Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Chrysanthou S, Senner CE, Woods L, Fineberg E, Okkenhaug H, Burge S, Perez-Garcia V, Hemberger M Epigenetics

The ten-eleven translocation (TET) proteins are well known for their role in maintaining naive pluripotency of embryonic stem cells. Here, we demonstrate that, jointly, TET1 and TET2 also safeguard the self-renewal potential of trophoblast stem cells (TSCs) and have partially redundant roles in maintaining the epithelial integrity of TSCs. For the more abundantly expressed TET1, we show that this is achieved by binding to critical epithelial genes, notably E-cadherin, which becomes hyper-methylated and downregulated in the absence of TET1. The epithelial-to-mesenchymal transition phenotype of mutant TSCs is accompanied by centrosome duplication and separation defects. Moreover, we identify a role of TET1 in maintaining cyclin B1 stability, thereby acting as facilitator of mitotic cell-cycle progression. As a result, Tet1/2 mutant TSCs are prone to undergo endoreduplicative cell cycles leading to the formation of polyploid trophoblast giant cells. Taken together, our data reveal essential functions of TET proteins in the trophoblast lineage.

+view abstract Stem cell reports, PMID: 29576538 2018

Collier AJ, Rugg-Gunn PJ Epigenetics

Recent reports that human pluripotent stem cells can be captured in a spectrum of states with variable properties has prompted a re-evaluation of how pluripotency is acquired and stabilised. The latest additions to the stem cell hierarchy open up opportunities for understanding human development, reprogramming, and cell state transitions more generally. Many of the new cell lines have been collectively termed 'naïve' human pluripotent stem cells to distinguish them from the conventional 'primed' cells. Here, several transcriptional and epigenetic hallmarks of human pluripotent states in the recently described cell lines are reviewed and evaluated. Methods to derive and identify human naïve pluripotent stem cells are also discussed, with a focus on the uses and future developments of state-specific reporter cell lines and cell-surface proteins. Finally, opportunities and uncertainties in naïve stem cell biology are highlighted, and the current limitations of human naïve pluripotent stem cells considered, particularly in the context of differentiation.

+view abstract BioEssays : news and reviews in molecular, cellular and developmental biology, PMID: 29574793 2018

Slatter DA, Percy CL, Allen-Redpath K, Gajsiewicz JM, Brooks NJ, Clayton A, Tyrrell VJ, Rosas M, Lauder SN, Watson A, Dul M, Garcia-Diaz Y, Aldrovandi M, Heurich M, Hall J, Morrissey JH, Lacroix-Desmazes S, Delignat S, Jenkins PV, Collins PW, O'Donnell VB

Hemostatic defects are treated using coagulation factors; however, clot formation also requires a procoagulant phospholipid (PL) surface. Here, we show that innate immune cell-derived enzymatically oxidized phospholipids (eoxPL) termed hydroxyeicosatetraenoic acid-phospholipids (HETE-PLs) restore hemostasis in human and murine conditions of pathological bleeding. HETE-PLs abolished blood loss in murine hemophilia A and enhanced coagulation in factor VIII- (FVIII-), FIX-, and FX-deficient human plasma . HETE-PLs were decreased in platelets from patients after cardiopulmonary bypass (CPB). To explore molecular mechanisms, the ability of eoxPL to stimulate individual isolated coagulation factor/cofactor complexes was tested in vitro. Extrinsic tenase (FVIIa/tissue factor [TF]), intrinsic tenase (FVIIIa/FIXa), and prothrombinase (FVa/FXa) all were enhanced by both HETE-PEs and HETE-PCs, suggesting a common mechanism involving the fatty acid moiety. In plasma, 9-, 15-, and 12-HETE-PLs were more effective than 5-, 11-, or 8-HETE-PLs, indicating positional isomer specificity. Coagulation was enhanced at lower lipid/factor ratios, consistent with a more concentrated area for protein binding. Surface plasmon resonance confirmed binding of FII and FX to HETE-PEs. HETE-PEs increased membrane curvature and thickness, but not surface charge or homogeneity, possibly suggesting increased accessibility to cations/factors. In summary, innate immune-derived eoxPL enhance calcium-dependent coagulation factor function, and their potential utility in bleeding disorders is proposed.

