Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Győri D, Csete D, Benkő S, Kulkarni S, Mandl P, Dobó-Nagy C, Vanhaesebroeck B, Stephens L, Hawkins PT, Mócsai A Signalling

While phosphoinositide 3-kinases (PI3Ks) are involved in various intracellular signal transduction processes, the specific functions of the different PI3K isoforms are poorly understood. We have previously shown that the PI3Kβ isoform is required for arthritis development in the K/BxN serum-transfer model. Since osteoclasts play a critical role in pathologic bone loss during inflammatory arthritis and other diseases, we undertook this study to test the role of PI3Kβ in osteoclast development and function using a combined genetic and pharmacologic approach.

+view abstract Arthritis & rheumatology (Hoboken, N.J.), PMID: 24719382 2014

Potter DS, Kelly P, Denneny O, Juvin V, Stephens LR, Dive C, Morrow CJ Signalling

Evasion of apoptosis is a hallmark of cancer, and reversing this process by inhibition of survival signaling pathways is a potential therapeutic strategy. Phosphoinositide 3-kinase (PI3K) signaling can promote cell survival and is upregulated in solid tumor types, including colorectal cancer (CRC), although these effects are context dependent. The role of PI3K in tumorigenesis combined with their amenability to specific inhibition makes them attractive drug targets. However, we observed that inhibition of PI3K in HCT116, DLD-1, and SW620 CRC cells did not induce apoptotic cell death. Moreover, these cells were relatively resistant to the Bcl-2 homology domain 3 (BH3) mimetic ABT-737, which directly targets the Bcl-2 family of apoptosis regulators. To test the hypothesis that PI3K inhibition lowers the apoptotic threshold without causing apoptosis per se, PI3K inhibitors were combined with ABT-737. PI3K inhibition enhanced ABT-737-induced apoptosis by 2.3- to 4.5-fold and reduced expression levels of MCL-1, the resistance biomarker for ABT-737. PI3K inhibition enhanced ABT-737-induced apoptosis a further 1.4- to 2.4-fold in CRC cells with small interfering RNA-depleted MCL-1, indicative of additional sensitizing mechanisms. The observation that ABT-737-induced apoptosis was unaffected by inhibition of PI3K downstream effectors AKT and mTOR, implicated a novel PI3K-dependant pathway. To elucidate this, an RNA interference (RNAi) screen of potential downstream effectors of PI3K signaling was conducted, which demonstrated that knockdown of the TEC kinase BMX sensitized to ABT-737. This suggests that BMX is an antiapoptotic downstream effector of PI3K, independent of AKT.

+view abstract Neoplasia (New York, N.Y.), PMID: 24709422 2014

A Zaid, LK Mackay, A Rahimpour, A Braun, M Veldhoen, FR Carbone, JH Manton, WR Heath, SN Mueller

Barrier tissues such as the skin contain various populations of immune cells that contribute to protection from infections. These include recently identified tissue-resident memory T cells (TRM). In the skin, these memory CD8(+) T cells reside in the epidermis after being recruited to this site by infection or inflammation. In this study, we demonstrate prolonged persistence of epidermal TRM preferentially at the site of prior infection despite sustained migration. Computational simulation of TRM migration within the skin over long periods revealed that the slow rate of random migration effectively constrains these memory cells within the region of skin in which they form. Notably, formation of TRM involved a concomitant local reduction in dendritic epidermal γδ T-cell numbers in the epidermis, indicating that these populations persist in mutual exclusion and may compete for local survival signals. Accordingly, we show that expression of the aryl hydrocarbon receptor, a transcription factor important for dendritic epidermal γδ T-cell maintenance in skin, also contributes to the persistence of skin TRM. Together, these data suggest that skin tissue-resident memory T cells persist within a tightly regulated epidermal T-cell niche.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 24706879 2014

G Damoulakis, L Gambardella, KL Rossman, CD Lawson, KE Anderson, Y Fukui, HC Welch, CJ Der, LR Stephens, PT Hawkins

