Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Evans PD, Bayliss A, Reale V

Steroid hormones classically mediate their actions by binding to intracellular receptor proteins that migrate to the nucleus and act as transcription factors to change gene expression. However, evidence is now accumulating for rapid, non-genomic effects of steroids. There is considerable controversy over the mechanisms underlying such effects. In a number of cases evidence has been presented for the direct activation of G-protein coupled receptors (GPCRs) by steroids, either at the plasma membrane, or at intracellular locations. Here, we will focus on the non-genomic actions of ecdysteroids on a Drosophila GPCR, DopEcR (CG18314), which can be activated by both ecdysone and the catecholamine, dopamine. We will also point out parallels between this system and the activation of the vertebrate GPCR, GPER1 (GPR30), which is thought to be activated by 17β-estradiol. We propose that the cellular localization and signalling properties of both DopEcR and GPER1 may be cell specific and depend upon their interactions with both accessory molecules and signalling pathways.

+view abstract General and comparative endocrinology, PMID: 24188886 2014

F Büchel, N Rodriguez, N Swainston, C Wrzodek, T Czauderna, R Keller, F Mittag, M Schubert, M Glont, M Golebiewski, M van Iersel, S Keating, M Rall, M Wybrow, H Hermjakob, M Hucka, DB Kell, W Müller, P Mendes, A Zell, C Chaouiya, J Saez-Rodriguez, F Schreiber, C Laibe, A Dräger, N Le Novère Signalling

Systems biology projects and omics technologies have led to a growing number of biochemical pathway models and reconstructions. However, the majority of these models are still created de novo, based on literature mining and the manual processing of pathway data.

+view abstract BMC systems biology, PMID: 24180668 2013

Barrio R, Shea MJ, Carulli J, Lipkow K, Gaul U, Frommer G, Schuh R, Jäckle H, Kafatos FC

We report the full coding sequence of a new Drosophila gene, spalt-related, which is homologous and adjacent to the region-specific homeotic gene, spalt. Both genes have three widely spaced sets of C2H2 zinc finger motifs, but spalt-related encodes a fourth pair of C-terminal fingers resembling the Xenopus homologue, Xsal-1. The degrees of sequence divergence among all three members of this family are comparable, suggesting that the Drosophila genes originated from an ancient gene duplication. The spalt-related gene is expressed with quantitative variations from mid-embryogenesis (8-12 h) to the adult stage, but not in ovaries or early embryos. Expression is localized to limited parts of the body, including specific cell populations in the nervous system. In the wing disc, spalt and spalt-related are expressed in indistinguishable domains; in the nervous system and some other organs the expression patterns extensively overlap but are not identical, indicating that the genes have partially diverged in terms of developmental regulation. A characteristic central set of zinc fingers specifically binds to an A/T-rich consensus sequence, defining some DNA binding properties of this ancient family of nuclear factors.

+view abstract Development genes and evolution, PMID: 24173589 1996

Osborne CS

The mammalian nucleus is a highly complex structure that carries out a diverse range of functions such as DNA replication, cell division, RNA processing, and nuclear export/import. Many of these activities occur at discrete subcompartments that intersect with specific regions of the genome. Over the past few decades, evidence has accumulated to suggest that RNA transcription also occurs in specialized sites, called transcription factories, that may influence how the genome is organized. There may be certain efficiency benefits to cluster transcriptional activity in this way. However, the clustering of genes at transcription factories may have consequences for genome stability, and increase the susceptibility to recurrent chromosomal translocations that lead to cancer. The relationships between genome organization, transcription, and chromosomal translocation formation will have important implications in understanding the causes of therapy-related cancers.