+view abstract JCI insight, PMID: 29563336

White MA, Kim E, Duffy A, Adalbert R, Phillips BU, Peters OM, Stephenson J, Yang S, Massenzio F, Lin Z, Andrews S, Segonds-Pichon A, Metterville J, Saksida LM, Mead R, Ribchester RR, Barhomi Y, Serre T, Coleman MP, Fallon J, Bussey TJ, Brown RH, Sreedharan J Signalling,Bioinformatics

Amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) constitutes a devastating disease spectrum characterized by 43-kDa TAR DNA-binding protein (TDP-43) pathology. Understanding how TDP-43 contributes to neurodegeneration will help direct therapeutic efforts. Here we have created a TDP-43 knock-in mouse with a human-equivalent mutation in the endogenous mouse Tardbp gene. TDP-43mice demonstrate cognitive dysfunction and a paucity of parvalbumin interneurons. Critically, TDP-43 autoregulation is perturbed, leading to a gain of TDP-43 function and altered splicing of Mapt, another pivotal dementia-associated gene. Furthermore, a new approach to stratify transcriptomic data by phenotype in differentially affected mutant mice revealed 471 changes linked with improved behavior. These changes included downregulation of two known modifiers of neurodegeneration, Atxn2 and Arid4a, and upregulation of myelination and translation genes. With one base change in murine Tardbp, this study identifies TDP-43 misregulation as a pathogenic mechanism that may underpin ALS-FTD and exploits phenotypic heterogeneity to yield candidate suppressors of neurodegenerative disease.

+view abstract Nature neuroscience, PMID: 29556029 2018

Bergmann FT, Cooper J, König M, Moraru I, Nickerson D, Le Novère N, Olivier BG, Sahle S, Smith L, Waltemath D Signalling

The creation of computational simulation experiments to inform modern biological research poses challenges to reproduce, annotate, archive, and share such experiments. Efforts such as SBML or CellML standardize the formal representation of computational models in various areas of biology. The Simulation Experiment Description Markup Language (SED-ML) describes what procedures the models are subjected to, and the details of those procedures. These standards, together with further COMBINE standards, describe models sufficiently well for the reproduction of simulation studies among users and software tools. The Simulation Experiment Description Markup Language (SED-ML) is an XML-based format that encodes, for a given simulation experiment, (i) which models to use; (ii) which modifications to apply to models before simulation; (iii) which simulation procedures to run on each model; (iv) how to post-process the data; and (v) how these results should be plotted and reported. SED-ML Level 1 Version 1 (L1V1) implemented support for the encoding of basic time course simulations. SED-ML L1V2 added support for more complex types of simulations, specifically repeated tasks and chained simulation procedures. SED-ML L1V3 extends L1V2 by means to describe which datasets and subsets thereof to use within a simulation experiment.

+view abstract Journal of integrative bioinformatics, PMID: 29550789 2018

Cox RS, Madsen C, McLaughlin J, Nguyen T, Roehner N, Bartley B, Bhatia S, Bissell M, Clancy K, Gorochowski T, Grünberg R, Luna A, Le Novère N, Pocock M, Sauro H, Sexton JT, Stan GB, Tabor JJ, Voigt CA, Zundel Z, Myers C, Beal J, Wipat A Signalling

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.0 of SBOL Visual, which builds on the prior SBOL Visual 1.0 standard by expanding diagram syntax to include functional interactions and molecular species, making the relationship between diagrams and the SBOL data model explicit, supporting families of symbol variants, clarifying a number of requirements and best practices, and significantly expanding the collection of diagram glyphs.

+view abstract Journal of integrative bioinformatics, PMID: 29549707 2018

Olova N, Krueger F, Andrews S, Oxley D, Berrens RV, Branco MR, Reik W Epigenetics,Mass Spectrometry

Whole-genome bisulfite sequencing (WGBS) is becoming an increasingly accessible technique, used widely for both fundamental and disease-oriented research. Library preparation methods benefit from a variety of available kits, polymerases and bisulfite conversion protocols. Although some steps in the procedure, such as PCR amplification, are known to introduce biases, a systematic evaluation of biases in WGBS strategies is missing.

