Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.
Obesity is associated with increased ovarian inflammation and the establishment of leptin resistance. We presently investigated the role of impaired leptin signalling on transcriptional regulation in granulosa cells (GCs) collected from genetically obese mice. Furthermore, we characterised the association between ovarian leptin signalling, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and macrophage infiltration in obese mice. After phenotype characterisation, ovaries were collected from distinct group of animals for protein and mRNA expression analysis: (i) mice subjected to a diet-induced obesity (DIO) protocol, where one group was fed a high-fat diet (HFD) and another a standard chow diet (CD) for durations of 4 or 16 weeks; (ii) mice genetically deficient in the long isoform of the leptin receptor (ObRb; db/db); (iii) mice genetically deficient in leptin (ob/ob); and (iv) mice rendered pharmacologically hyperleptinemic (LEPT). Next, GCs from antral follicles isolated from db/db and ob/ob mice were subjected to transcriptome analysis. Transcriptional analysis revealed opposing profiles in genes associated with steroidogenesis and prostaglandin action between the genetic models, despite the similarities in body weight. Furthermore, we observed no changes in the mRNA and protein levels of NLRP3 inflammasome components in the ovaries of db/db mice or in markers of M1 and M2 macrophage infiltration. This contrasted with the downregulation of NLRP3 inflammasome components and M1 markers in ob/ob and 16-wk HFD-fed mice. We concluded that leptin signalling regulates NLRP3 inflammasome activation and the expression of M1 markers in the ovaries of obese mice in an ObRb-dependent and ObRb-independent manner. Furthermore, we found no changes in the expression of leptin signalling and NLRP3 inflammasome genes in GCs from db/db and ob/ob mice, which was associated with no effects on macrophage infiltration genes, despite the dysregulation of genes associated with steroidogenesis in homozygous obese db/db. Our results suggest that: (i) the crosstalk between leptin signalling, NLRP3 inflammasome and macrophage infiltration takes place in ovarian components other than the GC compartment; and (ii) transcriptional changes in GCs from homozygous obese ob/ob mice suggest structural rearrangement and organisation, whereas in db/db mice the impairment in steroidogenesis and secretory activity.
Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.
During pre-implantation stages of mammalian development, maternally stored material promotes both the erasure of the sperm and oocyte epigenetic profiles and is responsible for concomitant genome activation. Here, we have utilized single-cell methylome and transcriptome sequencing (scM&T-seq) to quantify both mRNA expression and DNA methylation in oocytes and a developmental series of human embryos at single-cell resolution. We fully characterize embryonic genome activation and maternal transcript degradation and map key epigenetic reprogramming events in developmentally high-quality embryos. By comparing these signatures with early embryos that have undergone spontaneous cleavage-stage arrest, as determined by time-lapse imaging, we identify embryos that fail to appropriately activate their genomes or undergo epigenetic reprogramming. Our results indicate that a failure to successfully accomplish these essential milestones impedes the developmental potential of pre-implantation embryos and is likely to have important implications, similar to aneuploidy, for the success of assisted reproductive cycles.
EHMT1 (also known as GLP) is a multifunctional protein, best known for its role as an H3K9me1 and H3K9me2 methyltransferase through its reportedly obligatory dimerization with EHMT2 (also known as G9A). Here, we investigated the role of EHMT1 in the oocyte in comparison to EHMT2 using oocyte-specific conditional knockout mouse models ( cKO, cKO, cDKO), with ablation from the early phase of oocyte growth. Loss of EHMT1 in cKO and cDKO oocytes recapitulated meiotic defects observed in the cKO; however, there was a significant impairment in oocyte maturation and developmental competence in cKO and cDKO oocytes beyond that observed in the cKO. Consequently, loss of EHMT1 in oogenesis results, upon fertilization, in mid-gestation embryonic lethality. To identify H3K9 methylation and other meaningful biological changes in each mutant to explore the molecular functions of EHMT1 and EHMT2, we performed immunofluorescence imaging, multi-omics sequencing, and mass spectrometry (MS)-based proteome analyses in cKO oocytes. Although H3K9me1 was depleted only upon loss of EHMT1, H3K9me2 was decreased, and H3K9me2-enriched domains were eliminated equally upon loss of EHMT1 or EHMT2. Furthermore, there were more significant changes in the transcriptome, DNA methylome, and proteome in cDKO than cKO oocytes, with transcriptional derepression leading to increased protein abundance and local changes in genic DNA methylation in cDKO oocytes. Together, our findings suggest that EHMT1 contributes to local transcriptional repression in the oocyte, partially independent of EHMT2, and is critical for oogenesis and oocyte developmental competence.