+view abstract Clinical cancer research : an official journal of the American Association for Cancer Research, PMID: 24166911 2014

Cauwe B, Tian L, Franckaert D, Pierson W, Staats KA, Schlenner SM, Liston A Immunology

Loss of ζ-associated protein 70 (Zap70) results in severe immunodeficiency in humans and mice because of the critical role of Zap70 in T-cell receptor (TCR) signalling. Here we describe a novel mouse strain generated by N-ethyl-N-nitrosourea mutagenesis, with the reduced protein stability (rps) mutation in Zap70. The A243V rps mutation resulted in decreased Zap70 protein and a reduced duration of TCR-induced calcium responses, equivalent to that induced by a 50% decrease in catalytically active Zap70. The reduction of signalling through Zap70 was insufficient to substantially perturb thymic differentiation of conventional CD4 and CD8 T cells, although Foxp3(+) regulatory T cells demonstrated altered thymic production and peripheral homeostasis. Despite the mild phenotype, the Zap70(A243V) variant lies just above the functional threshold for TCR signalling competence, as T cells relying on only a single copy of the Zap70(rps) allele for TCR signalling demonstrated no intracellular calcium response to TCR stimulation. This addition to the Zap70 allelic series indicates that a rate-limiting threshold for Zap70 protein levels exists at which signalling capacity switches from nearly intact to effectively null.

+view abstract Immunology, PMID: 24164480 2014

Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ, Andrews S, Balasubramanian S, Reik W Epigenetics,Bioinformatics

DNA methylation (5mC) plays important roles in epigenetic regulation of genome function. Recently, TET hydroxylases have been found to oxidise 5mC to hydroxymethylcytosine (5hmC), formylcytosine (5fC) and carboxylcytosine (5caC) in DNA. These derivatives have a role in demethylation of DNA but in addition may have epigenetic signaling functions in their own right. A recent study identified proteins which showed preferential binding to 5-methylcytosine (5mC) and its oxidised forms, where readers for 5mC and 5hmC showed little overlap, and proteins bound to further oxidation forms were enriched for repair proteins and transcription regulators. We extend this study by using promoter sequences as baits and compare protein binding patterns to unmodified or modified cytosine using DNA from mouse embryonic stem cell extracts.

+view abstract Genome biology, PMID: 24156278 2013

I Angulo, O Vadas, F Garçon, E Banham-Hall, V Plagnol, TR Leahy, H Baxendale, T Coulter, J Curtis, C Wu, K Blake-Palmer, O Perisic, D Smyth, M Maes, C Fiddler, J Juss, D Cilliers, G Markelj, A Chandra, G Farmer, A Kielkowska, J Clark, S Kracker, M Debré, C Picard, I Pellier, N Jabado, JA Morris, G Barcenas-Morales, A Fischer, L Stephens, P Hawkins, JC Barrett, M Abinun, M Clatworthy, A Durandy, R Doffinger, E Chilvers, AJ Cant, D Kumararatne, K Okkenhaug, RL Williams, A Condliffe, S Nejentsev Immunology

Genetic mutations cause primary immunodeficiencies (PIDs), which predispose to infections. Here we describe Activated PI3K-δ Syndrome (APDS), a PID associated with a dominant gain-of-function mutation in which lysine replaced glutamic acid at residue 1021 (E1021K) in the p110δ protein, the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), encoded by the PIK3CD gene. We found E1021K in 17 patients from seven unrelated families, but not among 3346 healthy subjects. APDS was characterized by recurrent respiratory infections, progressive airway damage, lymphopenia, increased circulating transitional B cells, increased immunoglobulin M and reduced immunoglobulin G2 levels in serum and impaired vaccine responses. The E1021K mutation enhanced membrane association and kinase activity of p110δ. Patient-derived lymphocytes had increased levels of phosphatidylinositol 3,4,5-trisphosphate and phosphorylated AKT protein and were prone to activation-induced cell death. Selective p110δ inhibitors IC87114 and GS-1101 reduced the activity of the mutant enzyme in vitro, which suggested a therapeutic approach for patients with APDS.

