Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Lagou V, Garcia-Perez JE, Smets I, Van Horebeek L, Vandebergh M, Chen L, Mallants K, Prezzemolo T, Hilven K, Humblet-Baron S, Moisse M, Van Damme P, Boeckxstaens G, Bowness P, Dubois B, Dooley J, Liston A, Goris A Immunology

The immune system is highly diverse, but characterization of its genetic architecture has lagged behind the vast progress made by genome-wide association studies (GWASs) of emergent diseases. Our GWAS for 54 functionally relevant phenotypes of the adaptive immune system in 489 healthy individuals identifies eight genome-wide significant associations explaining 6%-20% of variance. Coding and splicing variants in PTPRC and COMMD10 are involved in memory T cell differentiation. Genetic variation controlling disease-relevant T helper cell subsets includes RICTOR and STON2 associated with Th2 and Th17, respectively, and the interferon-lambda locus controlling regulatory T cell proliferation. Early and memory B cell differentiation stages are associated with variation in LARP1B and SP4. Finally, the latrophilin family member ADGRL2 correlates with baseline pro-inflammatory interleukin-6 levels. Suggestive associations reveal mechanisms of autoimmune disease associations, in particular related to pro-inflammatory cytokine production. Pinpointing these key human immune regulators offers attractive therapeutic perspectives.

+view abstract Cell reports, PMID: 30332657 2018

van Nieuwenhuijze A, Burton O, Lemaitre P, Denton AE, Cascalho A, Goodchild RE, Malengier-Devlies B, Cauwe B, Linterman MA, Humblet-Baron S, Liston A Immunology

The nucleopore is an essential structure of the eukaryotic cell, regulating passage between the nucleus and cytoplasm. While individual functions of core nucleopore proteins have been identified, the role of other components, such as Nup210, are poorly defined. Here, through the use of an unbiased ENU mutagenesis screen for mutations effecting the peripheral T cell compartment, we identified a Nup210 mutation in a mouse strain with altered CD4/CD8 T cell ratios. Through the generation of Nup210 knockout mice we identified Nup210 as having a T cell-intrinsic function in the peripheral homeostasis of T cells. Remarkably, despite the deep evolutionary conservation of this key nucleopore complex member, no other major phenotypes developed, with viable and healthy knockout mice. These results identify Nup210 as an important nucleopore complex component for peripheral T cells, and raise further questions of why this nucleopore component shows deep evolutionary conservation despite seemingly redundant functions in most cell types.

+view abstract Frontiers in immunology, PMID: 30323813 2018

Brajic A, Franckaert D, Burton O, Bornschein S, Calvanese AL, Demeyer S, Cools J, Dooley J, Schlenner S, Liston A Immunology

Mammalian genomes encode a plethora of long non-coding RNA (lncRNA). These transcripts are thought to regulate gene expression, influencing biological processes from development to pathology. Results from the few lncRNA that have been studied in the context of the immune system have highlighted potentially critical functions as network regulators. Here we explored the nature of the lncRNA transcriptome in regulatory T cells (Tregs), a subset of CD4 T cells required to establish and maintain immunological self-tolerance. The identified Treg lncRNA transcriptome showed distinct differences from that of non-regulatory CD4 T cells, with evidence of direct shaping of the lncRNA transcriptome by Foxp3, the master transcription factor driving the distinct mRNA profile of Tregs. Treg lncRNA changes were disproportionally reversed in the absence of Foxp3, with an enrichment for colocalisation with Foxp3 DNA binding sites, indicating a direct coordination of transcription by Foxp3 independent of the mRNA coordination function. We further identified a novel lncRNA , as a member of the core Treg lncRNA transcriptome. expression anticipates Foxp3 expression during Treg conversion, and -deficient mice show a mild delay in and peripheral Treg induction. These results implicate as part of the upstream cascade leading to Treg conversion, and may provide clues as to the nature of this process.