G-protein-coupled receptors (GPCRs) regulate the organisation of the actin cytoskeleton by activating the Rac subfamily of small GTPases. The guanine-nucleotide-exchange factor (GEF) P-Rex1 is engaged downstream of GPCRs and phosphoinositide 3-kinase (PI3K) in many cell types, and promotes tumorigenic signalling and metastasis in breast cancer and melanoma, respectively. Although P-Rex1-dependent functions have been attributed to its GEF activity towards Rac1, we show that P-Rex1 also acts as a GEF for the Rac-related GTPase RhoG, both in vitro and in GPCR-stimulated primary mouse neutrophils. Furthermore, loss of either P-Rex1 or RhoG caused equivalent reductions in GPCR-driven Rac activation and Rac-dependent NADPH oxidase activity, suggesting they both function upstream of Rac in this system. Loss of RhoG also impaired GPCR-driven recruitment of the Rac GEF DOCK2, and F-actin, to the leading edge of migrating neutrophils. Taken together, our results reveal a new signalling hierarchy in which P-Rex1, acting as a GEF for RhoG, regulates Rac-dependent functions indirectly through RhoG-dependent recruitment of DOCK2. These findings thus have broad implications for our understanding of GPCR signalling to Rho GTPases and the actin cytoskeleton.

+view abstract Journal of cell science, PMID: 24659802 2014

JA Burger and K Okkenhaug Immunology

Idelalisib, the first PI3Kδ inhibitor in clinical use, has excellent activity in patients with chronic lymphocytic leukaemia and indolent B-cell lymphomas, heralding a new era of targeted therapy for these types of cancer. Idelalisib intercepts critical communications between B cells and the microenvironment, including B-cell receptor signalling and chemokine networks.

+view abstract Nature Reviews Clinical Oncology, PMID: 24642682 2014

S Sriskantharajah, E Gückel, N Tsakiri, K Kierdorf, C Brender, A Ben-Addi, M Veldhoen, PN Tsichlis, B Stockinger, A O'Garra, M Prinz, G Kollias, SC Ley Immunology

Tumor progression locus 2 (TPL-2) expression is required for efficient polarization of naive T cells to Th1 effector cells in vitro, as well as for Th1-mediated immune responses. In the present study, we investigated the potential role of TPL-2 in Th17 cells. TPL-2 was found to be dispensable for Th17 cell differentiation in vitro, and for the initial priming of Th17 cells in experimental autoimmune encephalomyelitis (EAE), a Th17 cell-mediated disease model for multiple sclerosis. Nevertheless, TPL-2-deficient mice were protected from EAE, which correlated with reduced immune cell infiltration, demyelination, and axonal damage in the CNS. Adoptive transfer experiments demonstrated that there was no T cell-intrinsic function for TPL-2 in EAE, and that TPL-2 signaling was not required in radiation-sensitive hematopoietic cells. Rather, TPL-2 signaling in radiation-resistant stromal cells promoted the effector phase of the disease. Importantly, using a newly generated mouse strain expressing a kinase-inactive form of TPL-2, we demonstrated that stimulation of EAE was dependent on the catalytic activity of TPL-2 and not its adaptor function to stabilize the associated ubiquitin-binding protein ABIN-2. Our data therefore raise the possibility that small molecule inhibitors of TPL-2 may be beneficial in multiple sclerosis therapy.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 24639351 2014

AK Johnsson, Y Dai, M Nobis, MJ Baker, EJ McGhee, S Walker, JP Schwarz, S Kadir, JP Morton, KB Myant, DJ Huels, A Segonds-Pichon, OJ Sansom, KI Anderson, P Timpson, HC Welch Signalling,Bioinformatics

The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments.

