significant.

Results

The thymoprotective effect of leptin is independent of
leptin receptor expression on thymic epithelial cells

Leptin and its receptor have been studied extensively

by using either the leptin-deficient (ob/ob) or leptin

receptor-deficient (db/db) mice. These studies have

established the presence of the leptin receptor in the

thymus and have determined localization of expression

to the medullary thymic epithelium.21 To understand

the role of leptin signalling in the thymic epithelial

cells, we used a floxed version of the leptin receptor

allele6 and a thymic epithelial cell-specific Cre, driven

by the Foxn1 promoter,23 to generate mice that were

deficient in leptin receptor signalling only in the thymic

epithelial compartment. Mice with thymic epithelial

cell-specific deletion of the leptin receptor did not gain

weight, unlike the control LepRdb/db mice, which devel-

oped early onset obesity (data not shown), consistent

with the anti-obesity function of leptin being restricted

to the hypothalamic neurons. Compared with wild-type

mice, LepRdb/db mice, with global leptin receptor defi-

ciency, developed premature thymic involution (Fig. 1).

Thymic involution in LepRdb/db mice was mild, with a

~ 30% reduction in thymic cellularity from 10 weeks of

age onwards (Fig. 1a). This involution was accompanied

by an increase in the double-negative thymocyte popu-

lation (Fig. 1b). At 1 year of age LepRdb/db mice also

developed a decrease in the double-positive thymocyte

population (Fig. 1c) and an increase in CD4 single-
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Figure 2. Thymic epithelial cell-specific deletion of leptin receptor does not affect peripheral lymphocyte populations. Splenic lymphocytes were

evaluated by flow cytometry from wild-type, LepRdb/db and Foxn1Cre LepRflox cohorts at 6–8 weeks (n = 8, 8, 3), 10–18 weeks (n = 26, 6, 10),

6 months (n = 29, 5, 6) and 1 year (n = 20, 17, 7), respectively, for (a) CD4+ lymphocytes and (b) CD8+ lymphocytes. (c) Representative flow

cytometric plots for the wild-type, LepRdb/db and Foxn1Cre LepRflox cohort at 10–18 weeks of age. Mean � SEM; *P < 0�05, **P < 0�005.
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positive (SP) thymocytes (Fig. 1d), CD4+ Foxp3+ regu-

latory T (Treg) cells (see Supplementary material, Fig.

S1) and as a trend towards increased CD8 SP thymo-

cytes (Fig. 1e). Increased double negative, SP and Treg

populations are routinely observed in involuted thy-

muses, which start to gain a secondary lymphoid

organ-like profile after the reduction in thymopoiesis.

These shifts between thymocyte subpopulations in the

obese LepRdb/db mice (Fig. 1f) are consistent with earlier

studies of premature thymic involution in leptin-defi-

cient mice, although notably the phenotype is milder

than previously reported.18–20 In stark contrast to

LepRdb/db mice, Foxn1Cre LepRfl/fl mice demonstrated

normal thymic cellularity out to 1 year of age (Fig. 1a),

and did not manifest the thymocyte differentiation

defects observed in LepRdb/db mice (Fig. 1b–f; see Sup-

plementary material, Fig. S2). These results confirm the

thymoprotective function of leptin, but exclude thymic

epithelial cells as the mediators of this effect.

In addition to thymic involution, obese LepRdb/db mice

have been reported to have disturbed peripheral T-cell

populations, including increased Foxp3+ Treg cells.25 In

order to investigate this effect, we analysed the spleno-

cytes from wild-type, LepRdb/db mice and Foxn1Cre LepRfl/fl

mice. Neither global deficiency nor thymic epithelial cell-

specific deficiency in leptin receptor modified the splenic

CD4+ and CD8+ T-cell populations (Fig. 2; see Supple-

mentary material, Fig. S3). Likewise, the numbers of

naive, effector and Treg subpopulations was unaffected

(Fig. 3; see Supplementary material, Figs S4, and S5), and

lymph node size was normal (see Supplementary material,

Fig. S6). These results suggest that thymic epithelial

expression of the leptin receptor is not critical for the dif-

ferentiation or peripheral homeostasis of T cells.
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Figure 3. Thymic epithelial cell-specific deletion of leptin receptor does not affect naive, effector or regulatory T cells. Splenic lymphocytes were

analysed by flow cytometry for the wild-type, LepRdb/db and Foxn1Cre LepRflox cohorts at 6–8 weeks (n = 8, 8, 3), 10–18 weeks (n = 26, 6, 10),
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vated T cells (CD44+ CD62L�). (c) Representative flow cytometric plots of naive and effector populations for the wild-type, LepRdb/db and