+view abstract Genome biology, PMID: 29544553 2018

Miura Y, Morooka M, Sax N, Roychoudhuri R, Itoh-Nakadai A, Brydun A, Funayama R, Nakayama K, Satomi S, Matsumoto M, Igarashi K, Muto A Immunology

BTB and CNC homology 2 (Bach2) is a transcriptional repressor that is required for the formation of the germinal center (GC) and reactions, including class switch recombination and somatic hypermutation of Ig genes in B cells, within the GC. Although BCR-induced proliferation is essential for GC reactions, the function of Bach2 in regulating B cell proliferation has not been elucidated. In this study, we demonstrate that Bach2 is required to sustain high levels of B cell proliferation in response to BCR signaling. Following BCR engagement in vitro, B cells from-deficient () mice showed lower incorporation of BrdU and reduced cell cycle progression compared with wild-type cells.B cells also underwent increased apoptosis, as evidenced by an elevated frequency of sub-Gcells and early apoptotic cells. Transcriptome analysis of BCR-engaged B cells frommice revealed reduced expression of the antiapoptotic geneencoding Bcl-xand elevated expression of cyclin-dependent kinase inhibitor (CKI) family genes, including,, andReconstitution of Bcl-xexpression partially rescued the proliferation defect ofB cells. Chromatin immunoprecipitation experiments showed that Bach2 bound to the CKI family genes, indicating that these genes are direct repression targets of Bach2. These findings identify Bach2 as a requisite factor for sustaining high levels of BCR-induced proliferation, survival, and cell cycle progression, and it promotes expression of Bcl-xand repression of CKI genes. BCR-induced proliferation defects may contribute to the impaired GC formation observed inmice.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 29540581 2018

Lee CQE, Turco M, Gardner L, Simons B, Hemberger M, Moffett A Epigenetics

During pregnancy the trophoblast cells of the placenta are the only fetal cells in direct contact with maternal blood and decidua. Their functions include transport of nutrients and oxygen, secretion of pregnancy hormones, remodelling the uterine arteries, and communicating with maternal cells. Despite the importance of trophoblast cells in placental development and successful pregnancy, little is known about the identity, location and differentiation of human trophoblast progenitors. We identify a proliferative trophoblast niche at the base of the cytotrophoblast cell columns in first trimester placentas that is characterised by integrin α2 (ITGA2) expression. Pulse-chase experiments with 5-Iodo-2'-deoxyuridine (IdU) imply that these cells can contribute to both villous (VCT) and extravillous (EVT) lineages. These proliferating trophoblast cells can be isolated using ITGA2 as a marker by flow cytometry and express genes from both VCT and EVT. Microarray expression analysis shows that ITAG2cells display a unique transcriptional signature including NOTCH signalling and a combination of epithelial and mesenchymal characteristics. ITGA2 thus marks a niche allowing the study of pure populations of trophoblast progenitor cells.

+view abstract Development (Cambridge, England), PMID: 29540503 2018

Perez-Garcia V, Fineberg E, Wilson R, Murray A, Mazzeo CI, Tudor C, Sienerth A, White JK, Tuck E, Ryder EJ, Gleeson D, Siragher E, Wardle-Jones H, Staudt N, Wali N, Collins J, Geyer S, Busch-Nentwich EM, Galli A, Smith JC, Robertson E, Adams DJ, Weninger WJ, Mohun T, Hemberger M Epigenetics

Large-scale phenotyping efforts have demonstrated that approximately 25-30% of mouse gene knockouts cause intrauterine lethality. Analysis of these mutants has largely focused on the embryo and not the placenta, despite the crucial role of this extraembryonic organ for developmental progression. Here we screened 103 embryonic lethal and sub-viable mouse knockout lines from the Deciphering the Mechanisms of Developmental Disorders program for placental phenotypes. We found that 68% of knockout lines that are lethal at or after mid-gestation exhibited placental dysmorphologies. Early lethality (embryonic days 9.5-14.5) is almost always associated with severe placental malformations. Placental defects correlate strongly with abnormal brain, heart and vascular development. Analysis of mutant trophoblast stem cells and conditional knockouts suggests that a considerable number of factors that cause embryonic lethality when ablated have primary gene function in trophoblast cells. Our data highlight the hugely under-appreciated importance of placental defects in contributing to abnormal embryo development and suggest key molecular nodes that govern placenta formation.