+view abstract Cell reports, PMID: 24630994 2014

Jacob Y, Bergamin E, Donoghue MT, Mongeon V, LeBlanc C, Voigt P, Underwood CJ, Brunzelle JS, Michaels SD, Reinberg D, Couture JF, Martienssen RA Epigenetics

Histone variants have been proposed to act as determinants for posttranslational modifications with widespread regulatory functions. We identify a histone-modifying enzyme that selectively methylates the replication-dependent histone H3 variant H3.1. The crystal structure of the SET domain of the histone H3 lysine-27 (H3K27) methyltransferase ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) in complex with a H3.1 peptide shows that ATXR5 contains a bipartite catalytic domain that specifically "reads" alanine-31 of H3.1. Variation at position 31 between H3.1 and replication-independent H3.3 is conserved in plants and animals, and threonine-31 in H3.3 is responsible for inhibiting the activity of ATXR5 and its paralog, ATXR6. Our results suggest a simple model for the mitotic inheritance of the heterochromatic mark H3K27me1 and the protection of H3.3-enriched genes against heterochromatization during DNA replication.

+view abstract Science (New York, N.Y.), PMID: 24626927

Rietdorf K, Bootman MD, Sanderson MJ

The pulmonary vein, which returns oxygenated blood to the left atrium, is ensheathed by a population of unique, myocyte-like cells called pulmonary vein sleeve cells (PVCs). These cells autonomously generate action potentials that propagate into the left atrial chamber and cause arrhythmias resulting in atrial fibrillation; the most common, often sustained, form of cardiac arrhythmia. In mice, PVCs extend along the pulmonary vein into the lungs, and are accessible in a lung slice preparation. We exploited this model to study how aberrant Ca(2+) signaling alters the ability of PVC networks to follow electrical pacing. Cellular responses were investigated using real-time 2-photon imaging of lung slices loaded with a Ca(2+)-sensitive fluorescent indicator (Ca(2+) measurements) and phase contrast microscopy (contraction measurements). PVCs displayed global Ca(2+) signals and coordinated contraction in response to electrical field stimulation (EFS). The effects of EFS relied on both Ca(2+) influx and Ca(2+) release, and could be inhibited by nifedipine, ryanodine or caffeine. Moreover, PVCs had a high propensity to show spontaneous Ca(2+) signals that arose via stochastic activation of ryanodine receptors (RyRs). The ability of electrical pacing to entrain Ca(2+) signals and contractile responses was dramatically influenced by inherent spontaneous Ca(2+) activity. In PVCs with relatively low spontaneous Ca(2+) activity (<1 Hz), entrainment with electrical pacing was good. However, in PVCs with higher frequencies of spontaneous Ca(2+) activity (>1.5 Hz), electrical pacing was less effective; PVCs became unpaced, only partially-paced or displayed alternans. Because spontaneous Ca(2+) activity varied between cells, neighboring PVCs often had different responses to electrical pacing. Our data indicate that the ability of PVCs to respond to electrical stimulation depends on their intrinsic Ca(2+) cycling properties. Heterogeneous spontaneous Ca(2+) activity arising from stochastic RyR opening can disengage them from sinus rhythm and lead to autonomous, pro-arrhythmic activity.

+view abstract PloS one, PMID: 24586364 2014

Stadhouders R, de Bruijn MJ, Rother MB, Yuvaraj S, Ribeiro de Almeida C, Kolovos P, Van Zelm MC, van Ijcken W, Grosveld F, Soler E, Hendriks RW Immunology

During B cell development, the precursor B cell receptor (pre-BCR) checkpoint is thought to increase immunoglobulin κ light chain (Igκ) locus accessibility to the V(D)J recombinase. Accordingly, pre-B cells lacking the pre-BCR signaling molecules Btk or Slp65 showed reduced germline V(κ) transcription. To investigate whether pre-BCR signaling modulates V(κ) accessibility through enhancer-mediated Igκ locus topology, we performed chromosome conformation capture and sequencing analyses. These revealed that already in pro-B cells the κ enhancers robustly interact with the ∼3.2 Mb V(κ) region and its flanking sequences. Analyses in wild-type, Btk, and Slp65 single- and double-deficient pre-B cells demonstrated that pre-BCR signaling reduces interactions of both enhancers with Igκ locus flanking sequences and increases interactions of the 3'κ enhancer with V(κ) genes. Remarkably, pre-BCR signaling does not significantly affect interactions between the intronic enhancer and V(κ) genes, which are already robust in pro-B cells. Both enhancers interact most frequently with highly used V(κ) genes, which are often marked by transcription factor E2a. We conclude that the κ enhancers interact with the V(κ) region already in pro-B cells and that pre-BCR signaling induces accessibility through a functional redistribution of long-range chromatin interactions within the V(κ) region, whereby the two enhancers play distinct roles.