In their attempt to fulfill the wish of having children, women who suffer from fertility issues often undergo assisted reproductive technologies such as ovarian stimulation, which has been associated with adverse health outcomes and imprinting disorders in children. However, given the crucial role of exogenous hormone stimulation in improving human infertility treatments, a more comprehensive analysis of the potential impacts on DNA methylation in embryos following ovarian stimulation is needed. Here, we provide genome-wide DNA methylation profiles of blastocysts generated after superovulation of prepubertal or adult mice, compared with blastocysts derived from non-stimulated adult mice. Additionally, we assessed the impact of the in vitro growth and maturation of oocytes on methylation in blastocysts.
Controlled ovarian stimulation is a necessary step in some assisted reproductive procedures allowing a higher collection of female gametes. However, consequences of this stimulation for the gamete or the offspring have been shown in several mammals. Most studies used comparisons between oocytes from different donors, which may contribute to different responses. In this work, we use the bovine model in which each animal serves as its own control. DNA methylation profiles were obtained by single-cell whole-genome bisulfite sequencing of oocytes from pre-ovulatory unstimulated follicles compared to oocytes from stimulated follicles. Results show that the global percentage of methylation was similar between groups, but the percentage of methylation was lower for non-stimulated oocytes in the imprinted genes , , and and higher in when compared to stimulated oocytes. Differences were also found in CGI of imprinted genes: higher methylation was found among non-stimulated oocytes in (), , , , and . In another region around , the methylation percentage was lower for non-stimulated oocytes when compared to stimulated oocytes. Data drawn from this study might help to understand the molecular reasons for the appearance of certain syndromes in assisted reproductive technologies-derived offspring.
Genomic imprinting is an epigenetic process through which genes are expressed in a parent-of-origin specific manner resulting in mono-allelic or strongly biased expression of one allele. For some genes, imprinted expression may be tissue-specific and reliant on CTCF-influenced enhancer-promoter interactions. The imprinting cluster is associated with neurodevelopmental disorders and comprises canonical imprinted genes, which are conserved between mouse and human, as well as brain-specific imprinted genes in mouse. The latter consist of , and , which have a maternal allelic expression bias of ∼75% in brain. Findings of such allelic expression biases on the tissue level raise the question of how they are reflected in individual cells and whether there is variability and mosaicism in allelic expression between individual cells of the tissue. Here we show that and are not imprinted in hippocampus-derived neural stem cells (neurospheres), while retains its strong bias of paternal allele expression. Upon analysis of single neural stem cells and differentiated neurons, we find not uniform, but variable states of allelic expression, especially for and . These ranged from mono-allelic paternal to equal bi-allelic to mono-allelic maternal, including biased bi-allelic transcriptional states. Even expression deviated from its expected paternal allele bias in a small number of cells. Although the cell populations consisted of a mosaic of cells with different allelic expression states, as a whole they reflected bulk tissue data. Furthermore, in an attempt to identify potential brain-specific regulatory elements across the locus, we demonstrate tissue-specific and general silencer activities, which might contribute to the regulation of its imprinted expression bias.
Transmission of epigenetic information between generations occurs in nematodes, flies and plants, mediated by specialised small RNA pathways, modified histones and DNA methylation. Similar processes in mammals can also affect phenotype through intergenerational or trans-generational mechanisms. Here we generate a luciferase knock-in reporter mouse for the imprinted Dlk1 locus to visualise and track epigenetic fidelity across generations. Exposure to high-fat diet in pregnancy provokes sustained re-expression of the normally silent maternal Dlk1 in offspring (loss of imprinting) and increased DNA methylation at the somatic differentially methylated region (sDMR). In the next generation heterogeneous Dlk1 mis-expression is seen exclusively among animals born to F1-exposed females. Oocytes from these females show altered gene and microRNA expression without changes in DNA methylation, and correct imprinting is restored in subsequent generations. Our results illustrate how diet impacts the foetal epigenome, disturbing canonical and non-canonical imprinting mechanisms to modulate the properties of successive generations of offspring.
