The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
We report a single-cell bisulfite sequencing (scBS-seq) method that can be used to accurately measure DNA methylation at up to 48.4% of CpG sites. Embryonic stem cells grown in serum or in 2i medium displayed epigenetic heterogeneity, with '2i-like' cells present in serum culture. Integration of 12 individual mouse oocyte datasets largely recapitulated the whole DNA methylome, which makes scBS-seq a versatile tool to explore DNA methylation in rare cells and heterogeneous populations.
Embryonic stem (ES) cells are in a dynamic equilibrium of distinct functional states, characterized by the heterogeneous expression of critical pluripotency factors and regulated by a spectrum of reversible histone modifications. Maintenance of this equilibrium is a hallmark of pluripotency. Here we find that the ADP-ribosyltransferases Parp1 and Parp7 play a critical role in safeguarding this state by occupying key pluripotency genes, notably Nanog, Pou5f1, Sox2, Stella, Tet1 and Zfp42, thereby protecting them from progressive epigenetic repression. In the absence of either Parp1 or Parp7, or upon inhibition of the ADP-ribosylating activity, ES cells exhibit a decrease in ground state pluripotency as they cannot maintain the typical heterogeneity characteristic of the metastable state. As a consequence, they display a higher propensity to differentiate. These findings place Parp1 and Parp7 at the genetic-epigenetic interface of pluripotency networks, fine-tuning the transcriptional heterogeneity and thereby determining the developmental plasticity of ES cells.
Base modifications of cytosine are an important aspect of chromatin biology, as they can directly regulate gene expression, while DNA repair ensures that those modifications retain genome integrity. Here we characterize how cytosine DNA deaminase AID can initiate DNA demethylation. In vitro, AID initiated targeted DNA demethylation of methyl CpGs when in combination with DNA repair competent extracts. Mechanistically, this is achieved by inducing base alterations at or near methyl-cytosine, with the lesion being resolved either via single base substitution or a more efficient processive polymerase dependent repair. The biochemical findings are recapitulated in an in vivo transgenic targeting assay, and provide the genetic support of the molecular insight into DNA demethylation. This targeting approach supports the hypothesis that mCpG DNA demethylation can proceed via various pathways and mCpGs do not have to be targeted to be demethylated.
Adverse prenatal environments can promote metabolic disease in offspring and subsequent generations. Animal models and epidemiological data implicate epigenetic inheritance, but the mechanisms remain unknown. In an intergenerational developmental programming model affecting F2 mouse metabolism, we demonstrate that the in utero nutritional environment of F1 embryos alters the germline DNA methylome of F1 adult males in a locus-specific manner. Differentially methylated regions are hypomethylated and enriched in nucleosome-retaining regions. A substantial fraction is resistant to early embryo methylation reprogramming, which may have an impact on F2 development. Differential methylation is not maintained in F2 tissues, yet locus-specific expression is perturbed. Thus, in utero nutritional exposures during critical windows of germ cell development can impact the male germline methylome, associated with metabolic disease in offspring.
Myocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation. We show lysine acetylation (acetyl-Lys)-dependent activation of AMP-activated protein kinase, AKT, and PKA kinases during ischemia. Phosphorylation and acetyl-Lys sites mapped onto tertiary structures were proximal in >50% of proteins investigated, yet they were mutually exclusive in 50 ischemic pre-conditioning- and/or ischemia-associated peptides containing the KXXS basophilic protein kinase consensus motif. Modifications in this motif were modeled in the C terminus of muscle-type creatine kinase. Acetyl-Lys increased proximal dephosphorylation by 10-fold. Structural analysis of modified muscle-type creatine kinase peptide variants by two-dimensional NMR revealed stabilization via a lysine-phosphate salt bridge, which was disrupted by acetyl-Lys resulting in backbone flexibility and increased phosphatase accessibility.