+view abstract Science (New York, N.Y.), PMID: 24136356 2013

AL Ashford, D Oxley, J Kettle, K Hudson, S Guichard, SJ Cook, PA Lochhead Signalling,Mass Spectrometry

DYRK1B (dual-specificity tyrosine phosphorylation-regulated kinase 1B) is amplified in certain cancers and may be an oncogene; however, our knowledge of DYRK1B has been limited by the lack of selective inhibitors. In the present study we describe AZ191, a potent small molecule inhibitor that selectively inhibits DYRK1B in vitro and in cells. CCND1 (cyclin D1), a key regulator of the mammalian G1-S-phase transition, is phosphorylated on Thr(286) by GSK3β (glycogen synthase kinase 3β) to promote its degradation. DYRK1B has also been proposed to promote CCND1 turnover, but was reported to phosphorylate Thr(288) rather than Thr(286). Using in vitro kinase assays, phospho-specific immunoblot analysis and MS in conjunction with AZ191 we now show that DYRK1B phosphorylates CCND1 at Thr(286), not Thr(288), in vitro and in cells. In HEK (human embryonic kidney)-293 and PANC-1 cells (which exhibit DYRK1B amplification) DYRK1B drives Thr(286) phosphorylation and proteasome-dependent turnover of CCND1 and this is abolished by AZ191 or DYRK1B RNAi, but not by GSK3β inhibitors or GSK3β RNAi. DYRK1B expression causes a G1-phase cell-cycle arrest, but overexpression of CCND1 (wild-type or T286A) fails to overcome this; indeed, DYRK1B also promotes the expression of p21CIP1 (21 kDa CDK-interacting protein 1) and p27KIP1 (CDK-inhibitory protein 1). The results of the present study demonstrate for the first time that DYRK1B is a novel Thr(286)-CCND1 kinase that acts independently of GSK3β to promote CCND1 degradation. Furthermore, we anticipate that AZ191 may prove useful in defining further substrates and biological functions of DYRK1B.

+view abstract The Biochemical journal, PMID: 24134204 2014

C Evans, SJ Cook, MP Coleman, J Gilley Signalling

Wallerian degeneration is delayed when sufficient levels of proteins with NMNAT activity are maintained within axons after injury. This has been proposed to form the basis of 'slow Wallerian degeneration' (Wld (S)), a neuroprotective phenotype conferred by an aberrant fusion protein, Wld(S). Proteasome inhibition also delays Wallerian degeneration, although much less robustly, with stabilization of NMNAT2 likely to play a key role in this mechanism. The pan-MEK inhibitor U0126 has previously been shown to reverse the axon-protective effects of proteasome inhibition, suggesting that MEK-ERK signaling plays a role in delayed Wallerian degeneration, in addition to its established role in promoting neuronal survival. Here we show that whilst U0126 can also reverse Wld(S)-mediated axon protection, more specific inhibitors of MEK1/2 and MEK5, PD184352 and BIX02189, have no significant effect on the delay to Wallerian degeneration in either situation, whether used alone or in combination. This suggests that an off-target effect of U0126 is responsible for reversion of the axon protective effects of Wld(S) expression or proteasome inhibition, rather than inhibition of MEK1/2-ERK1/2 or MEK5-ERK5 signaling. Importantly, this off-target effect does not appear to result in alterations in the stabilities of either Wld(S) or NMNAT2.

+view abstract PloS one, PMID: 24124570 2013

Juvin V, Malek M, Anderson KE, Dion C, Chessa T, Lecureuil C, Ferguson GJ, Cosulich S, Hawkins PT, Stephens LR Signalling