Common variable immunodeficiency (CVID), the most prevalent symptomatic primary immunodeficiency, displays impaired terminal B-cell differentiation and defective antibody responses. Incomplete genetic penetrance and ample phenotypic expressivity in CVID suggest the participation of additional pathogenic mechanisms. Monozygotic (MZ) twins discordant for CVID are uniquely valuable for studying the contribution of epigenetics to the disease. Here, we generate a single-cell epigenomics and transcriptomics census of naïve-to-memory B cell differentiation in a CVID-discordant MZ twin pair. Our analysis identifies DNA methylation, chromatin accessibility and transcriptional defects in memory B-cells mirroring defective cell-cell communication upon activation. These findings are validated in a cohort of CVID patients and healthy donors. Our findings provide a comprehensive multi-omics map of alterations in naïve-to-memory B-cell transition in CVID and indicate links between the epigenome and immune cell cross-talk. Our resource, publicly available at the Human Cell Atlas, gives insight into future diagnosis and treatments of CVID patients.
Histone 3 lysine 4 trimethylation (H3K4me3) is an epigenetic mark found at gene promoters and CpG islands. H3K4me3 is essential for mammalian development, yet mechanisms underlying its genomic targeting are poorly understood. H3K4me3 methyltransferases SETD1B and MLL2 (KMT2B) are essential for oogenesis. We investigated changes in H3K4me3 in Setd1b conditional knockout (cKO) oocytes using ultra-low input ChIP-seq, with comparisons to DNA methylation and gene expression analyses. H3K4me3 was redistributed in Setd1b cKO oocytes showing losses at active gene promoters associated with downregulated gene expression. Remarkably, many regions also gained H3K4me3, in particular those that were DNA hypomethylated, transcriptionally inactive and CpG-rich, which are hallmarks of MLL2 targets. Consequently, loss of SETD1B disrupts the balance between MLL2 and de novo DNA methyltransferases in determining the epigenetic landscape during oogenesis. Our work reveals two distinct, complementary mechanisms of genomic targeting of H3K4me3 in oogenesis, with SETD1B linked to gene expression and MLL2 to CpG content.
Stability of the epigenetic landscape underpins maintenance of the cell-type-specific transcriptional profile. As one of the main repressive epigenetic systems, DNA methylation has been shown to be important for long-term gene silencing; its loss leads to ectopic and aberrant transcription in differentiated cells and cancer. The developing mouse germ line endures global changes in DNA methylation in the absence of widespread transcriptional activation. Here, using an ultra-low-input native chromatin immunoprecipitation approach, we show that following DNA demethylation the gonadal primordial germ cells undergo remodelling of repressive histone modifications, resulting in a sex-specific signature in mice. We further demonstrate that Polycomb has a central role in transcriptional control in the newly hypomethylated germline genome as the genetic loss of Ezh2 leads to aberrant transcriptional activation, retrotransposon derepression and dramatic loss of developing female germ cells. This sex-specific effect of Ezh2 deletion is explained by the distinct landscape of repressive modifications observed in male and female germ cells. Overall, our study provides insight into the dynamic interplay between repressive chromatin modifications in the context of a developmental reprogramming system.