+view abstract Nature, PMID: 29539633 2018

McGough IJ, Vincent JP Signalling

The scaffold protein APC has a well-known function in ensuring β-catenin destruction. In this issue of Developmental Cell, Saito-Diaz et al. (2018) uncover another role for APC in Wnt signaling: to prevent clathrin-dependent signalosome formation in the absence of ligand.

+view abstract Developmental cell, PMID: 29533767

Novo CL, Javierre BM, Cairns J, Segonds-Pichon A, Wingett SW, Freire-Pritchett P, Furlan-Magaril M, Schoenfelder S, Fraser P, Rugg-Gunn PJ Epigenetics,Bioinformatics

Transcriptional enhancers, including super-enhancers (SEs), form physical interactions with promoters to regulate cell-type-specific gene expression. SEs are characterized by high transcription factor occupancy and large domains of active chromatin, and they are commonly assigned to target promoters using computational predictions. How promoter-SE interactions change upon cell state transitions, and whether transcription factors maintain SE interactions, have not been reported. Here, we used promoter-capture Hi-C to identify promoters that interact with SEs in mouse embryonic stem cells (ESCs). We found that SEs form complex, spatial networks in which individual SEs contact multiple promoters, and a rewiring of promoter-SE interactions occurs between pluripotent states. We also show that long-range promoter-SE interactions are more prevalent in ESCs than in epiblast stem cells (EpiSCs) or Nanog-deficient ESCs. We conclude that SEs form cell-type-specific interaction networks that are partly dependent on core transcription factors, thereby providing insights into the gene regulatory organization of pluripotent cells.

+view abstract Cell reports, PMID: 29514091 2018

Lupo G, Nisi PS, Esteve P, Paul YL, Novo CL, Sidders B, Khan MA, Biagioni S, Liu HK, Bovolenta P, Cacci E, Rugg-Gunn PJ Epigenetics

Adult neurogenesis declines with aging due to the depletion and functional impairment of neural stem/progenitor cells (NSPCs). An improved understanding of the underlying mechanisms that drive age-associated neurogenic deficiency could lead to the development of strategies to alleviate cognitive impairment and facilitate neuroregeneration. An essential step towards this aim is to investigate the molecular changes that occur in NSPC aging on a genomewide scale. In this study, we compare the transcriptional, histone methylation and DNA methylation signatures of NSPCs derived from the subventricular zone (SVZ) of young adult (3 months old) and aged (18 months old) mice. Surprisingly, the transcriptional and epigenomic profiles of SVZ-derived NSPCs are largely unchanged in aged cells. Despite the global similarities, we detect robust age-dependent changes at several hundred genes and regulatory elements, thereby identifying putative regulators of neurogenic decline. Within this list, the homeobox gene Dbx2 is upregulated in vitro and in vivo, and its promoter region has altered histone and DNA methylation levels, in aged NSPCs. Using functional in vitro assays, we show that elevated Dbx2 expression in young adult NSPCs promotes age-related phenotypes, including the reduced proliferation of NSPC cultures and the altered transcript levels of age-associated regulators of NSPC proliferation and differentiation. Depleting Dbx2 in aged NSPCs caused the reverse gene expression changes. Taken together, these results provide new insights into the molecular programmes that are affected during mouse NSPC aging, and uncover a new functional role for Dbx2 in promoting age-related neurogenic decline.

+view abstract Aging cell, PMID: 29504228 2018

Frenk S, Houseley J Epigenetics

Ageing leads to dramatic changes in the physiology of many different tissues resulting in a spectrum of pathology. Nonetheless, many lines of evidence suggest that ageing is driven by highly conserved cell intrinsic processes, and a set of unifying hallmarks of ageing has been defined. Here, we survey reports of age-linked changes in basal gene expression across eukaryotes from yeast to human and identify six gene expression hallmarks of cellular ageing: downregulation of genes encoding mitochondrial proteins; downregulation of the protein synthesis machinery; dysregulation of immune system genes; reduced growth factor signalling; constitutive responses to stress and DNA damage; dysregulation of gene expression and mRNA processing. These encompass widely reported features of ageing such as increased senescence and inflammation, reduced electron transport chain activity and reduced ribosome synthesis, but also reveal a surprising lack of gene expression responses to known age-linked cellular stresses. We discuss how the existence of conserved transcriptomic hallmarks relates to genome-wide epigenetic differences underlying ageing clocks, and how the changing transcriptome results in proteomic alterations where data is available and to variations in cell physiology characteristic of ageing. Identification of gene expression events that occur during ageing across distant organisms should be informative as to conserved underlying mechanisms of ageing, and provide additional biomarkers to assess the effects of diet and other environmental factors on the rate of ageing.