+view abstract PLoS biology, PMID: 24558349 2014

Carlon MS, Vidović D, Dooley J, da Cunha MM, Maris M, Lampi Y, Toelen J, Van den Haute C, Baekelandt V, Deprest J, Verbeken E, Liston A, Gijsbers R, Debyser Z Immunology

Gene therapy of the lung has the potential to treat life-threatening diseases such as cystic fibrosis and α(1)-antitrypsin or surfactant deficiencies. A major hurdle for successful gene therapy is the development of an immune response against the transgene and/or viral vector. We hypothesized that by targeting the airways in the perinatal period, induction of an immune response against the vector particle could be prevented because of immaturity of the immune system, in turn allowing repeated gene transfer later in adult life to ensure long-term gene expression. Therefore, we readministered recombinant adeno-associated viral vector serotype 5 (rAAV2/5) to mouse airways 3 and 6 months after initial perinatal gene transfer. Our findings demonstrate that perinatal rAAV2/5-mediated gene transfer to the airways avoids a strong immune response. This immunological ignorance allows the readministration of an autologous vector later in adult life, resulting in efficient and stable gene transfer up to 7 months, without evidence of a decrease in transgene expression. Together, these data provide a basis to further explore perinatal gene therapy for pulmonary conditions with adequate gene expression up to 7 months.

+view abstract Human gene therapy, PMID: 24548076 2014

Sale MJ, Cook SJ Signalling

BIK (BCL2-interacting killer) is a pro-apoptotic BH3 (BCL2 homology domain 3)-only protein and a member of the BCL2 protein family. It was proposed recently that BIK abundance is controlled by ERK1/2 (extracellular-signal-regulated kinase 1/2)-catalysed phosphorylation, which targets the protein for proteasome-dependent destruction. In the present study, we examined ERK1/2-dependent regulation of BIK, drawing comparisons with BIM(EL) (BCL2-interacting mediator of cell death; extra long), a well-known target of ERK1/2. In many ERK1/2-dependent tumour cell lines, inhibition of BRAF(V600E) (v-raf murine sarcoma viral oncogene homologue B1, V600E mutation) or MEK1/2 (mitogen-activated protein kinase/ERK kinase 1/2) had very little effect on BIK expression, whereas BIM(EL) was strongly up-regulated. In some cell lines we observed a modest increase in BIK expression; however, this was not apparent until ~16 h or later, whereas BIM(EL) expression increased rapidly within a few hours. Although BIK was degraded by the proteasome, we found no evidence that this was regulated by ERK1/2 signalling. Rather, the delayed increase in BIK expression was prevented by actinomycin D, and was accompanied by increases in BIK mRNA. Finally, the delayed increase in BIK expression following ERK1/2 inhibition was phenocopied by a highly selective CDK4/6 (cyclin-dependent kinases 4 and 6) inhibitor, which caused a strong G₁ cell-cycle arrest without inhibiting ERK1/2 signalling. In contrast, BIM(EL) expression was induced by ERK1/2 inhibition, but not by CDK4/6 inhibition. We conclude that BIK expression is not subject to direct regulation by the ERK1/2 pathway; rather, we propose that BIK expression is cell-cycle-dependent and increases as a consequence of the G₁ cell-cycle arrest which results from inhibition of ERK1/2 signalling.