+view abstract Frontiers in immunology, PMID: 30319599 2018

Woods L, Perez-Garcia V, Hemberger M Epigenetics

The placenta is the chief regulator of nutrient supply to the growing embryo during gestation. As such, adequate placental function is instrumental for developmental progression throughout intrauterine development. One of the most common complications during pregnancy is insufficient growth of the fetus, a problem termed intrauterine growth restriction (IUGR) that is most frequently rooted in a malfunctional placenta. Together with conventional gene targeting approaches, recent advances in screening mouse mutants for placental defects, combined with the ability to rapidly induce mutations and by CRISPR-Cas9 technology, has provided new insights into the contribution of the genome to normal placental development. Most importantly, these data have demonstrated that far more genes are required for normal placentation than previously appreciated. Here, we provide a summary of common types of placental defects in established mouse mutants, which will help us gain a better understanding of the genes impacting on human placentation. Based on a recent mouse mutant screen, we then provide examples on how these data can be mined to identify novel molecular hubs that may be critical for placental development. Given the close association between placental defects and abnormal cardiovascular and brain development, these functional nodes may also shed light onto the etiology of birth defects that co-occur with placental malformations. Taken together, recent insights into the regulation of mouse placental development have opened up new avenues for research that will promote the study of human pregnancy conditions, notably those based on defects in placentation that underlie the most common pregnancy pathologies such as IUGR and pre-eclampsia.

+view abstract Frontiers in endocrinology, PMID: 30319550 2018

Sarker G, Berrens R, von Arx J, Pelczar P, Reik W, Wolfrum C, Peleg-Raibstein D Epigenetics

Maternal overnutrition has been associated with increased susceptibility to develop obesity and neurological disorders later in life. Most epidemiological as well as experimental studies have focused on the metabolic consequences across generations following an early developmental nutritional insult. Recently, it has been shown that maternal high-fat diet (HFD) affects third-generation female body mass via the paternal lineage. We showed here that the offspring born to HFD ancestors displayed addictive-like behaviors as well as obesity and insulin resistance up to the third generation in the absence of any further exposure to HFD. These findings, implicate that the male germ line is a major player in transferring phenotypic traits. These behavioral and physiological alterations were paralleled by reduced striatal dopamine levels and increased dopamine 2 receptor density. Interestingly, by the third generation a clear gender segregation emerged, where females showed addictive-like behaviors while male HFD offspring showed an obesogenic phenotype. However, methylome profiling of F1 and F2 sperm revealed no significant difference between the offspring groups, suggesting that the sperm methylome might not be the major carrier for the transmission of the phenotypes observed in our mouse model. Together, our study for the first time demonstrates that maternal HFD insult causes sustained alterations of the mesolimbic dopaminergic system suggestive of a predisposition to develop obesity and addictive-like behaviors across multiple generations.

+view abstract Translational psychiatry, PMID: 30315171 2018

Schoenfelder S, Mifsud B, Senner CE, Todd CD, Chrysanthou S, Darbo E, Hemberger M, Branco MR Epigenetics

The establishment of the embryonic and trophoblast lineages is a developmental decision underpinned by dramatic differences in the epigenetic landscape of the two compartments. However, it remains unknown how epigenetic information and transcription factor networks map to the 3D arrangement of the genome, which in turn may mediate transcriptional divergence between the two cell lineages. Here, we perform promoter capture Hi-C experiments in mouse trophoblast (TSC) and embryonic (ESC) stem cells to understand how chromatin conformation relates to cell-specific transcriptional programmes. We find that key TSC genes that are kept repressed in ESCs exhibit interactions between H3K27me3-marked regions in ESCs that depend on Polycomb repressive complex 1. Interactions that are prominent in TSCs are enriched for enhancer-gene contacts involving key TSC transcription factors, as well as TET1, which helps to maintain the expression of TSC-relevant genes. Our work shows that the first developmental cell fate decision results in distinct chromatin conformation patterns establishing lineage-specific contexts involving both repressive and active interactions.

+view abstract Nature communications, PMID: 30305613 2018

Gilley J, Mayer P, Yu G, Coleman MP

NMNAT2 is an endogenous axon maintenance factor that preserves axon health by blocking Wallerian-like axon degeneration. Mice lacking NMNAT2 die at birth with severe axon defects in both the PNS and CNS so a complete absence of NMNAT2 in humans is likely to be similarly harmful, but probably rare. However, there is evidence of widespread natural variation in human NMNAT2 mRNA expression so it is important to establish whether reduced levels of NMNAT2 have consequences that impact health. Whilst mice that express reduced levels of NMNAT2, either those heterozygous for a silenced Nmnat2 allele, or compound heterozygous for one silenced and one partially silenced Nmnat2 allele, remain overtly normal into old age, we now report that Nmnat2 compound heterozygote mice present with early and age-dependent peripheral nerve axon defects. Compound heterozygote mice already have reduced numbers of myelinated sensory axons at 1.5 months and lose more axons, likely motor axons, between 18 and 24 months and, crucially, these changes correlate with early temperature insensitivity and a later-onset decline in motor performance. Slower neurite outgrowth and increased sensitivity to axonal stress are also evident in primary cultures of Nmnat2 compound heterozygote superior cervical ganglion neurons. These data reveal that reducing NMNAT2 levels below a particular threshold compromises the development of peripheral axons and increases their vulnerability to stresses. We discuss the implications for human neurological phenotypes where axons are longer and have to be maintained over a much longer lifespan.