We have addressed the differential roles of class I Phosphoinositide 3-kinases (PI3K) in human breast-derived MCF10a (and iso-genetic derivatives) and MDA-MB 231 and 468 cells. Class I PI3Ks are heterodimers of p110 catalytic (α, β, δ and γ) and p50-101 regulatory subunits and make the signaling lipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) that can activate effectors, eg protein kinase B (PKB), and responses, eg migration. The PtdIns(3,4,5)P3-3-phosphatase and tumour-suppressor, PTEN inhibits this pathway. p110α, but not other p110s, has a number of onco-mutant variants that are commonly found in cancers. mRNA-seq data shows that MCF10a cells express p110β>α>δ with undetectable p110γ. Despite this, EGF-stimulated phosphorylation of PKB depended upon p110α-, but not β- or δ- activity. EGF-stimulated chemokinesis, but not chemotaxis, was also dependent upon p110α, but not β- or δ- activity. In the presence of single, endogenous alleles of onco-mutant p110α (H1047R or E545K), basal, but not EGF-stimulated, phosphorylation of PKB was increased and the effect of EGF was fully reversed by p110α inhibitors. Cells expressing either onco-mutant displayed higher basal motility and EGF-stimulated chemokinesis.This latter effect was, however, only partially-sensitive to PI3K inhibitors. In PTEN(-/-) cells, basal and EGF-stimulated phosphorylation of PKB was substantially increased, but the p110-dependency was variable between cell types. In MDA-MB 468s phosphorylation of PKB was significantly dependent on p110β, but not α- or δ- activity; in PTEN(-/-) MCF10a it remained, like the parental cells, p110α-dependent. Surprisingly, loss of PTEN suppressed basal motility and EGF-stimulated chemokinesis. These results indicate that; p110α is required for EGF signaling to PKB and chemokinesis, but not chemotaxis; onco-mutant alleles of p110α augment signaling in the absence of EGF and may increase motility, in part, via acutely modulating PI3K-activity-independent mechanisms. Finally, we demonstrate that there is not a universal mechanism that up-regulates p110β function in the absence of PTEN.

+view abstract PloS one, PMID: 24124465 2013

Kielkowska A, Niewczas I, Anderson KE, Durrant TN, Clark J, Stephens LR, Hawkins PT Signalling

The phosphoinositide family of phospholipids, defined here as PtdIns, PtdIns3P, PtdIns4P, PtdIns5P, PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2 and PtdIns(3,4,5)P3, play pivotal roles in organising the location and activity of many different proteins acting on biological membranes, including those involved in vesicle and protein trafficking through the endolysosomal system and receptor signal transduction at the plasma membrane. Accurate measurement of the cellular levels of these lipids, particularly the more highly phosphorylated species, is hampered by their high polarity and low cellular concentrations. Recently, much progress has been made in using mass spectrometry to measure many different lipid classes in parallel, an approach generally referred to as 'lipidomics'. Unfortunately, the acidic nature of highly phosphorylated phosphoinositides makes them difficult to measure using these methods, because they yield low levels of useful ions; this is particularly the case with PtdIns(3,4,5)P3. We have solved some of these problems by methylating the phosphate groups of these lipids with TMS-diazomethane and describe a simple, integrated approach to measuring PtdIns, PtdInsP, PtdInsP2 and PtdInsP3 classes of lipids, in parallel with other phospholipid species, in cell and tissue extracts. This methodology is sensitive, accurate and robust, and also yields fatty-acyl compositions, suggesting it can be used to further our understanding of both the normal and pathophysiological roles of these important lipids.

+view abstract Advances in biological regulation, PMID: 24120934 2014

Collin P,Nashchekina O,Walker R,Pines J Flow Cytometry

The spindle assembly checkpoint (SAC) is essential in mammalian mitosis to ensure the equal segregation of sister chromatids. The SAC generates a mitotic checkpoint complex (MCC) to prevent the anaphase-promoting complex/cyclosome (APC/C) from targeting key mitotic regulators for destruction until all of the chromosomes have attached to the mitotic apparatus. A single unattached kinetochore can delay anaphase for several hours, but how it is able to block the APC/C throughout the cell is not understood. Present concepts of the SAC posit that either it exhibits an all-or-nothing response or there is a minimum threshold sufficient to block the APC/C (ref. 7). Here, we have used gene targeting to measure SAC activity, and find that it does not have an all-or-nothing response. Instead, the strength of the SAC depends on the amount of MAD2 recruited to kinetochores and on the amount of MCC formed. Furthermore, we show that different drugs activate the SAC to different extents, which may be relevant to their efficacy in chemotherapy.