Obesity leads to ovarian dysfunction and the establishment of local leptin resistance. The aim of our study was to characterize the levels of NOD-like receptor protein 3 (NLRP3) inflammasome activation in ovaries and liver of mice during obesity progression. Furthermore, we tested the putative role of leptin on NLRP3 regulation in those organs. C57BL/6J female mice were treated with equine chorionic gonadotropin (eCG) or human chorionic gonadotropin (hCG) for estrous cycle synchronization and ovary collection. In diet-induced obesity (DIO) protocol, mice were fed chow diet (CD) or high-fat diet (HFD) for 4 or 16 weeks, whereas in the hyperleptinemic model (LEPT), mice were injected with leptin for 16 days (16 L) or saline (16 C). Finally, the genetic obese leptin-deficient (+/? and -/-) mice were fed CD for 4 week. Either ovaries and liver were collected, as well as cumulus cells (CCs) after superovulation from DIO and LEPT. The estrus cycle synchronization protocol showed increased protein levels of NLRP3 and interleukin (IL)-18 in diestrus, with this stage used for further sample collections. In DIO, protein expression of NLRP3 inflammasome components was increased in 4 week HFD, but decreased in 16 week HFD. Moreover, NLRP3 and IL-1β were upregulated in 16 L and downregulated in Transcriptome analysis of CC showed common genes between LEPT and 4 week HFD modulating NLRP3 inflammasome. Liver analysis showed NLRP3 protein upregulation after 16 week HFD in DIO, but also its downregulation in . We showed the link between leptin signaling and NLRP3 inflammasome activation in the ovary throughout obesity progression in mice, elucidating the molecular mechanisms underpinning ovarian failure in maternal obesity.
Genomic imprinting is an epigenetic marking process that results in the monoallelic expression of a subset of genes. Many of these 'imprinted' genes in mice and humans are involved in embryonic and extraembryonic growth and development, and some have life-long impacts on metabolism. During mammalian development, the genome undergoes waves of (re)programming of DNA methylation and other epigenetic marks. Disturbances in these events can cause imprinting disorders and compromise development. Multi-locus imprinting disturbance (MLID) is a condition by which imprinting defects touch more than one locus. Although most cases with MLID present with clinical features characteristic of one imprinting disorder. Imprinting defects also occur in 'molar' pregnancies-which are characterized by highly compromised embryonic development-and in other forms of reproductive compromise presenting clinically as infertility or early pregnancy loss. Pathogenic variants in some of the genes encoding proteins of the subcortical maternal complex (SCMC), a multi-protein complex in the mammalian oocyte, are responsible for a rare subgroup of moles, biparental complete hydatidiform mole (BiCHM), and other adverse reproductive outcomes which have been associated with altered imprinting status of the oocyte, embryo and/or placenta. The finding that defects in a cytoplasmic protein complex could have severe impacts on genomic methylation at critical times in gamete or early embryo development has wider implications beyond these relatively rare disorders. It signifies a potential for adverse maternal physiology, nutrition, or assisted reproduction to cause epigenetic defects at imprinted or other genes. Here, we review key milestones in DNA methylation patterning in the female germline and the embryo focusing on humans. We provide an overview of recent findings regarding DNA methylation deficits causing BiCHM, MLID, and early embryonic arrest. We also summarize identified SCMC mutations with regard to early embryonic arrest, BiCHM, and MLID.
Assisted reproductive technologies impact transcriptome and epigenome of embryos and can result in long-term phenotypic consequences. Whole-genome DNA methylation profiles from individual bovine blastocysts in vivo- and in vitro-derived (using three sources of protein: reproductive fluids, blood serum and bovine serum albumin) were generated. The impact of in vitro culture on DNA methylation was analyzed, and sex-specific methylation differences at blastocyst stage were uncovered. In vivo embryos showed the highest levels of methylation (29.5%), close to those produced in vitro with serum, whilst embryos produced in vitro with reproductive fluids or albumin showed less global methylation (25-25.4%). During repetitive element analysis, the serum group was the most affected. DNA methylation differences between in vivo and in vitro groups were more frequent in the first intron than in CpGi in promoters. Moreover, hierarchical cluster analysis showed that sex produced a stronger bias in the results than embryo origin. For each group, distance between male and female embryos varied, with in vivo blastocyst showing a lesser distance. Between the sexually dimorphic methylated tiles, which were biased to X-chromosome, critical factors for reproduction, developmental process, cell proliferation and DNA methylation machinery were included. These results support the idea that blastocysts show sexually-dimorphic DNA methylation patterns, and the known picture about the blastocyst methylome should be reconsidered.
Reproductive biology methods rely on in vitro follicle cultures from mature follicles obtained by hormonal stimulation for generating metaphase II oocytes to be fertilised and developed into a healthy embryo. Such techniques are used routinely in both rodent and human species. DNA methylation is a dynamic process that plays a role in epigenetic regulation of gametogenesis and development. In mammalian oocytes, DNA methylation establishment regulates gene expression in the embryos. This regulation is particularly important for a class of genes, imprinted genes, whose expression patterns are crucial for the next generation. The aim of this work was to establish an in vitro culture system for immature mouse oocytes that will allow manipulation of specific factors for a deeper analysis of regulatory mechanisms for establishing transcription regulation-associated methylation patterns.