+view abstract Human molecular genetics, PMID: 30304512 2018

Chow WY, Li R, Goldberga I, Reid DG, Rajan R, Clark J, Oschkinat H, Duer MJ, Hayward R, Shanahan CM Biological Chemistry

The sparse but functionally essential post-translational collagen modification 5-hydroxylysine can undergo further transformations, including crosslinking, O-glycosylation, and glycation. Dynamic nuclear polarization (DNP) and stable isotope enriched lysine incorporation provide sufficient solid-state NMR sensitivity to identify these adducts directly in skin and vascular smooth muscle cell extracellular matrix (ECM), without extraction procedures, by comparison with chemical shifts of model compounds. Thus, DNP provides access to the elucidation of structural consequences of collagen modifications in intact tissue.

+view abstract Chemical communications (Cambridge, England), PMID: 30299444

Fellows R, Varga-Weisz P

Class I histone deacetylases (HDACs) are efficient histone decrotonylases, broadening the enzymatic spectrum of these important (epi-)genome regulators and drug targets. Here, we describe an approach to assaying class I HDACs with different acyl-histone substrates, including crotonylated histones and expand this to examine the effect of inhibitors and estimate kinetic constants.

+view abstract Bio-protocol, PMID: 30283810 2018

Cruz C, Della Rosa M, Krueger C, Gao Q, Horkai D, King M, Field L, Houseley J Epigenetics,Bioinformatics

Transcription of protein coding genes is accompanied by recruitment of COMPASS to promoter-proximal chromatin, which methylates histone H3 lysine 4 (H3K4) to form H3K4me1, H3K4me2 and H3K4me3. Here, we determine the importance of COMPASS in maintaining gene expression across lifespan in budding yeast. We find that COMPASS mutations reduce replicative lifespan and cause expression defects in almost 500 genes. Although H3K4 methylation is reported to act primarily in gene repression, particularly in yeast, repressive functions are progressively lost with age while hundreds of genes become dependent on H3K4me3 for full expression. Basal and inducible expression of these genes is also impaired in young cells lacking COMPASS components Swd1 or Spp1. Gene induction during ageing is associated with increasing promoter H3K4me3, but H3K4me3 also accumulates in non-promoter regions and the ribosomal DNA. Our results provide clear evidence that H3K4me3 is required to maintain normal expression of many genes across organismal lifespan.

+view abstract eLife, PMID: 30274593 2018

Imbrechts M, Avau A, Vandenhaute J, Malengier-Devlies B, Put K, Mitera T, Berghmans N, Burton O, Junius S, Liston A, de Somer L, Wouters C, Matthys P Immunology

Systemic juvenile idiopathic arthritis (sJIA) is a childhood-onset immune disorder of unknown cause. One of the concepts is that the disease results from an inappropriate control of immune responses to an initially harmless trigger. In the current study, we investigated whether sJIA may be caused by defects in IL-10, a key cytokine in controlling inflammation. We used a translational approach, with an sJIA-like mouse model and sJIA patient samples. The sJIA mouse model relies on injection of CFA in IFN-γ-deficient BALB/c mice; corresponding wild type (WT) mice only develop a subtle and transient inflammatory reaction. Diseased IFN-γ-deficient mice showed a defective IL-10 production in CD4 regulatory T cells, CD19 B cells, and CD3CD122CD49b NK cells, with B cells as the major source of IL-10. In addition, neutralization of IL-10 in WT mice resulted in a chronic immune inflammatory disorder clinically and hematologically reminiscent of sJIA. In sJIA patients, IL-10 plasma levels were strikingly low as compared with proinflammatory mediators. Furthermore, CD19 B cells from sJIA patients showed a decreased IL-10 production, both ex vivo and after in vitro stimulation. In conclusion, IL-10 neutralization in CFA-challenged WT mice converts a transient inflammatory reaction into a chronic disease and represents an alternative model for sJIA in IFN-γ-competent mice. Cell-specific IL-10 defects were observed in sJIA mice and patients, together with an insufficient IL-10 production to counterbalance their proinflammatory cytokines. Our data indicate that a defective IL-10 production contributes to the pathogenesis of sJIA.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 30266771 2018