+view abstract Nature cell biology, PMID: 24096242 2013

Sukumar M,Liu J,Ji Y,Subramanian M,Crompton JG,Yu Z,Roychoudhuri R,Palmer DC,Muranski P,Karoly ED,Mohney RP,Klebanoff CA,Lal A,Finkel T,Restifo NP,Gattinoni L Immunology

Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately influence the ability of activated T cells to become long-lived memory cells. We used a fluorescent glucose analog, 2-NBDG, to quantify glucose uptake in activated CD8+ T cells. We found that cells exhibiting limited glucose incorporation had a molecular profile characteristic of memory precursor cells and an increased capacity to enter the memory pool compared with cells taking up high amounts of glucose. Accordingly, enforcing glycolytic metabolism by overexpressing the glycolytic enzyme phosphoglycerate mutase-1 severely impaired the ability of CD8+ T cells to form long-term memory. Conversely, activation of CD8+ T cells in the presence of an inhibitor of glycolysis, 2-deoxyglucose, enhanced the generation of memory cells and antitumor functionality. Our data indicate that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+ T cells. These results have important implications for improving the efficacy of T cell-based therapies against chronic infectious diseases and cancer.

+view abstract The Journal of clinical investigation, PMID: 24091329 2013

Du CJ, Hawkins PT, Stephens LR, Bretschneider T Signalling

Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes.

+view abstract BMC bioinformatics, PMID: 24090312 2013

AL Duran, P Potter, S Wells, T Kirkwood, T von Zglinicki, A McArdle, C Scudamore, QJ Meng, G de Haan, A Corcoran, I Bellantuono

In order to manage the rise in life expectancy and the concomitant increased occurrence of age-related diseases, research into ageing has become a strategic priority. Mouse models are commonly utilised as they share high homology with humans and show many similar signs and diseases of ageing. However, the time and cost needed to rear aged cohorts can limit research opportunities. Sharing of resources can provide an ethically and economically superior framework to overcome some of these issues but requires dedicated infrastructure. Shared Ageing Research Models (ShARM) ( www.ShARMUK.org ) is a new, not-for-profit organisation funded by Wellcome Trust, open to all investigators. It collects, stores and distributes flash frozen tissues from aged murine models through its biorepository and provides a database of live ageing mouse colonies available in the UK and abroad. It also has an online environment (MICEspace) for collation and analysis of data from communal models and discussion boards on subjects such as the welfare of ageing animals and common endpoints for intervention studies. Since launching in July 2012, thanks to the generosity of researchers in UK and Europe, ShARM has collected more than 2,500 tissues and has in excess of 2,000 mice registered in live ageing colonies. By providing the appropriate support, ShARM has been able to bring together the knowledge and experience of investigators in the UK and Europe to maximise research outputs with little additional cost and minimising animal use in order to facilitate progress in ageing research.

+view abstract Biogerontology, PMID: 24085518 2013

Roberts R, Ktistakis NT Signalling

Autophagy is a conserved survival pathway, which cells and tissues will activate during times of stress. It is characterized by the formation of double-membrane vesicles called autophagosomes inside the cytoplasm. The molecular mechanisms and the signalling components involved require specific control to ensure correct activation. The present chapter describes the formation of autophagosomes from within omegasomes, newly identified membrane compartments enriched in PI3P (phosphatidylinositol 3-phosphate) that serve as platforms for the formation of at least some autophagosomes. We discuss the signalling events required to nucleate the formation of omegasomes as well as the protein complexes involved.

+view abstract Essays in biochemistry, PMID: 24070468 2013

T Nagano, Y Lubling, TJ Stevens, S Schoenfelder, E Yaffe, W Dean, ED Laue, A Tanay, P Fraser

Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture (3C) assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single-cell Hi-C, combined with genome-wide statistical analysis and structural modelling of single-copy X chromosomes, to show that individual chromosomes maintain domain organization at the megabase scale, but show variable cell-to-cell chromosome structures at larger scales. Despite this structural stochasticity, localization of active gene domains to boundaries of chromosome territories is a hallmark of chromosomal conformation. Single-cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organization underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns.