Polycomb repressive complex-1 (PRC1) is essential for the epigenetic regulation of gene expression. SCML2 is a mammalian homolog of Drosophila SCM, a Polycomb-group protein that associates with PRC1. In this study, we show that SCML2A, an SCML2 isoform tightly associated to chromatin, contributes to PRC1 localization and also directly enforces repression of certain Polycomb target genes. SCML2A binds to PRC1 via its SPM domain and interacts with ncRNAs through a novel RNA-binding region (RBR). Targeting of SCML2A to chromatin involves the coordinated action of the MBT domains, RNA binding, and interaction with PRC1 through the SPM domain. Deletion of the RBR reduces the occupancy of SCML2A at target genes and overexpression of a mutant SCML2A lacking the RBR causes defects in PRC1 recruitment. These observations point to a role for ncRNAs in regulating SCML2 function and suggest that SCML2 participates in the epigenetic control of transcription directly and in cooperation with PRC1.DOI: http://dx.doi.org/10.7554/eLife.02637.001.
Autophagy is a membrane-trafficking pathway activated to deliver cytosolic material for degradation to lysosomes through a novel membrane compartment, the autophagosome. Fluorescence microscopy is the most common method used to visualize proteins inside cells, and it is widely used in the autophagy field. To distinguish it from the cellular background, the protein of interest (POI) is either fused with a genetically encoded fluorescent protein or stained with an antibody that is conjugated to an inorganic fluorescent compound. Genetic tagging of the POI allows its visualization in live cells, while immunostaining of the POI requires the fixation of cells and the permeabilization of cell membranes. Here we describe detailed protocols on how to visualize autophagy dynamics using fluorescence microscopy in live and fixed cells. We discuss the critical parameters of each technique, their advantages, and why the robustness is increased when they are used in tandem.
Mammalian cell homeostasis during starvation depends on initiation of autophagy by endoplasmic reticulum-localized phosphatidylinositol 3-phosphate (PtdIns(3)P) synthesis. Formation of double-membrane autophagosomes that engulf cytosolic components requires the LC3-conjugating Atg12-5-16L1 complex. The molecular mechanisms of Atg12-5-16L1 recruitment and significance of PtdIns(3)P synthesis at autophagosome formation sites are unknown. By identifying interacting partners of WIPIs, WD-repeat PtdIns(3)P effector proteins, we found that Atg16L1 directly binds WIPI2b. Mutation experiments and ectopic localization of WIPI2b to plasma membrane show that WIPI2b is a PtdIns(3)P effector upstream of Atg16L1 and is required for LC3 conjugation and starvation-induced autophagy through recruitment of the Atg12-5-16L1 complex. Atg16L1 mutants, which do not bind WIPI2b but bind FIP200, cannot rescue starvation-induced autophagy in Atg16L1-deficient MEFs. WIPI2b is also required for autophagic clearance of pathogenic bacteria. WIPI2b binds the membrane surrounding Salmonella and recruits the Atg12-5-16L1 complex, initiating LC3 conjugation, autophagosomal membrane formation, and engulfment of Salmonella.
At the heart of genomic imprinting in mammals are imprinting control regions (ICRs), which are the discrete genetic elements that confer imprinted monoallelic expression to several genes in imprinted gene clusters. A characteristic of the known ICRs is that they acquire different epigenetic states, exemplified by differences in DNA methylation, in the sperm and egg, and these imprint marks remain on the sperm- and oocyte-derived alleles into the next generation as a lifelong memory of parental origin. Although there has been much focus on gametic marking of ICRs as the point of imprint specification, recent mechanistic studies and genome-wide DNA methylation profiling do not support the existence of a specific imprinting machinery in germ cells. Rather, ICRs are part of more widespread methylation events that occur during gametogenesis. Instead, a decisive component in the specification of imprints is the choice of which sites of gamete-derived methylation to maintain in the zygote and preimplantation embryo at a time when much of the remainder of the genome is being demethylated. Among the factors involved in this selection, the zinc-finger protein Zfp57 can be regarded as an imprint-specific, sequence-specific DNA binding factor responsible for maintaining methylation at most ICRs. The recent insights into the balance of gametic and zygotic contributions to imprint specification should help understand mechanistic opportunities and constraints on the evolution of imprinting in mammals.