Sadej R, Lu X, Turczyk L, Novitskaya V, Lopez-Clavijo AF, Kordek R, Potemski P, Wakelam MJO, Romanska H, Berditchevski F Signalling

Expression of the tetraspanin CD151 is frequently upregulated in epithelial malignancies and correlates with poor prognosis. Here we report that CD151 is involved in regulation of the expression of fibroblast growth factor receptor 2 (FGFR2). Depletion of CD151 in breast cancer cells resulted in an increased level of FGFR2. Accordingly, an inverse correlation between CD151 and FGFR2 was observed in breast cancer tissues. CD151-dependent regulation of the FGFR2 expression relies on post-transcriptional mechanisms involving HuR/ELAVL1, a multifunctional RNA binding protein, and the assembly of processing bodies (P-bodies). Depletion of CD151 correlated with inhibition of PKC, a well-established downstream target of CD151. Accordingly, the levels of dialcylglycerol species were decreased in CD151-negative cells, and inhibition of PKC resulted in the increased expression of FGFR2. Whilst expression of FGFR2 itself did not correlate with any of the clinicopathological data, the FGFR2-/CD151+ patients are more likely to develop lymph node metastasis. Conversely, FGFR2-/CD151- patients demonstrated better overall survival. These results illustrate functional interdependency between CD151 complexes and FGFR2 and suggest a previously unsuspected role of CD151 in breast tumourigenesis.

+view abstract Journal of cell science, PMID: 30257985 2018

Wingett SW, Andrews S Bioinformatics

DNA sequencing analysis typically involves mapping reads to just one reference genome. Mapping against multiple genomes is necessary, however, when the genome of origin requires confirmation. Mapping against multiple genomes is also advisable for detecting contamination or for identifying sample swaps which, if left undetected, may lead to incorrect experimental conclusions. Consequently, we present FastQ Screen, a tool to validate the origin of DNA samples by quantifying the proportion of reads that map to a panel of reference genomes. FastQ Screen is intended to be used routinely as a quality control measure and for analysing samples in which the origin of the DNA is uncertain or has multiple sources.

+view abstract F1000Research, PMID: 30254741 2018

McGough IJ, de Groot REA, Jellett AP, Betist MC, Varandas KC, Danson CM, Heesom KJ, Korswagen HC, Cullen PJ Signalling

Wntless transports Wnt morphogens to the cell surface and is required for Wnt secretion and morphogenic gradients formation. Recycling of endocytosed Wntless requires the sorting nexin-3 (SNX3)-retromer-dependent endosome-to-Golgi transport pathway. Here we demonstrate the essential role of SNX3-retromer assembly for Wntless transport and report that SNX3 associates with an evolutionary conserved endosome-associated membrane re-modelling complex composed of MON2, DOPEY2 and the putative aminophospholipid translocase, ATP9A. In vivo suppression of Ce-mon-2, Ce-pad-1 or Ce-tat-5 (respective MON2, DOPEY2 and ATP9A orthologues) phenocopy a loss of SNX3-retromer function, leading to enhanced lysosomal degradation of Wntless and a Wnt phenotype. Perturbed Wnt signalling is also observed upon overexpression of an ATPase-inhibited TAT-5(E246Q) mutant, suggesting a role for phospholipid flippase activity during SNX3-retromer-mediated Wntless sorting. Together, these findings provide in vitro and in vivo mechanistic details to describe SNX3-retromer-mediated transport during Wnt secretion and the formation of Wnt-morphogenic gradients.

