Life Sciences Research for Lifelong Health

Wolf Reik

Research Summary

Epigenetic modifications such as DNA methylation and histone marks are often relatively stable in differentiated and in adult tissues in the body, where they help to confer a stable cell identity on tissues. The process of epigenetic reprogramming, by which many of these marks are removed from DNA, is important for the function of embryonic stem cells and in reprogramming stem cells from adult tissue cells. When this erasure goes wrong there may be adverse consequences for healthy development and ageing, which can potentially extend over more than one generation.

​Our insights into the mechanisms of epigenetic reprogramming may help with developing better strategies for stem cell therapies and to combat age related decline. We have also recently initiated work on epigenetic regulation of social behaviours in insects, where we are interested in how patterning and regulation of DNA methylation in the brain is linked with the evolution of sociality.

Latest Publications

Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development.
Boroviak T, Stirparo GG, Dietmann S, Hernando-Herraez I, Mohammed H, Reik W, Smith A, Sasaki E, Nichols J, Bertone P

The mouse embryo is the canonical model for mammalian preimplantation development. Recent advances in single cell profiling allow detailed analysis of embryogenesis in other eutherian species, including human, to distinguish conserved from divergent regulatory programs and signalling pathways in the rodent paradigm. Here, we identify and compare transcriptional features of human, marmoset and mouse embryos by single cell RNA-seq. Zygotic genome activation correlates with the presence of polycomb repressive complexes in all three species, while ribosome biogenesis emerges as a predominant attribute in primate embryos, supporting prolonged translation of maternally deposited RNAs. We find that transposable element expression signatures are species, stage and lineage specific. The pluripotency network in the primate epiblast lacks certain regulators that are operative in mouse, but encompasses WNT components and genes associated with trophoblast specification. Sequential activation of GATA6, SOX17 and GATA4 markers of primitive endoderm identity is conserved in primates. Unexpectedly, OTX2 is also associated with primitive endoderm specification in human and non-human primate blastocysts. Our cross-species analysis demarcates both conserved and primate-specific features of preimplantation development, and underscores the molecular adaptability of early mammalian embryogenesis.

+ View Abstract

Development (Cambridge, England), 145, 1477-9129, , 2018

PMID: 30413530

5-Formylcytosine organizes nucleosomes and forms Schiff base interactions with histones in mouse embryonic stem cells.
Raiber EA, Portella G, Martínez Cuesta S, Hardisty R, Murat P, Li Z, Iurlaro M, Dean W, Spindel J, Beraldi D, Liu Z, Dawson MA, Reik W, Balasubramanian S

Nucleosomes are the basic unit of chromatin that help the packaging of genetic material while controlling access to the genetic information. The underlying DNA sequence, together with transcription-associated proteins and chromatin remodelling complexes, are important factors that influence the organization of nucleosomes. Here, we show that the naturally occurring DNA modification, 5-formylcytosine (5fC) is linked to tissue-specific nucleosome organization. Our study reveals that 5fC is associated with increased nucleosome occupancy in vitro and in vivo. We demonstrate that 5fC-associated nucleosomes at enhancers in the mammalian hindbrain and heart are linked to elevated gene expression. Our study also reveals the formation of a reversible-covalent Schiff base linkage between lysines of histone proteins and 5fC within nucleosomes in a cellular environment. We define their specific genomic loci in mouse embryonic stem cells and look into the biological consequences of these DNA-histone Schiff base sites. Collectively, our findings show that 5fC is a determinant of nucleosome organization and plays a role in establishing distinct regulatory regions that control transcription.

+ View Abstract

Nature chemistry, , 1755-4349, , 2018

PMID: 30349137

Transgenerational transmission of hedonic behaviors and metabolic phenotypes induced by maternal overnutrition.
Sarker G, Berrens R, von Arx J, Pelczar P, Reik W, Wolfrum C, Peleg-Raibstein D

Maternal overnutrition has been associated with increased susceptibility to develop obesity and neurological disorders later in life. Most epidemiological as well as experimental studies have focused on the metabolic consequences across generations following an early developmental nutritional insult. Recently, it has been shown that maternal high-fat diet (HFD) affects third-generation female body mass via the paternal lineage. We showed here that the offspring born to HFD ancestors displayed addictive-like behaviors as well as obesity and insulin resistance up to the third generation in the absence of any further exposure to HFD. These findings, implicate that the male germ line is a major player in transferring phenotypic traits. These behavioral and physiological alterations were paralleled by reduced striatal dopamine levels and increased dopamine 2 receptor density. Interestingly, by the third generation a clear gender segregation emerged, where females showed addictive-like behaviors while male HFD offspring showed an obesogenic phenotype. However, methylome profiling of F1 and F2 sperm revealed no significant difference between the offspring groups, suggesting that the sperm methylome might not be the major carrier for the transmission of the phenotypes observed in our mouse model. Together, our study for the first time demonstrates that maternal HFD insult causes sustained alterations of the mesolimbic dopaminergic system suggestive of a predisposition to develop obesity and addictive-like behaviors across multiple generations.

+ View Abstract

Translational psychiatry, 8, 2158-3188, 195, 2018

PMID: 30315171

Group Members

Latest Publications

Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development.

Boroviak T, Stirparo GG, Dietmann S

Development (Cambridge, England)
145 1477-9129: (2018)

PMID: 30413530

5-Formylcytosine organizes nucleosomes and forms Schiff base interactions with histones in mouse embryonic stem cells.

Raiber EA, Portella G, Martínez Cuesta S

Nature chemistry
1755-4349: (2018)

PMID: 30349137

Transgenerational transmission of hedonic behaviors and metabolic phenotypes induced by maternal overnutrition.

Sarker G, Berrens R, von Arx J

Translational psychiatry
8 2158-3188:195 (2018)

PMID: 30315171

Genome-Scale Oscillations in DNA Methylation during Exit from Pluripotency.

Rulands S, Lee HJ, Clark SJ

Cell systems
2405-4712: (2018)

PMID: 30031774

Defective germline reprogramming rewires the spermatogonial transcriptome.

Vasiliauskaitė L, Berrens RV, Ivanova I

Nature structural & molecular biology
25 1545-9985:394-404 (2018)

PMID: 29728652

Dynamics of the epigenetic landscape during the maternal-to-zygotic transition.

Eckersley-Maslin MA, Alda-Catalinas C, Reik W

Nature reviews. Molecular cell biology
1471-0080: (2018)

PMID: 29686419

Correction: Epigenetic resetting of human pluripotency (doi:10.1242/dev.146811).

Guo G, von Meyenn F, Rostovskaya M

Development (Cambridge, England)
145 1477-9129: (2018)

PMID: 29669738

scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells.

Clark SJ, Argelaguet R, Kapourani CA

Nature communications
9 2041-1723:781 (2018)

PMID: 29472610

Science Forum: The Human Cell Atlas.

Regev A, Teichmann SA, Lander ES

eLife
6 2050-084X: (2017)

PMID: 29206104