Glucose provides an essential nutrient source that supports glycolysis and the hexosamine biosynthesis pathway (HBP) to maintain tumour cell growth and survival. Here we investigated if short-term glucose deprivation specifically modulates the phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB) cell survival pathway. Insulin-stimulated PKB activation was strongly abrogated in the absence of extracellular glucose as a consequence of the loss of insulin-stimulated PI3K activation and short-term glucose deprivation inhibited subsequent tumour cell growth. Loss of insulin-stimulated PKB signalling and cell growth was rescued by extracellular glucosamine and increased flux through the HBP. Disruption of O-GlcNAc transferase activity, a terminal step in the HBP, implicated O-GlcNAcylation in PKB signalling and cell growth. Glycogenolysis is known to support cell survival during glucose deprivation, and in A549 lung cancer cells its inhibition attenuates PKB activation which is rescued by increased flux through the HBP. Our studies show that rerouting of glycolytic metabolites to the HBP under glucose-restricted conditions maintains PI3K/PKB signalling enabling cell survival and proliferation.
Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odors and whether they can be investigated under anesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odor smelled on the breath of a demonstrator animal occurs under isofluorane anesthesia. Furthermore, subsequent exposure to this cued odor under anesthesia promotes the same pattern of increased release of glutamate and gamma-aminobutyric acid (GABA) in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes) electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anesthesia before, during and after a novel scented food odor was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odor during and after learning and decreases in response to an uncued odor. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50%) of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odors prior to learning were either excited or inhibited afterwards. With the uncued odor many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odors as well as in evoked glutamate and GABA release.
Inhibitors against the p110δ isoform of phosphoinositide-3-OH kinase (PI(3)K) have shown remarkable therapeutic efficacy in some human leukaemias. As p110δ is primarily expressed in leukocytes, drugs against p110δ have not been considered for the treatment of solid tumours. Here we report that p110δ inactivation in mice protects against a broad range of cancers, including non-haematological solid tumours. We demonstrate that p110δ inactivation in regulatory T cells unleashes CD8(+) cytotoxic T cells and induces tumour regression. Thus, p110δ inhibitors can break tumour-induced immune tolerance and should be considered for wider use in oncology.
In hepatitis C virus infection, replication of the viral genome and virion assembly are linked to cellular metabolic processes. In particular, lipid droplets, which store principally triacylglycerides (TAGs) and cholesterol esters (CEs), have been implicated in production of infectious virus. Here, we examine the effect on productive infection of triacsin C and YIC-C8-434, which inhibit synthesis of TAGs and CEs by targeting long-chain acyl-CoA synthetase and acyl-CoA:cholesterol acyltransferase, respectively. Our results present high resolution data on the acylglycerol and cholesterol ester species that were affected by the compounds. Moreover, triacsin C, which blocks both triglyceride and cholesterol ester synthesis, cleared most of the lipid droplets in cells. By contrast, YIC-C8-434, which only abrogates production of cholesterol esters, induced an increase in size of droplets. Although both compounds slightly reduced viral RNA synthesis, they significantly impaired assembly of infectious virions in infected cells. In the case of triacsin C, reduced stability of the viral core protein, which forms the virion nucleocapsid and is targeted to the surface of lipid droplets, correlated with lower virion assembly. In addition, the virus particles that were released from cells had reduced specific infectivity. YIC-C8-434 did not alter the association of core with lipid droplets but appeared to decrease production of infectious virus particles, suggesting a block in virion assembly. Thus, the compounds have antiviral properties, indicating that targeting synthesis of lipids stored in lipid droplets might be an option for therapeutic intervention in treating chronic hepatitis C virus infection.
Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets.
The effects that coding region single-nucleotide polymorphisms or mutations have on gene expression have been well documented, predominantly owing to their association with disease. The effects of structural chromosomal rearrangements are also receiving increasing attention with the development of new techniques that allow accurate, high-resolution data, whether genomic interaction or transcriptome data, to be generated right down to the single-cell level. Over the past 18 months, these advances in experimental techniques have been used to further confirm and delineate the substantial effects that chromosome rearrangements can have on the regulation of gene expression and provide evidence of direct links between the two.