+view abstract Nature, PMID: 24067610 2013

Brain O, Owens BM, Pichulik T, Allan P, Khatamzas E, Leslie A, Steevels T, Sharma S, Mayer A, Catuneanu AM, Morton V, Sun MY, Jewell D, Coccia M, Harrison O, Maloy K, Schönefeldt S, Bornschein S, Liston A, Simmons A Immunology

NOD2 is an intracellular sensor that contributes to immune defense and inflammation. Here we investigated whether NOD2 mediates its effects through control of microRNAs (miRNAs). miR-29 expression was upregulated in human dendritic cells (DCs) in response to NOD2 signals, and miR-29 regulated the expression of multiple immune mediators. In particular, miR-29 downregulated interleukin-23 (IL-23) by targeting IL-12p40 directly and IL-23p19 indirectly, likely via reduction of ATF2. DSS-induced colitis was worse in miR-29-deficient mice and was associated with elevated IL-23 and T helper 17 signature cytokines in the intestinal mucosa. Crohn's disease (CD) patient DCs expressing NOD2 polymorphisms failed to induce miR-29 upon pattern recognition receptor stimulation and showed enhanced release of IL-12p40 on exposure to adherent invasive E. coli. Therefore, we suggest that loss of miR-29-mediated immunoregulation in CD DCs might contribute to elevated IL-23 in this disease.

+view abstract Immunity, PMID: 24054330 2013

Lee JC, Espéli M, Anderson CA, Linterman MA, Pocock JM, Williams NJ, Roberts R, Viatte S, Fu B, Peshu N, Hien TT, Phu NH, Wesley E, Edwards C, Ahmad T, Mansfield JC, Gearry R, Dunstan S, Williams TN, Barton A, Vinuesa CG, , Parkes M, Lyons PA, Smith KG Immunology

The clinical course and eventual outcome, or prognosis, of complex diseases varies enormously between affected individuals. This variability critically determines the impact a disease has on a patient's life but is very poorly understood. Here, we exploit existing genome-wide association study data to gain insight into the role of genetics in prognosis. We identify a noncoding polymorphism in FOXO3A (rs12212067: T > G) at which the minor (G) allele, despite not being associated with disease susceptibility, is associated with a milder course of Crohn's disease and rheumatoid arthritis and with increased risk of severe malaria. Minor allele carriage is shown to limit inflammatory responses in monocytes via a FOXO3-driven pathway, which through TGFβ1 reduces production of proinflammatory cytokines, including TNFα, and increases production of anti-inflammatory cytokines, including IL-10. Thus, we uncover a shared genetic contribution to prognosis in distinct diseases that operates via a FOXO3-driven pathway modulating inflammatory responses.

+view abstract Cell, PMID: 24035192 2013

J Stange, M Veldhoen

Recent studies highlight an important role of the aryl hydrocarbon receptor (AhR) at mucosal barriers. Surprisingly, activation of the AhR, required for the maintenance of lymphocytes as well as lymphoid architecture, can be achieved via cues derived from the external environment. This environment contains both beneficial and harmful microorganisms as well as a diverse array of compounds, and the epithelia must offer very sophisticated levels of defence. This is achieved via multifaceted immune recognition diversity and cellular complexity. Mucosal associated tissues, particularly in the gastrointestinal tract, constitute a complex immune organ for local lymphocytes and contain highly organised lymphoid structures. We will discuss the recent observations concerning the AhR in relation to the function and maintenance of innate T cells, with focus on γδ T cells found enriched at epithelial barriers.

+view abstract Seminars in immunopathology, PMID: 24030775 2013

Staats KA, Hernandez S, Schönefeldt S, Bento-Abreu A, Dooley J, Van Damme P, Liston A, Robberecht W, Van Den Bosch L Immunology

Amyotrophic Lateral Sclerosis (ALS) is a devastating progressive neurodegenerative disease. Disease pathophysiology is complex and not yet fully understood, but is proposed to include the accumulation of misfolded proteins, as aggregates are present in spinal cords from ALS patients and in ALS model organisms. Increasing autophagy is hypothesized to be protective in ALS as it removes these aggregates. Rapamycin is frequently used to increase autophagy, but is also a potent immune suppressor. To properly assess the role of rapamycin-induced autophagy, the immune suppressive role of rapamycin should be negated.