+view abstract The Biochemical journal, PMID: 24527759 2014

Kubaczka C,Senner C,Arauzo-Bravo MJ,Sharma N,Kuckenberg P,Becker A,Zimmer A,Brustle O,Peitz M, M Hemberger,Schorle H Epigenetics

Trophoblast stem cells (TSCs) are in vitro equivalents to the precursor cells of the placenta. TSCs are cultured in serum-rich medium with fibroblast growth factor 4, heparin, and embryonic-fibroblast-conditioned medium. Here, we developed a simple medium consisting of ten chemically defined ingredients for culture of TSCs on Matrigel or synthetic substrates, named TX medium. Gene expression and DNA methylation profiling demonstrated the faithful propagation of expression profiles and epigenomic characteristics of TSCs cultured in TX. Further, TX medium supported the de novo derivation of TSC lines. Finally, TSCs cultured in TX differentiate into all derivatives of the trophectodermal lineage in vitro, give rise to hemorrhagic lesions in nude mice, and chimerize the placenta, indicating that they retained all hallmarks of TSCs. TX media formulation no longer requires fetal bovine serum and conditioned medium, which facilitates and standardizes the culture of this extraembryonic lineage.

+view abstract Stem cell reports, PMID: 24527396 2014

C Pierro, SJ Cook, TC Foets, MD Bootman, HL Roderick

The GTPase Ras is a molecular switch engaged downstream of G-protein coupled receptors and receptor tyrosine kinases that controls multiple cell fate-determining signalling pathways. Ras signalling is frequently deregulated in cancer underlying associated changes in cell phenotype. Although Ca(2+) signalling pathways control some overlapping functions with Ras, and altered Ca(2+) signalling pathways are emerging as important players in oncogenic transformation, how Ca(2+) signalling is remodelled during transformation and whether it has a causal role remains unclear. We have investigated Ca(2+) signalling in two human colorectal cancer cell lines and their isogenic derivatives in which the mutated K-Ras allele (G13D) has been deleted by homologous recombination. We show that agonist-induced Ca(2+) release from intracellular stores is enhanced by loss of K-Ras(G13D) through an increase in the ER store content and a modification of IP3R subtype abundance. Consistently, uptake of Ca(2+) into mitochondria and sensitivity to apoptosis was enhanced as a result of K-Ras(G13D) loss. These results suggest that suppression of Ca(2+) signalling is a common response to naturally occurring levels of K-Ras(G13D) that contributes to a survival advantage during oncogenic transformation.

+view abstract Journal of cell science, PMID: 24522186 2014

C Cruz, J Houseley Epigenetics

A plethora of non-protein coding RNAs are produced throughout eukaryotic genomes, many of which are transcribed antisense to protein-coding genes and could potentially instigate RNA interference (RNAi) responses. Here we have used a synthetic RNAi system to show that gene copy number is a key factor controlling RNAi for transcripts from endogenous loci, since transcripts from multi-copy loci form double stranded RNA more efficiently than transcripts from equivalently expressed single-copy loci. Selectivity towards transcripts from high-copy DNA is therefore an emergent property of a minimal RNAi system. The ability of RNAi to selectively degrade transcripts from high-copy loci would allow suppression of newly emerging transposable elements, but such a surveillance system requires transcription. We show that low-level genome-wide pervasive transcription is sufficient to instigate RNAi, and propose that pervasive transcription is part of a defense mechanism capable of directing a sequence-independent RNAi response against transposable elements amplifying within the genome. DOI: http://dx.doi.org/10.7554/eLife.01581.001.

+view abstract eLife, PMID: 24520161 2014

Yano K, Carter C, Yoshida N, Abe T, Yamada A, Nitta T, Ishimaru N, Takada K, Butcher GW, Takahama Y Immunology

