Martin Howard

Martin is an Honorary Group Leader, currently based at the John Innes Centre. He is working with Group Leaders in the Epigenetics Programme. The Howard group combines simple, predictive mathematical modelling with long-lasting experimental collaborations, to dissect biological mechanisms too complex to unravel by experiments alone. In many cases we are able rationalise complex biological dynamics into simple underlying mechanisms, with few components and interactions.

Our approach is highly interdisciplinary and relies heavily on the techniques of statistical physics and applied mathematics, as well as on close collaboration with experimental groups. This truly interdisciplinary approach allows us to get to the heart of biological mechanisms more speedily.

At present the main focus of the group is epigenetic dynamics, probing how epigenetic memory states are set up and then stably maintained. In this context, we work with both histone modification memory systems, as well as on DNA methylation, collaborating with experimentalists in systems ranging from plants to mammalian stem cells. A particular focus has been the Polycomb epigenetic system, where we have proposed an all-or-nothing epigenetic switching mechanism, with epigenetic gene silencing directly antagonised by transcription. Overall, as epigenetic systems are central to ageing and health, understanding how they work at a fundamental level is of vital importance.

Image

Latest Publications

A cis-acting mechanism mediates transcriptional memory at Polycomb target genes in mammals.
Holoch D, Wassef M, Lövkvist C, Zielinski D, Aflaki S, Lombard B, Héry T, Loew D, Howard M, Margueron R

Epigenetic inheritance of gene expression states enables a single genome to maintain distinct cellular identities. How histone modifications contribute to this process remains unclear. Using global chromatin perturbations and local, time-controlled modulation of transcription, we establish the existence of epigenetic memory of transcriptional activation for genes that can be silenced by the Polycomb group. This property emerges during cell differentiation and allows genes to be stably switched after a transient transcriptional stimulus. This transcriptional memory state at Polycomb targets operates in cis; however, rather than relying solely on read-and-write propagation of histone modifications, the memory is also linked to the strength of activating inputs opposing Polycomb proteins, and therefore varies with the cellular context. Our data and computational simulations suggest a model whereby transcriptional memory arises from double-negative feedback between Polycomb-mediated silencing and active transcription. Transcriptional memory at Polycomb targets thus depends not only on histone modifications but also on the gene-regulatory network and underlying identity of a cell.

+ View Abstract

Nature genetics, , , 15 Nov 2021

PMID: 34782763

Hybrid protein assembly-histone modification mechanism for PRC2-based epigenetic switching and memory.
Lövkvist C, Mikulski P, Reeck S, Hartley M, Dean C, Howard M

The histone modification H3K27me3 plays a central role in Polycomb-mediated epigenetic silencing. H3K27me3 recruits and allosterically activates Polycomb Repressive Complex 2 (PRC2), which adds this modification to nearby histones, providing a read/write mechanism for inheritance through DNA replication. However, for some PRC2 targets, a purely histone-based system for epigenetic inheritance may be insufficient. We address this issue at the Polycomb target in , as a narrow nucleation region of only ~three nucleosomes within mediates epigenetic state switching and subsequent memory over many cell cycles. To explain the memory's unexpected persistence, we introduce a mathematical model incorporating extra protein memory storage elements with positive feedback that persist at the locus through DNA replication, in addition to histone modifications. Our hybrid model explains many features of epigenetic switching/memory at and encapsulates generic mechanisms that may be widely applicable.

+ View Abstract

eLife, 10, 1, 02 09 2021

PMID: 34473050

The 3' processing of antisense RNAs physically links to chromatin-based transcriptional control.
Fang X, Wu Z, Raitskin O, Webb K, Voigt P, Lu T, Howard M, Dean C

Noncoding RNA plays essential roles in transcriptional control and chromatin silencing. At antisense transcription quantitatively influences transcriptional output, but the mechanism by which this occurs is still unclear. Proximal polyadenylation of the antisense transcripts by FCA, an RNA-binding protein that physically interacts with RNA 3' processing factors, reduces transcription. This process genetically requires FLD, a homolog of the H3K4 demethylase LSD1. However, the mechanism linking RNA processing to FLD function had not been established. Here, we show that FLD tightly associates with LUMINIDEPENDENS (LD) and SET DOMAIN GROUP 26 (SDG26) in vivo, and, together, they prevent accumulation of monomethylated H3K4 (H3K4me1) over the gene body. SDG26 interacts with the RNA 3' processing factor FY (WDR33), thus linking activities for proximal polyadenylation of the antisense transcripts to FLD/LD/SDG26-associated H3K4 demethylation. We propose this demethylation antagonizes an active transcription module, thus reducing H3K36me3 accumulation and increasing H3K27me3. Consistent with this view, we show that Polycomb Repressive Complex 2 (PRC2) silencing is genetically required by FCA to repress Overall, our work provides insights into RNA-mediated chromatin silencing.

+ View Abstract

Proceedings of the National Academy of Sciences of the United States of America, 117, 26, 30 06 2020

PMID: 32541063

Open Access