+view abstract Biogerontology, PMID: 29492790 2018

Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC Signalling

Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.

+view abstract Physiological reviews, PMID: 29488822 2018

Liston A, Goris A Immunology

+view abstract Nature immunology, PMID: 29476185 2018

Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C, Krueger F, Sanguinetti G, Kelsey G, Marioni JC, Stegle O, Reik W Epigenetics,Bioinformatics

Parallel single-cell sequencing protocols represent powerful methods for investigating regulatory relationships, including epigenome-transcriptome interactions. Here, we report a single-cell method for parallel chromatin accessibility, DNA methylation and transcriptome profiling. scNMT-seq (single-cell nucleosome, methylation and transcription sequencing) uses a GpC methyltransferase to label open chromatin followed by bisulfite and RNA sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic stem cells, finding links between all three molecular layers and revealing dynamic coupling between epigenomic layers during differentiation.

+view abstract Nature communications, PMID: 29472610 2018

Smyrnias I, Goodwin N, Wachten D, Skogestad J, Aronsen JM, Robinson EL, Demydenko K, Segonds-Pichon A, Oxley D, Sadayappan S, Sipido K, Bootman MD, Roderick HL Mass Spectrometry

The shortening of sarcomeres that co-ordinates the pump function of the heart is stimulated by electrically-mediated increases in [Ca]. This process of excitation-contraction coupling (ECC) is subject to modulation by neurohormonal mediators that tune the output of the heart to meet the needs of the organism. Endothelin-1 (ET-1) is a potent modulator of cardiac function with effects on contraction amplitude, chronotropy and automaticity. The actions of ET-1 are evident during normal adaptive physiological responses and increased under pathophysiological conditions, such as following myocardial infarction and during heart failure, where ET-1 levels are elevated. In myocytes, ET-1 acts through ET- or ET-G protein-coupled receptors (GPCRs). Although well studied in atrial myocytes, the influence and mechanisms of action of ET-1 upon ECC in ventricular myocytes are not fully resolved. We show in rat ventricular myocytes that ET-1 elicits a biphasic effect on fractional shortening (initial transient negative and sustained positive inotropy) and increases the peak amplitude of systolic Ca transients in adult rat ventricular myocytes. The negative inotropic phase was ET receptor-dependent, whereas the positive inotropic response and increase in peak amplitude of systolic Ca transients required ET receptor engagement. Both effects of ET-1 required phospholipase C (PLC)-activity, although distinct signalling pathways downstream of PLC elicited the effects of each ET receptor. The negative inotropic response involved inositol 1,4,5-trisphosphate (InsP) signalling and protein kinase C epsilon (PKCε). The positive inotropic action and the enhancement in Ca transient amplitude induced by ET-1 were independent of InsP signalling, but suppressed by PKCε. Serine 302 in cardiac myosin binding protein-C was identified as a PKCε substrate that when phosphorylated contributed to the suppression of contraction and Ca transients by PKCε following ET-1 stimulation. Thus, our data provide a new role and mechanism of action for InsP and PKCε in mediating the negative inotropic response and in restraining the positive inotropy and enhancement in Ca transients following ET-1 stimulation.