+view abstract Nature communications, PMID: 30213940

Richard AC, Peters JE, Savinykh N, Lee JC, Hawley ET, Meylan F, Siegel RM, Lyons PA, Smith KGC Immunology

Chronic inflammation in inflammatory bowel disease (IBD) results from a breakdown of intestinal immune homeostasis and compromise of the intestinal barrier. Genome-wide association studies have identified over 200 genetic loci associated with risk for IBD, but the functional mechanisms of most of these genetic variants remain unknown. Polymorphisms at the TNFSF15 locus, which encodes the TNF superfamily cytokine commonly known as TL1A, are associated with susceptibility to IBD in multiple ethnic groups. In a wide variety of murine models of inflammation including models of IBD, TNFSF15 promotes immunopathology by signaling through its receptor DR3. Such evidence has led to the hypothesis that expression of this lymphocyte costimulatory cytokine increases risk for IBD. In contrast, here we show that the IBD-risk haplotype at TNFSF15 is associated with decreased expression of the gene by peripheral blood monocytes in both healthy volunteers and IBD patients. This association persists under various stimulation conditions at both the RNA and protein levels and is maintained after macrophage differentiation. Utilizing a "recall-by-genotype" bioresource for allele-specific expression measurements in a functional fine-mapping assay, we localize the polymorphism controlling TNFSF15 expression to the regulatory region upstream of the gene. Through a T cell costimulation assay, we demonstrate that genetically regulated TNFSF15 has functional relevance. These findings indicate that genetically enhanced expression of TNFSF15 in specific cell types may confer protection against the development of IBD.

+view abstract PLoS genetics, PMID: 30199539

Koohy H, Bolland DJ, Matheson LS, Schoenfelder S, Stellato C, Dimond A, Várnai C, Chovanec P, Chessa T, Denizot J, Manzano Garcia R, Wingett SW, Freire-Pritchett P, Nagano T, Hawkins P, Stephens L, Elderkin S, Spivakov M, Fraser P, Corcoran AE, Varga-Weisz PD Signalling,Bioinformatics

Aging is characterized by loss of function of the adaptive immune system, but the underlying causes are poorly understood. To assess the molecular effects of aging on B cell development, we profiled gene expression and chromatin features genome-wide, including histone modifications and chromosome conformation, in bone marrow pro-B and pre-B cells from young and aged mice.

+view abstract Genome biology, PMID: 30180872 2018

Eling N, Richard AC, Richardson S, Marioni JC, Vallejos CA Immunology

Cell-to-cell transcriptional variability in otherwise homogeneous cell populations plays an important role in tissue function and development. Single-cell RNA sequencing can characterize this variability in a transcriptome-wide manner. However, technical variation and the confounding between variability and mean expression estimates hinder meaningful comparison of expression variability between cell populations. To address this problem, we introduce an analysis approach that extends the BASiCS statistical framework to derive a residual measure of variability that is not confounded by mean expression. This includes a robust procedure for quantifying technical noise in experiments where technical spike-in molecules are not available. We illustrate how our method provides biological insight into the dynamics of cell-to-cell expression variability, highlighting a synchronization of biosynthetic machinery components in immune cells upon activation. In contrast to the uniform up-regulation of the biosynthetic machinery, CD4 T cells show heterogeneous up-regulation of immune-related and lineage-defining genes during activation and differentiation.

+view abstract Cell systems, PMID: 30172840

Poyntz HC, Jones A, Jauregui R, Young W, Gestin A, Mooney A, Lamiable O, Altermann E, Schmidt A, Gasser O, Weyrich L, Jolly CJ, Linterman MA, Le Gros G, Hawkins ED, Forbes-Blom E Immunology

Antibody-mediated immunity is highly protective against disease. The majority of current vaccines confer protection through humoral immunity, but there is high variability in responsiveness across populations. Identifying immune mechanisms that mediate low antibody responsiveness may provide potential strategies to boost vaccine efficacy. Here, we report diverse antibody responsiveness to unadjuvanted as well as adjuvanted immunization in substrains of BALB/c mice, resulting in high and low antibody response phenotypes. Furthermore, these antibody phenotypes were not affected by changes in environmental factors such as the gut microbiota composition. Antigen-specific B cells following immunization had a marked difference in capability to class-switch, resulting in perturbed IgG isotype antibody production. In vitro, a B cell intrinsic defect in the regulation of class-switch recombination was identified in mice with low IgG antibody production. Whole genome sequencing identified polymorphisms associated with the magnitude of antibody produced, and we propose candidate genes that may regulate isotype class-switching capability. This study highlights that mice sourced from different vendors can have significantly altered humoral immune response profiles, and provides a resource to interrogate genetic regulators of antibody responsiveness. Together these results further our understanding of immune heterogeneity and suggest additional research on the genetic influences of adjuvanted vaccine strategies is warranted for enhancing vaccine efficacy. This article is protected by copyright. All rights reserved.