Foxn1Cre LepRflox cohort at 10–18 weeks of age. (d) CD4+ Foxp3+ (regulatory T) lymphocytes within the CD4+ population. (e) Representative
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*P < 0�05.
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T-cell deletion of leptin receptor does not alter
thymic differentiation or peripheral homeostasis

As leptin receptor in the thymic epithelium was not

essential for the immune phenotype observed in the obese

LepRdb/db mice, we looked to block leptin signalling in T

cells and T-cell progenitors. For these sets of experiments,

we used the Cd127 (IL7R) Cre mice24 in conjunction with

the floxed allele of leptin receptor. As Cd127Cre is active

from the bone-marrow T-cell precursor stage,

Cd127Cre LepRfl/fl mice allow the determination of

whether leptin receptor is important in the lymphocytic

compartment of the thymus. On analysis of

Cd127Cre LepRfl/fl mice and wild-type siblings at 6–
8 weeks and 6 months of age, Cd127Cre LepRfl/fl mice did

not show any differences in body weight. Thymic cellular-

ity remained unaltered at 6–8 weeks and decreased nor-

mally with age (Fig. 4a). Flow cytometry was performed

on the thymic populations isolated from these mice. We

found no significant changes in the double-negative

(Fig. 4b), double-positive (Fig. 4c), CD4 SP (Fig. 4d),

CD8 SP (Fig. 4e) and thymic Treg (see Supplementary

material, Fig. S7) populations across the two-time points

analysed, in percentage or absolute number (Fig. S7).

Likewise, in the periphery Cd127Cre LepRfl/fl mice had

normal CD4+ T-cell (Fig. 5a) and the CD8+ T-cell

(Fig. 5b) populations, indicating that these cells were not

affected by loss of leptin signalling, in percentage or abso-

lute number (see Supplementary material, Fig. S8). The

assessment of naive, effector and regulatory compart-

ments also reflected no changes at either age (Fig. 6; see

Supplementary material, Fig. S9) and lymph node size

was normal (see Supplementary material, Fig. S10).

Together, these data indicate that leptin signalling in

either the thymic epithelial or T-cell compartment is not

required for normal T-cell differentiation or homeostasis,

and suggests that the immune phenotype observed in

obese LepRdb/db mice are secondary to the anti-obesogenic

function of leptin.

Discussion

Leptin and leptin receptor signalling play an important

role in regulating both metabolism and extra-metabolic

phenotypes, ranging from inflammation14 to thymopoie-

sis.18 Although the cellular control over the metabolic

functions has been dissected in meticulous detail (e.g. the

appetite suppressive function7,8), the control over extra-

metabolic phenotypes has lagged behind, and, indeed, it

is not even clear that all of the functions documented for

leptin are direct effects. In this study we have followed up

previous reports of a direct thymoprotective function for

leptin, based on the expression of leptin receptor on the

medullary thymic epithelium21 and the premature thymic

involution in leptin-deficient mice.18–20 Our work on db/

db mice recapitulates the original findings of premature

thymic involution, although surprisingly the effect we
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observed was relatively mild and constant, unlike the

severe progressive loss of thymic cellularity previously

reported, a difference that may be due to differing micro-

flora across colonies.

