Valerie O'Donnell

Valerie is an Honorary Group Leader, currently based at the the University of Cardiff. She is working with Group Leaders in the Signalling Programme. Valerie’s research is focused on the study of bioactive lipids in circulating blood cells, particularly platelets.  She uses mass spectrometry to identify and characterise new signalling mediators. Since 2007, her group identified large families of lipids made by platelets, neutrophils and monocytes, and demonstrated that these are involved in innate immunity, blood clotting, cardiovascular disease and infection. Translational studies have established a role for these lipids in human thrombotic disease. 

She has developed new methods to quantify aminophospholipids at the platelet surface, for example molecular species of amino-phospholipids and oxidized phospholipids that comprise the pro-coagulant surface, which is essential for blot formation.  She leads/led a programme grant from British Heart Foundation (renewed 2020), and was an ERC Advanced Grant holder (2014-2019). Since 2017, she has been co-lead of LIPID MAPS, a multi-site Biomedical Resource supporting databases, tools, nomenclature and curation of lipids, funded by Wellcome Trust (>66K users, with Edward Dennis and Shankar Subramaniam (UCSD), Simon Andrews and Andrea Lopez, Babraham, and Bill Griffiths, Swansea).

She was Co-Director of the Systems Immunity Research Institute, Cardiff University from 2016-2020. She is co-investigator on an EU Marie Curie ITN (ArthritisHeal, Leiden), an EU Cost Network (EpiLipidNET) and an MRC Partnership Grant (MAP/UK, Imperial), and an Associate Group Lead at UK Dementia Research Institute (UKDRI) at Cardiff University. 

Latest Publications

Potential Role of Oral Rinses Targeting the Viral Lipid Envelope in SARS-CoV-2 Infection.
O'Donnell VB, Thomas D, Stanton R, Maillard JY, Murphy RC, Jones SA, Humphreys I, Wakelam MJO, Fegan C, Wise MP, Bosch A, Sattar SA

Emerging studies increasingly demonstrate the importance of the throat and salivary glands as sites of virus replication and transmission in early COVID-19 disease. SARS-CoV-2 is an enveloped virus, characterized by an outer lipid membrane derived from the host cell from which it buds. While it is highly sensitive to agents that disrupt lipid biomembranes, there has been no discussion about the potential role of oral rinsing in preventing transmission. Here, we review known mechanisms of viral lipid membrane disruption by widely available dental mouthwash components that include ethanol, chlorhexidine, cetylpyridinium chloride, hydrogen peroxide, and povidone-iodine. We also assess existing formulations for their potential ability to disrupt the SARS-CoV-2 lipid envelope, based on their concentrations of these agents, and conclude that several deserve clinical evaluation. We highlight that already published research on other enveloped viruses, including coronaviruses, directly supports the idea that oral rinsing should be considered as a potential way to reduce transmission of SARS-CoV-2. Research to test this could include evaluating existing or specifically tailored new formulations in well-designed viral inactivation assays, then in clinical trials. Population-based interventions could be undertaken with available mouthwashes, with active monitoring of outcome to determine efficacy. This is an under-researched area of major clinical need.

+ View Abstract

Function (Oxford, England), 1, 1, 2020

PMID: 33215159

Steps Towards Minimal Reporting Standards for Lipidomics Mass Spectrometry in Biomedical Research Publications.
O'Donnell VB, FitzGerald GA, Murphy RC, Liebisch G, Dennis EA, Quehenberger O, Subramaniam S, Wakelam MJO

None listed

+ View Abstract

Circulation. Genomic and precision medicine, 1, 1, 16 Nov 2020

PMID: 33196315

Update on LIPID MAPS Classification, Nomenclature and Shorthand Notation for MS-derived Lipid Structures.
Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing C, Fedorova M, Feussner I, Griffiths WJ, Koefeler H, Merrill AH, Murphy RC, O'Donnell VB, Oskolkova OV, Subramaniam S, Wakelam M, Spener F

A comprehensive and standardized system to report lipid structures analyzed by mass spectrometry is essential for the communication and storage of lipidomics data. Herein, an update on both the LIPID MAPS classification system and shorthand notation of lipid structures is presented for lipid categories Fatty Acyls (FA), Glycerolipids (GL), Glycerophospholipids (GP), Sphingolipids (SP), and Sterols (ST). With its major changes, i.e. annotation of ring double bond equivalents and number of oxygens, the updated shorthand notation facilitates reporting of newly delineated oxygenated lipid species as well. For standardized reporting in lipidomics, the hierarchical architecture of shorthand notation reflects the diverse structural resolution powers provided by mass spectrometric assays. Moreover, shorthand notation is expanded beyond mammalian phyla to lipids from plant and yeast phyla. Finally, annotation of atoms is included for the use of stable isotope-labelled compounds in metabolic labelling experiments or as internal standards.This update on lipid classification, nomenclature and shorthand annotation for lipid mass spectra is considered a standard for lipid data presentation.

+ View Abstract

Journal of lipid research, 1, 1, 09 Oct 2020

PMID: 33037133

View Profile

Keywords

infection