+view abstract Immunology and cell biology, PMID: 30152893 2018

Prescott JA, Cook SJ Signalling

Deregulated NF-κB signalling is implicated in the pathogenesis of numerous human inflammatory disorders and malignancies. Consequently, the NF-κB pathway has attracted attention as an attractive therapeutic target for drug discovery. As the primary, druggable mediator of canonical NF-κB signalling the IKKβ protein kinase has been the historical focus of drug development pipelines. Thousands of compounds with activity against IKKβ have been characterised, with many demonstrating promising efficacy in pre-clinical models of cancer and inflammatory disease. However, severe on-target toxicities and other safety concerns associated with systemic IKKβ inhibition have thus far prevented the clinical approval of any IKKβ inhibitors. This review will discuss the potential reasons for the lack of clinical success of IKKβ inhibitors to date, the challenges associated with their therapeutic use, realistic opportunities for their future utilisation, and the alternative strategies to inhibit NF-κB signalling that may overcome some of the limitations associated with IKKβ inhibition.

+view abstract Cells, PMID: 30142927 2018

Van Nieuwenhove E, Humblet-Baron S, Van Eyck L, De Somer L, Dooley J, Tousseyn T, Hershfield M, Liston A, Wouters C Immunology

Multicentric Castleman disease (MCD) is a rare entity that, unlike unicentric Castleman disease, involves generalized polyclonal lymphoproliferation, systemic inflammation, and multiple-organ system failure resulting from proinflammatory hypercytokinemia, including, in particular, interleukin-6. A subset of MCD is caused by human herpesvirus-8 (HHV-8), although the etiology for HHV-8-negative, idiopathic MCD (iMCD) cases is unknown at present. Recently, a consensus was reached on the diagnostic criteria for iMCD to aid in diagnosis, recognize mimics, and initiate prompt treatment. Pediatric iMCD remains particularly rare, and differentiation from MCD mimics in children presenting with systemic inflammation and lymphoproliferation is a challenge. We report on a young boy who presented with a HHV-8-negative, iMCD-like phenotype and was found to suffer from the monogenic disorder deficiency of adenosine deaminase 2 (DADA2), which is caused by loss-of-function mutations in DADA2 prototypic features include early-onset ischemic and hemorrhagic strokes, livedoid rash, systemic inflammation, and polyarteritis nodosa vasculopathy, but marked clinical heterogeneity has been observed. Our patient's presentation remains unique, with predominant systemic inflammation, lymphoproliferation, and polyclonal hypergammaglobulinemia but without apparent immunodeficiency. On the basis of the iMCD-like phenotype with elevated interleukin-6 expression, treatment with tocilizumab was initiated, resulting in immediate normalization of clinical and biochemical parameters. In conclusion, iMCD and DADA2 should be considered in the differential diagnosis of children presenting with systemic inflammation and lymphoproliferation. We describe the first case of DADA2 that mimics the clinicopathologic features of iMCD, and our report extends the clinical spectrum of DADA2 to include predominant immune activation and lymphoproliferation.

+view abstract Pediatrics, PMID: 30139808 2018

Lugli E, Brummelman J, Pilipow K, Roychoudhuri R Immunology

Interferon regulatory factor 4 (IRF4) regulates the clonal expansion and metabolic activity of activated T cells, but the precise context and mechanisms of its function in these processes are unclear. In this issue of the European Journal of Immunology, Miyakoda et al. [Eur. J. Immunol. 2018. 48: 1319-1328] show that IRF4 is required for activation and expansion of naïve and memory CD8 T cells driven by T-cell receptor (TCR) signaling, but dispensable for memory CD8 T-cell maintenance and homeostatic proliferation driven by homeostatic cytokines. The authors show that the function of IRF4 in CD8 T-cell expansion is partially dependent upon activation of the PI3K/AKT pathway through direct or indirect attenuation of PTEN expression. These data shed light upon the differential intracellular pathways required for naïve and memory T cells to respond to self-antigens and/or homeostatic cytokines, and highlight the potential translational relevance of these findings in the context of immune reconstitution such as following allogeneic stem cell transplantation.