Gimap3 (IAN4) and Gimap5 (IAN5) are highly homologous GTP-binding proteins of the Gimap family. Gimap3 and Gimap5, whose transcripts are abundant in mature lymphocytes, can associate with antiapoptotic Bcl-2 family proteins. While it is established that Gimap5 regulates T-cell survival, the in vivo role of Gimap3 is unclear. Here we report the preparation and characteristics of mouse strains lacking Gimap3 and/or Gimap5. We found that the number of T cells was markedly reduced in mice deficient in both Gimap3 and Gimap5. The defects in T-cell cellularity were more severe in mice lacking both Gimap3 and Gimap5 than in mice lacking only Gimap5. No defects in the cellularity of T cells were detected in mice lacking only Gimap3, whereas bone marrow cells from Gimap3-deficient mice showed reduced T-cell production in a competitive hematopoietic environment. Moreover, retroviral overexpression and short hairpin RNAs-mediated silencing of Gimap3 in bone marrow cells elevated and reduced, respectively, the number of T cells produced in irradiated mice. These results suggest that Gimap3 is a regulator of T-cell numbers in the mouse and that multiple Gimap family proteins cooperate to maintain T-cell survival.

+view abstract European journal of immunology, PMID: 24510501 2014

Wills RH, Habtemariam A, Lopez-Clavijo AF, Barrow MP, Sadler PJ, O'Connor PB Lipidomics

The binding sites of two ruthenium(II) organometallic complexes of the form [(η(6)-arene)Ru(N,N)Cl](+), where arene/N,N = biphenyl (bip)/bipyridine (bipy) for complex AH076, and biphenyl (bip)/o-phenylenediamine (o-pda) for complex AH078, on the peptides angiotensin and bombesin have been investigated using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Fragmentation was performed using collisionally activated dissociation (CAD), with, in some cases, additional data being provided by electron capture dissociation (ECD). The primary binding sites were identified as methionine and histidine, with further coordination to phenylalanine, potentially through a π-stacking interaction, which has been observed here for the first time. This initial peptide study was expanded to investigate protein binding through reaction with insulin, on which the binding sites proposed are histidine, glutamic acid, and tyrosine. Further reaction of the ruthenium complexes with the oxidized B chain of insulin, in which two cysteine residues are oxidized to cysteine sulfonic acid (Cys-SO3H), and glutathione, which had been oxidized with hydrogen peroxide to convert the cysteine to cysteine sulfonic acid, provided further support for histidine and glutamic acid binding, respectively.

+view abstract Journal of the American Society for Mass Spectrometry, PMID: 24488754 2014

Liston A, Gray DH

Regulatory T (TReg) cells constitute an essential counterbalance to adaptive immune responses. Failure to maintain appropriate TReg cell numbers or function leads to autoimmune, malignant and immunodeficient conditions. Dynamic homeostatic processes preserve the number of forkhead box P3-expressing (FOXP3(+)) TReg cells within a healthy range, with high rates of cell division being offset by apoptosis under steady-state conditions. Recent studies have shown that TReg cells become specialized for different environmental contexts, tailoring their functions and homeostatic properties to a wide range of tissues and immune conditions. In this Review, we describe new insights into the molecular controls that maintain the steady-state homeostasis of TReg cells and the cues that drive TReg cell adaptation to inflammation and/or different locations. We highlight how differing local milieu might drive context-specific TReg cell function and restoration of immune homeostasis, and how dysregulation of these processes can precipitate disease.

+view abstract Nature reviews. Immunology, PMID: 24481337 2014

Attridge K, Kenefeck R, Wardzinski L, Qureshi OS, Wang CJ, Manzotti C, Okkenhaug K, Walker LS Immunology

The cytokine IL-21 is a potent immune modulator with diverse mechanisms of action on multiple cell types. IL-21 is in clinical use to promote tumor rejection and is an emerging target for neutralization in the setting of autoimmunity. Despite its clinical potential, the biological actions of IL-21 are not yet fully understood and the full range of effects of this pleiotropic cytokine are still being uncovered. In this study, we identify a novel role for IL-21 as an inducer of the costimulatory ligand CD86 on B lymphocytes. CD86 provides critical signals through T cell-expressed CD28 that promote T cell activation in response to Ag engagement. Expression levels of CD86 are tightly regulated in vivo, being actively decreased by regulatory T cells and increased in response to pathogen-derived signals. In this study, we demonstrate that IL-21 can trigger potent and sustained CD86 upregulation through a STAT3 and PI3K-dependent mechanism. We show that elevated CD86 expression has functional consequences for the magnitude of CD4 T cell responses both in vitro and in vivo. These data pinpoint CD86 upregulation as an additional mechanism by which IL-21 can elicit immunomodulatory effects.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 24470500 2014