Most strikingly, the proposed function of leptin as a thy-

moprotective adipokine is not mediated by the expression

of leptin receptor on either the epithelial or lymphocytic

compartment. Both Foxn1Cre LepRfl/fl mice and

Cd127Cre LepRfl/fl mice, with excision of the leptin receptor

gene in thymic epithelial cells and thymocytes, respectively,

demonstrated normal thymic cellularity and function, with

no signs of the premature thymic involution that were doc-

umented in ob/ob or db/db mice. Indeed, even the periph-

eral T-cell compartment was comparable between the wild-

type, Foxn1Cre LepRfl/fl mice and Cd127Cre LepRfl/fl mice.

This is despite the documented expression of leptin

receptor on T cells,26,27 expression that has been used

as the grounds for proposed leptin functions in T-cell
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hyporesponsiveness and expanded regulatory T-cell num-

bers.28,29 Importantly, our study here is directed towards

assessing the thymoprotective function of leptin, and does

not negate earlier work on additional functions of leptin in

the T-cell compartment.

The exclusion of a direct function for leptin as a thy-

moprotective factor demonstrates that the thymic involu-

tion observed in ob/ob and db/db mice is a secondary

effect. The most likely cause of this secondary effect is the

expansion of adipose tissue that is the hallmark of ob/ob

and db/db mice. Normal age-related thymic involution is

associated with an increase in adipocytes in the thymus.30

This association may in part drive thymic involution, as

adipocytes seem to have a direct toxicity effect on T-cell

differentiation, either in vitro or following adipocyte

transplantation in vivo,30,31 while calorie restriction

(which reduces both adiposity and circulating leptin)

increases thymic function.30,32 The reasons for this indi-

rect effect of leptin are likely to be complex and multifac-

torial,22 however, a leading factor is likely to be the

inflammatory cytokines produced by obese adipose tis-

sue.33,34 In this context, the thymoprotective effect

observed when mice are injected with exogenous lep-

tin18,35 is likely to reflect the impact of non-obese adipo-

cyte tissue on regulating inflammation,36,37 rather than

any direct effect on thymic epithelial cells or T cells. One

caveat to this interpretation is the presence of non-epithe-

lial non-thymocyte cell types in the thymus (dendritic

cells, fibroblasts), which could be acting as an alternative

secondary signal provider. As the role of leptin receptor

in these cell types was not tested, it cannot be excluded

that leptin provides a secondary thymoprotective function

via these cell types, rather than through the suppression

of obesity.

Finally, beyond dissecting the mode of activity of leptin

as a thymoprotective adipokine, this study serves as a

note of caution on interpreting the phenotype of ob/ob

and db/db mice. Although the multi-faceted nature of

leptin and the wide expression of the leptin receptor

encourage extrapolation from the ob/ob and db/db phe-

notypes to putative direct functions of leptin, it should

be perhaps considered the default explanation that any

phenotype observed in these mice is a secondary effect of

obesity, until that hypothesis has been formally disprov-

en. In this regard, the availability of new molecular tools

for dissecting the leptin pathway may result in a contrac-

tion of the proposed direct functions and an expansion

of the indirect effects of obesity, as we have observed

here.
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Figure S1. Thymic regulatory Tcells are not influenced

by epithelial cell-specific deletion of leptin receptor.

Figure S2. The thymoprotective effect of leptin is inde-

pendent of thymic epithelial leptin receptor expression.

Figure S3. Thymic epithelial cell-specific deletion of

leptin receptor does not affect T-cell homeostasis in the

periphery.

Figure S4. Thymic epithelial cell-specific deletion of

leptin receptor does not affect naive or effector CD4 T

cells in periphery.

Figure S5. Thymic epithelial cell-specific deletion of

leptin receptor does not influence peripheral regulatory

T-cell numbers.

Figure S6. Thymic epithelial cell-specific deletion of

leptin receptor does not affect lymph node cellularity.

Figure S7. The thymoprotective effect of leptin is inde-

pendent of leptin receptor expression on thymocytes.

Figure S8. Thymocyte-specific deletion of leptin recep-

tor does not affect T cells in periphery nor the naive or

effector T-cell compartments.

Figure S9. Thymocyte-specific deletion of leptin recep-

tor does not influence regulatory T-cell numbers.

Figure S10. Thymocyte-specific deletion of leptin

receptor does not affect lymph node cellularity.
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