+view abstract Journal of molecular and cellular cardiology, PMID: 29470978

Kidger AM, Sipthorp J, Cook SJ Signalling

The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is de-regulated in a variety of cancers due to mutations in receptor tyrosine kinases (RTKs), negative regulators of RAS (such as NF1) and core pathway components themselves (RAS, BRAF, CRAF, MEK1 or MEK2). This has driven the development of a variety of pharmaceutical agents to inhibit RAF-MEK1/2-ERK1/2 signalling in cancer and both RAF and MEK inhibitors are now approved and used in the clinic. There is now much interest in targeting at the level of ERK1/2 for a variety of reasons. First, since the pathway is linear from RAF-to-MEK-to-ERK then ERK1/2 are validated as targets per se. Second, innate resistance to RAF or MEK inhibitors involves relief of negative feedback and pathway re-activation with all signalling going through ERK1/2, validating the use of ERK inhibitors with RAF or MEK inhibitors as an up-front combination. Third, long-term acquired resistance to RAF or MEK inhibitors involves a variety of mechanisms (KRAS or BRAF amplification, MEK mutation, etc.) which re-instate ERK activity, validating the use of ERK inhibitors to forestall acquired resistance to RAF or MEK inhibitors. The first potent highly selective ERK1/2 inhibitors have now been developed and are entering clinical trials. They have one of three discrete mechanisms of action - catalytic, "dual mechanism" or covalent - which could have profound consequences for how cells respond and adapt. In this review we describe the validation of ERK1/2 as anti-cancer drug targets, consider the mechanism of action of new ERK1/2 inhibitors and how this may impact on their efficacy, anticipate factors that will determine how tumour cells respond and adapt to ERK1/2 inhibitors and consider ERK1/2 inhibitor drug combinations.

+view abstract Pharmacology & therapeutics, PMID: 29454854 2018

Touré V, Le Novère N, Waltemath D, Wolkenhauer O Signalling

+view abstract PLoS computational biology, PMID: 29447151 2018

Sharpe HJ, de Sauvage FJ Signalling

The kinase GRK2 has been linked to the clinically important Hedgehog (HH) signaling pathway, where it is paradoxically required for signal transduction yet also promotes internalization and degradation of the critical HH signal transducer Smoothened. Two reports by Li and Pusapati in this issue of provide new insights into the role of GRK2 in HH signaling.

+view abstract Science signaling, PMID: 29438011 2018

Comoglio F, Park HJ, Schoenfelder S, Barozzi I, Bode D, Fraser P, Green AR

Thrombopoietin (TPO) is a critical cytokine regulating hematopoietic stem cell maintenance and differentiation into the megakaryocytic lineage. However, the transcriptional and chromatin dynamics elicited by TPO signaling are poorly understood. Here, we study the immediate early transcriptional and cis-regulatory responses to TPO in hematopoietic stem/progenitor cells (HSPCs) and use this paradigm of cytokine signaling to chromatin to dissect the relation between cis- regulatory activity and chromatin architecture. We show that TPO profoundly alters the transcriptome of HSPCs, with key hematopoietic regulators being transcriptionally repressed within 30 minutes of TPO. By examining cis-regulatory dynamics and chromatin architectures, we demonstrate that these changes are accompanied by rapid and extensive epigenome remodeling of cis-regulatory landscapes that is spatially coordinated within topologically associating domains (TADs). Moreover, TPO-responsive enhancers are spatially clustered and engage in preferential homotypic intra- and inter-TAD interactions that are largely refractory to TPO signaling. By further examining the link between cis-regulatory dynamics and chromatin looping, we show that rapid modulation of cis-regulatory activity is largely independent of chromatin looping dynamics. Finally, we show that, although activated and repressed cis-regulatory elements share remarkably similar DNA sequence compositions, transcription factor binding patterns accurately predict rapid cis-regulatory responses to TPO.

+view abstract Genome research, PMID: 29429976 2018

Heremans J, Garcia-Perez JE, Turro E, Schlenner SM, Casteels I, Collin R, de Zegher F, Greene D, Humblet-Baron S, Lesage S, Matthys P, Penkett CJ, Put K, Stirrups K, , Thys C, Van Geet C, Van Nieuwenhove E, Wouters C, Meyts I, Freson K, Liston A Immunology

Roifman syndrome is a rare inherited disorder characterized by spondyloepiphyseal dysplasia, growth retardation, cognitive delay, hypogammaglobulinemia, and, in some patients, thrombocytopenia. Compound heterozygous variants in the small nuclear RNA gene RNU4ATAC, which is necessary for U12-type intron splicing, were identified recently as driving Roifman syndrome.

+view abstract The Journal of allergy and clinical immunology, PMID: 29391254 2018

Henning AN, Roychoudhuri R, Restifo NP Immunology

Upon stimulation, small numbers of naive CD8+ T cells proliferate and differentiate into a variety of memory and effector cell types. CD8+ T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8+ T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8+ T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8+ T cell function in individuals with chronic infections and cancer.

+view abstract Nature reviews. Immunology, PMID: 29379213 2018