Avau A, Mitera T, Put S, Put K, Brisse E, Filtjens J, Uyttenhove C, Van Snick J, Liston A, Leclercq G, Billiau AD, Wouters CH, Matthys P Immunology

Systemic juvenile idiopathic arthritis (JIA) is unique among the rheumatic diseases of childhood, given its distinctive systemic inflammatory character. Inappropriate control of innate immune responses following an initially harmless trigger is thought to account for the excessive inflammatory reaction. The aim of this study was to generate a similar systemic inflammatory syndrome in mice by injecting a relatively innocuous, yet persistent, immune system trigger: Freund's complete adjuvant (CFA), containing heat-killed mycobacteria.

+view abstract Arthritis & rheumatology (Hoboken, N.J.), PMID: 24470407 2014

Lopez-Clavijo AF, Duque-Daza CA, Romero Canelon I, Barrow MP, Kilgour D, Rabbani N, Thornalley PJ, O'Connor PB Lipidomics

Glycation is a post-translational modification (PTM) that affects the physiological properties of peptides and proteins. In particular, during hyperglycaemia, glycation by α-dicarbonyl compounds generate α-dicarbonyl-derived glycation products also called α-dicarbonyl-derived advanced glycation end products. Glycation by the α-dicarbonyl compound known as glyoxal was studied in model peptides by MS/MS using a Fourier transform ion cyclotron resonance mass spectrometer. An unusual type of glyoxal-derived AGE with a mass addition of 21.98436 Da is reported in peptides containing combinations of two arginine-two lysine, and one arginine-three lysine amino acid residues. Electron capture dissociation and collisionally activated dissociation results supported that the unusual glyoxal-derived AGE is formed at the guanidino group of arginine, and a possible structure is proposed to illustrate the 21.9843 Da mass addition.

+view abstract Journal of the American Society for Mass Spectrometry, PMID: 24470193 2014

A Cerase, D Smeets, YA Tang, M Gdula, F Kraus, M Spivakov, B Moindrot, M Leleu, A Tattermusch, J Demmerle, TB Nesterova, C Green, AP Otte, L Schermelleh, N Brockdorff

+view abstract PNAS, PMID: 24469834 2014

Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA, Bertone P, Silva JC, Zernicka-Goetz M, Nielsen ML, Gurdon JB, Kouzarides T Epigenetics

Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.

+view abstract Nature, PMID: 24463520

NJ Darling, SJ Cook

Perturbations in endoplasmic reticulum (ER) homeostasis, including depletion of Ca(2+) or altered redox status, induce ER stress due to protein accumulation, misfolding and oxidation. This activates the unfolded protein response (UPR) to re-establish the balance between ER protein folding capacity and protein load, resulting in cell survival or, following chronic ER stress, promotes cell death. The mechanisms for the transition between adaptation to ER stress and ER stress-induced cell death are still being understood. However, the identification of numerous points of cross-talk between the UPR and mitogen-activated protein kinase (MAPK) signalling pathways may contribute to our understanding of the consequences of ER stress. Indeed, the MAPK signalling network is known to regulate cell cycle progression and cell survival or death responses following a variety of stresses. In this article, we review UPR signalling and the activation of MAPK signalling pathways in response to ER stress. In addition, we highlight components of the UPR that are modulated in response to MAPK signalling and the consequences of this cross-talk. We also describe several diseases, including cancer, type II diabetes and retinal degeneration, where activation of the UPR and MAPK signalling contribute to disease progression and highlight potential avenues for therapeutic intervention. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease.

+view abstract Biochimica et biophysica acta, PMID: 24440275 2014