Genomic imprinting is the monoallelic expression of a gene based on parent of origin and is a consequence of differential epigenetic marking between the male and female germlines. Canonically, genomic imprinting is mediated by allelic DNA methylation. However, recently it has been shown that maternal H3K27me3 can result in DNA methylation-independent imprinting, termed "noncanonical imprinting." In this review, we compare and contrast what is currently known about the underlying mechanisms, the role of endogenous retroviral elements, and the conservation of canonical and noncanonical genomic imprinting.
The complex nature of folliculogenesis regulation accounts for its susceptibility to maternal physiological fitness. In obese mothers, progressive expansion of adipose tissue culminates with severe hyperestrogenism and hyperleptinemia with detrimental effects for ovarian performance. Indeed, maternal obesity is associated with the establishment of ovarian leptin resistance. This review summarizes current knowledge on potential effects of impaired leptin signaling throughout folliculogenesis and oocyte developmental competence in mice and women.
Prior work in mice has shown that some retrotransposed elements remain substantially methylated during DNA methylation reprogramming of germ cells. In the pig, however, information about this process is scarce. The present study was designed to examine the methylation profiles of porcine germ cells during the time course of epigenetic reprogramming.
DNA methylation has emerged as an important epigenetic regulator of brain processes, including circadian rhythms. However, how DNA methylation intervenes between environmental signals, such as light entrainment, and the transcriptional and translational molecular mechanisms of the cellular clock is currently unknown. Here, we studied the after-hours mice, which have a point mutation in the Fbxl3 gene and a lengthened circadian period.
To investigate whether epigenetic profiles of mural granulosa cells (MGC) and leukocytes from women with diminished ovarian reserve (DOR) differ from those of women with normal or high ovarian reserve.
Advancing maternal age causes a progressive reduction in fertility. The decline in developmental competence of the oocyte with age is likely to be a consequence of multiple contributory factors. Loss of epigenetic quality of the oocyte could impair early developmental events or programme adverse outcomes in offspring that manifest only later in life. Here, we undertake joint profiling of the transcriptome and DNA methylome of individual oocytes from reproductively young and old mice undergoing natural ovulation. We find reduced complexity as well as increased variance in the transcriptome of oocytes from aged females. This transcriptome heterogeneity is reflected in the identification of discrete sub-populations. Oocytes with a transcriptome characteristic of immature chromatin configuration (NSN) clustered into two groups: one with reduced developmental competence, as indicated by lower expression of maternal effect genes, and one with a young-like transcriptome. Oocytes from older females had on average reduced CpG methylation, but the characteristic bimodal methylation landscape of the oocyte was preserved. Germline differentially methylated regions of imprinted genes were appropriately methylated irrespective of age. For the majority of differentially expressed transcripts, the absence of correlated methylation changes suggests a post-transcriptional basis for most age-related effects on the transcriptome. However, we did find differences in gene body methylation at which there were corresponding changes in gene expression, indicating age-related effects on transcription that translate into methylation differences. Interestingly, oocytes varied in expression and methylation of these genes, which could contribute to variable competence of oocytes or penetrance of maternal age-related phenotypes in offspring.
Genomic imprinting is an epigenetic process regulated by germline-derived DNA methylation that is resistant to embryonic reprogramming, resulting in parental origin-specific monoallelic gene expression. A subset of individuals affected by imprinting disorders (IDs) displays multi-locus imprinting disturbances (MLID), which may result from aberrant establishment of imprinted differentially methylated regions (DMRs) in gametes or their maintenance in early embryogenesis. Here we investigated the extent of MLID in a family harbouring a ZFP57 truncating variant and characterize the interactions between human ZFP57 and the KAP1 co-repressor complex. By ectopically targeting ZFP57 to reprogrammed loci in mouse embryos using a dCas9 approach, we confirm that ZFP57 recruitment is sufficient to protect oocyte-derived methylation from reprogramming. Expression profiling in human pre-implantation embryos and oocytes reveals that unlike in mice, ZFP57 is only expressed following embryonic-genome activation, implying that other KRAB-zinc finger proteins (KZNFs) recruit KAP1 prior to blastocyst formation. Furthermore, we uncover ZNF202 and ZNF445 as additional KZNFs likely to recruit KAP1 to imprinted loci during reprogramming in the absence of ZFP57. Together, these data confirm the perplexing link between KZFPs and imprint maintenance and highlight the differences between mouse and humans in this respect.