Axon degeneration precedes cell body death in many age-related neurodegenerative disorders, often determining symptom onset and progression. A sensitive method for revealing axon pathology could indicate whether this is the case also in Huntington's disease (HD), a fatal, devastating neurodegenerative disorder causing progressive deterioration of both physical and mental abilities, and which brain region is affected first. We studied the spatio-temporal relationship between axon pathology, neuronal loss, and mutant Huntingtin aggregate formation in HD mouse models by crossing R6/2 transgenic and HdhQ140 knock-in mice with YFP-H mice expressing the yellow fluorescent protein in a subset of neurons. We found large axonal swellings developing age-dependently first in stria terminalis and then in corticostriatal axons of HdhQ140 mice, whereas alterations of other neuronal compartments could not be detected. Although mutant Huntingtin accumulated with age in several brain areas, inclusions in the soma did not correlate with swelling of the corresponding axons. Axon abnormalities were not a prominent feature of the rapid progressive pathology of R6/2 mice. Our findings in mice genetically similar to HD patients suggest that axon pathology is an early event in HD and indicate the importance of further studies of stria terminalis axons in man.
The inheritance of epigenetic marks, in particular DNA methylation, provides a molecular memory that ensures faithful commitment to transcriptional programs during mammalian development. Epigenetic reprogramming results in global hypomethylation of the genome together with a profound loss of memory, which underlies naive pluripotency. Such global reprogramming occurs in primordial germ cells, early embryos, and embryonic stem cells where reciprocal molecular links connect the methylation machinery to pluripotency. Priming for differentiation is initiated upon exit from pluripotency, and we propose that epigenetic mechanisms create diversity of transcriptional states, which help with symmetry breaking during cell fate decisions and lineage commitment.
We have previously shown that sheep, like monkeys, have neural circuits within the temporal lobe that respond preferentially to faces. They can also discriminate between sheep, humans and other animals on the basis of facial cues using an enclosed Y-maze. In the present study we investigated the speed with which Clun Forest sheep learn to discriminate between familiar and unfamiliar faces, as opposed to symbols, in order to gain a food reward using the same Y-maze apparatus. Animals (n = 10) received 1 day of training where projected images of the pairs of faces or symbols were paired for 20 trials with a picture of either an empty or full bucket of food (which indicated which choice of face or symbol would result in the animal receiving a food reward) and on the next 4 days they were given a further 20 trials a day with the faces or symbols alone. Results showed that sheep learned significantly faster (by day 1 or 2 post training) to recognise sheep faces of a familiar breed compared to geometrical symbols (3-4 days post training). Learning using faces of animals of another unfamiliar breed was also significantly better than for symbols but was significantly worse than that seen using faces of a familiar breed. Inverting the faces significantly reduced learning speed for faces of a familiar breed but not for that of an unfamiliar one. Inverting familiar objects, food buckets, also did not impair discriminatory performance. In a further set of trials where discrimination learning was made more difficult by excluding cued trials and reducing the number of daily trials to eight, social familiarity was found to further improve the animal's ability to learn to discriminate between the faces of a familiar breed. Finally, while discriminatory performance for adult sheep faces was very good, that for young lamb faces was poor, with only one animal learning to choose the face associated with food. It was confirmed in maternal ewes that they were also slow to learn to recognise the faces of their lambs (2-3 weeks). Overall these results show that sheep can learn to distinguish between individual adult sheep faces but that breed and social familiarity influence the level of performance. Further, discrimination learning of familiar and unfamiliar facial stimuli is better than between simple geometrical symbols, indicating that faces may be preferentially processed by the brain compared to other objects suggesting that faces are indeed special in this species as has been claimed for human and non-human primates.
Transcription factor binding sites (TFBSs) on the DNA are generally accepted as the key nodes of gene control. However, the multitudes of TFBSs identified in genome-wide studies, some of them seemingly unconstrained in evolution, have prompted the view that in many cases TF binding may serve no biological function. Yet, insights from transcriptional biochemistry, population genetics and functional genomics suggest that rather than segregating into ‘functional’ or ‘non-functional’, TFBS inputs to their target genes may be generally cumulative, with varying degrees of potency and redundancy. As TFBS redundancy can be diminished by mutations and environmental stress, some of the apparently ‘spurious’ sites may turn out to be important for maintaining adequate transcriptional regulation under these conditions. This has significant implications for interpreting the phenotypic effects of TFBS mutations, particularly in the context of genome-wide association studies for complex traits.