+view abstract Molecular neurodegeneration, PMID: 24025516 2013

SJ Gaunt, M George, YL Paul

A Hoxd11/lacZ reporter, expressed with a Hoxd11-like axial expression pattern in transgenic mouse embryos, is stimulated in tailbud fragments when cultured in presence of Gdf11, a TGF-β growth/differentiation factor. The same construct is also stimulated by Gdf11 when transiently transfected into cultures of HepG2 cells. Stimulation of the reporter in HepG2 cells is enhanced where it contains only the 332 bp Hoxd11 enhancer region VIII upstream or downstream of a luciferase or lacZ reporter. This enhancer contains three elements conserved from fish to mice, one of which has the sequence of a Smad3/4 binding element. Mutation of this motif inhibits the ability of Gdf11 to enhance reporter activity in the HepG2 cell assay. Chromatin immunoprecipitation experiments show direct evidence of Smad2/3 protein binding to the Hoxd11 region VIII enhancer. The action of Gdf11 upon Hoxd11 in HepG2 cells is inhibited, at least in part, by SIS3, a specific inhibitor of Smad3. SIS3 also produces partial inhibition of Hoxd11/lacZ expression in cultured transgenic tailbuds, indicating that Smad3 may play a similar role in the embryonic expression of Hoxd11. Transgenic mouse experiments show that the Smad binding motif is essential for the axial expression of Hoxd11/lacZ reporter in the embryo tailbud, posterior mesoderm and neurectoderm.

+view abstract Developmental biology, PMID: 24016758 2013

Nikolic T, Movita D, Lambers ME, Ribeiro de Almeida C, Biesta P, Kreefft K, de Bruijn MJ, Bergen I, Galjart N, Boonstra A, Hendriks R Immunology

Macrophages play an important role in immunity and homeostasis. Upon pathogen recognition via specific receptors, they rapidly induce inflammatory responses. This process is tightly controlled at the transcriptional level. The DNA binding zinc-finger protein CCCTC-binding factor (Ctcf) is a crucial regulator of long-range chromatin interactions and coordinates specific communication between transcription factors and gene expression processes. In this study, the Ctcf gene was specifically deleted in myeloid cells by making use of the transgenic Cre-LoxP system. Conditional deletion of the Ctcf gene in myeloid cells induced a mild phenotype in vivo. Ctcf-deficient mice exhibited significantly reduced expression of major histocompatibility complex (MHC) class II in the liver. Ctcf-deficient macrophages demonstrated a normal surface phenotype and phagocytosis capacity. Upon Toll-like receptor (TLR) stimulation, they produced normal levels of the pro-inflammatory cytokines IL-12 and IL-6, but manifested a strongly impaired capacity to produce tumor-necrosis factor (TNF) and IL-10, as well as to express the IL-10 family members IL-19, IL-20 and IL-24. Taken together, our data demonstrate a role of Ctcf that involves fine-tuning of macrophage function.

+view abstract Cellular & molecular immunology, PMID: 24013844 2014

Karanasios E, Stapleton E, Manifava M, Kaizuka T, Mizushima N, Walker SA, Ktistakis NT Signalling,Imaging

Induction of autophagy requires the ULK1 protein kinase complex and the Vps34 lipid kinase complex. PtdIns3P synthesised by Vps34 accumulates in omegasomes, membrane extensions of the ER within which some autophagosomes form. The ULK1 complex is thought to target autophagosomes independently of PtdIns3P, and its functional relationship to omegasomes is unclear. Here we show that the ULK1 complex colocalises with omegasomes in a PtdIns3P-dependent way. Live-cell imaging of Atg13 (a ULK1 complex component), omegasomes and LC3 establishes and annotates for the first time a complete sequence of steps leading to autophagosome formation, as follows. Upon starvation, the ULK1 complex forms puncta associated with the ER and sporadically with mitochondria. If PtdIns3P is available, these puncta become omegasomes. Subsequently, the ULK1 complex exits omegasomes and autophagosomes bud off. If PtdIns3P is unavailable, ULK1 puncta are greatly reduced in number and duration. Atg13 contains a region with affinity for acidic phospholipids, required for translocation to punctate structures and autophagy progression.

+view abstract Journal of cell science, PMID: 24013547 2013