+view abstract European journal of immunology, PMID: 30133745 2018

Burla B, Arita M, Arita M, Bendt AK, Cazenave-Gassiot A, Dennis EA, Ekroos K, Han X, Ikeda K, Liebisch G, Lin MK, Loh TP, Meikle PJ, Orešič M, Quehenberger O, Shevchenko A, Torta F, Wakelam MJO, Wheelock CE, Wenk MR Signalling,Lipidomics

Human blood is a self-regenerating, lipid-rich biologic fluid that is routinely collected in hospital settings. The inventory of lipid molecules found in blood plasma (plasma lipidome) offers insights into individual metabolism and physiology in health and disease. Disturbances in lipid metabolism also occur in conditions that are not directly linked to lipid metabolism; therefore, plasma lipidomics based on mass spectrometry (MS) is an emerging tool in an array of clinical diagnostics and disease management. However, challenges exist in the translation of such lipidomic data to clinical applications. These relate to the reproducibility, accuracy, and precision of lipid quantitation, study design, sample handling, and data sharing. This position paper emerged from a workshop that initiated a community-led process to elaborate and define a set of generally accepted guidelines for quantitative MS-based lipidomics of blood plasma or serum, with harmonization of data acquired on different instrumentation platforms in independent laboratories across laboratories as an ultimate goal. We hope that other fields may benefit from and follow such a precedent.

+view abstract Journal of lipid research, PMID: 30115755 2018

Hancock AS, Stairiker CJ, Boesteanu AC, Monzón-Casanova E, Lukasiak S, Mueller YM, Stubbs AP, Garcia-Sastre A, Turner M, Katsikis PD Immunology

Influenza virus outbreaks remain a serious threat to public health. Greater understanding of how cells targeted by the virus respond to the infection can provide insight into the pathogenesis of disease. Here we examined the transcriptional profile of infected and uninfected type 2 alveolar epithelial cells (AEC) in the lungs of influenza virus infected mice. We show for the first time the unique gene expression profiles induced by the infection of AEC as well as the transcriptional response of uninfected bystander cells. This work allows us to distinguish the direct and indirect effects of infection at the cellular level. Transcriptome analysis revealed that although directly infected and bystander AEC from infected animals shared many transcriptome changes when compared to AEC from uninfected animals, directly infected cells compared to bystander uninfected AEC produce more interferon and express lower Wnt signaling associated transcripts, while concurrently expressing more transcripts associated with cell death pathways. The Wnt signaling pathway was downregulated in both infected AEC and infected human lung epithelial A549 cells. Wnt signaling did not affect type I and III interferon production by infected A549 cells. Our results reveal unique transcriptional changes that occur within infected AEC and show that influenza virus downregulates Wnt signaling. In light of recent findings that Wnt signaling is essential for lung epithelial stem cells, our findings reveal a mechanism by which influenza virus may affect host lung repair. Influenza virus infection remains a major public health problem. Utilizing a recombinant green fluorescent protein expressing influenza virus we compared the in vivo transcriptomes of directly infected and uninfected bystander cells from infected mouse lungs and discovered many pathways uniquely regulated in each population. The Wnt signaling pathway was downregulated in directly infected cells and was shown to affect virus but not interferon production. Our study is the first to discern the in vivo transcriptome changes induced by direct viral infection as compared to mere exposure to the lung inflammatory milieu and highlight the downregulation of Wnt signaling. This downregulation has important implications for understanding influenza virus pathogenesis as Wnt signaling is critical for lung epithelial stem cells and lung epithelial cell differentiation. Our findings reveal a mechanism by which influenza virus may affect host lung repair and suggest interventions that prevent damage or accelerate recovery of the lung.

+view abstract Journal of virology, PMID: 30111569 2018

Fahy E, Alvarez-Jarreta J, Brasher CJ, Nguyen A, Hawksworth JI, Rodrigues P, Meckelmann S, Allen SM, O'Donnell VB

We present LipidFinder online, hosted on the LIPID MAPS website, as a liquid chromatography/mass spectrometry (LC/MS) workflow comprising peak filtering, MS searching and statistical analysis components, highly customized for interrogating lipidomic data. The online interface of LipidFinder includes several innovations such as comprehensive parameter tuning, a MS search engine employing in-house customized, curated and computationally generated databases and multiple reporting/display options. A set of integrated statistical analysis tools which enable users to identify those features which are significantly-altered under the selected experimental conditions, thereby greatly reducing the complexity of the peaklist prior to MS searching is included. LipidFinder is presented as a highly flexible, extensible user-friendly online workflow which leverages the lipidomics knowledge base and resources of the LIPID MAPS website, long recognized as a leading global lipidomics portal.

+view abstract Bioinformatics, PMID: 30101336 2019