It is unclear how changes in lipid droplet size and number are regulated - for example, it is not known whether this involves a signalling pathway or is directed by cellular lipid uptake. Here, we show that oleic acid stimulates lipid droplet formation by activating the long-chain fatty acid receptor FFAR4, which signals through a pertussis-toxin-sensitive G-protein signalling pathway involving phosphoinositide 3-kinase (PI3-kinase), AKT (also known as protein kinase B) and phospholipase D (PLD) activities. This initial lipid droplet formation is not dependent upon exogenous lipid, whereas the subsequent more sustained increase in the number of lipid droplets is dependent upon lipid uptake. These two mechanisms of lipid droplet formation point to distinct potential intervention points.
The mechanisms by which the major Polycomb group (PcG) complexes PRC1 and PRC2 are recruited to target sites in vertebrate cells are not well understood. Building on recent studies that determined a reciprocal relationship between DNA methylation and Polycomb activity, we demonstrate that, in methylation-deficient embryonic stem cells (ESCs), CpG density combined with antagonistic effects of H3K9me3 and H3K36me3 redirects PcG complexes to pericentric heterochromatin and gene-rich domains. Surprisingly, we find that PRC1-linked H2A monoubiquitylation is sufficient to recruit PRC2 to chromatin in vivo, suggesting a mechanism through which recognition of unmethylated CpG determines the localization of both PRC1 and PRC2 at canonical and atypical target sites. We discuss our data in light of emerging evidence suggesting that PcG recruitment is a default state at licensed chromatin sites, mediated by interplay between CpG hypomethylation and counteracting H3 tail modifications.
The amyloid precursor protein (APP) and the APP-like proteins 1 and 2 (APLP1 and APLP2) are a family of multidomain transmembrane proteins possessing homo- and heterotypic contact sites in their ectodomains. We previously reported that divalent metal ions dictate the conformation of the extracellular APP E2 domain (Dahms, S. O., Könnig, I., Roeser, D., Gührs, K.-H., Mayer, M. C., Kaden, D., Multhaup, G., and Than, M. E. (2012) J. Mol. Biol. 416, 438-452), but unresolved is the nature and functional importance of metal ion binding to APLP1 and APLP2. We found here that zinc ions bound to APP and APLP1 E2 domains and mediated their oligomerization, whereas the APLP2 E2 domain interacted more weakly with zinc possessing a less surface-exposed zinc-binding site, and stayed monomeric. Copper ions bound to E2 domains of all three proteins. Fluorescence resonance energy transfer (FRET) analyses examined the effect of metal ion binding to APP and APLPs in the cellular context in real time. Zinc ions specifically induced APP and APLP1 oligomerization and forced APLP1 into multimeric clusters at the plasma membrane consistent with zinc concentrations in the blood and brain. The observed effects were mediated by a novel zinc-binding site within the APLP1 E2 domain as APLP1 deletion mutants revealed. Based upon its cellular localization and its dominant response to zinc ions, APLP1 is mainly affected by extracellular zinc among the APP family proteins. We conclude that zinc binding and APP/APLP oligomerization are intimately linked, and we propose that this represents a novel mechanism for regulating APP/APLP protein function at the molecular level.
Calcification is a detrimental process in vascular ageing and in diseases such as atherosclerosis and arthritis. In particular, small calcium phosphate (CaP) crystal deposits are associated with inflammation and atherosclerotic plaque de-stabilisation. We previously reported that CaP particles caused human vascular smooth muscle cell (VSMC) death and that serum reduced the toxic effects of the particles. Here, we found that the serum proteins fetuin-A and albumin (≥ 1 µM) reduced intracellular Ca2+ elevations and cell death in VSMCs in response to CaP particles. In addition, CaP particles functionalised with fetuin-A, but not albumin, were less toxic than naked CaP particles. Electron microscopic studies revealed that CaP particles were internalised in different ways; via macropinocytosis, membrane invagination or plasma membrane damage, which occurred within 10 minutes of exposure to particles. However, cell death did not occur until approximately 30 minutes, suggesting that plasma membrane repair and survival mechanisms were activated. In the presence of fetuin-A, CaP particle-induced damage was inhibited and CaP/plasma membrane interactions and particle uptake were delayed. Fetuin-A also reduced dissolution of CaP particles under acidic conditions, which may contribute to its cytoprotective effects after CaP particle exposure to VSMCs. These studies are particularly relevant to the calcification observed in blood vessels in patients with kidney disease, where circulating levels of fetuin-A and albumin are low, and in pathological situations where CaP crystal formation outweighs calcification-inhibitory mechanisms.