Colorectal cancer is a heterogeneous disease caused by both genetic and epigenetics factors. Analysing DNA methylation changes occurring during colorectal cancer progression and metastasis formation is crucial for the identification of novel epigenetic markers of patient prognosis. Genome-wide methylation sequencing of paired samples of colon (normal adjacent, primary tumour and lymph node metastasis) showed global hypomethylation and CpG island (CGI) hypermethylation of primary tumours compared to normal. In metastasis we observed high global and non-CGI regions methylation, but lower CGI methylation, compared to primary tumours. Gene ontology analysis showed shared biological processes between hypermethylated CGIs in metastasis and primary tumours. After complementary analysis with The Cancer Genome Atlas (TCGA) cohort, , , , and genes were found associated with poor survival. We mapped the methylation landscape of colon normal tissues, primary tumours and lymph node metastasis, being capable of identified methylation changes throughout the genome. Furthermore, we found five genes with potential for methylation biomarkers of poor prognosis in colorectal cancer patients.
Single-cell bisulfite sequencing (scBS-seq) enables profiling of DNA methylation at single-nucleotide resolution and across all genomic features. It can explore methylation differences between cells in mixed cell populations and profile methylation in very rare cell types, such as mammalian oocytes and cells from early embryos. Here, we outline the scBS-seq protocol in a 96-well plate format applicable to studies of moderate throughput.
TNFα is the main proinflammatory cytokine implicated in the pathogenesis of neurodegenerative disorders, but it also modulates physiological functions in both the developing and adult brain. In this study, we investigated a potential direct role of TNFα in determining phenotypic changes of a recently established cellular model of human basal forebrain cholinergic neuroblasts isolated from the nucleus basalis of Meynert (hfNBMs). Exposing hfNBMs to TNFα reduced the expression of immature markers, such as nestin and β-tubulin III, and inhibited primary cilium formation. On the contrary, TNFα increased the expression of TNFα receptor TNFR2 and the mature neuron marker MAP2, also promoting neurite elongation. Moreover, TNFα affected nerve growth factor receptor expression. We also found that TNFα induced the expression of DNA-methylation enzymes and, accordingly, downregulated genes involved in neuronal development through epigenetic mechanisms, as demonstrated by methylome analysis. In summary, TNFα showed a dual role on hfNBMs phenotypic plasticity, exerting a negative influence on neurogenesis despite a positive effect on differentiation, through mechanisms that remain to be elucidated. Our results help to clarify the complexity of TNFα effects in human neurons and suggest that manipulation of TNFα signaling could provide a potential therapeutic approach against neurodegenerative disorders.
No abstract available
An amendment to this paper has been published and can be accessed via the original article.
Lipopolysaccharide (LPS) endotoxin stimulates pro-inflammatory pathways and is a key player in the pathological mechanisms involved in the development of endometritis. This study aimed to investigate LPS-induced DNA methylation changes in bovine endometrial epithelial cells (bEECs), which may affect endometrial function. Following in vitro culture, bEECs from three cows were either untreated (0) or exposed to 2 and 8 μg/mL LPS for 24 h.
Does women's age affect the DNA methylation (DNAm) profile differently in mural granulosa cells (MGCs) from other somatic cells?
Preimplantation embryos experience profound resetting of epigenetic information inherited from the gametes. Genome-wide analysis at single-base resolution has shown similarities but also species differences between human and mouse preimplantation embryos in DNA methylation patterns and reprogramming. Here, we have extended such analysis to two key livestock species, the pig and the cow. We generated genome-wide DNA methylation and whole-transcriptome datasets from gametes to blastocysts in both species. In oocytes from both species, a distinctive bimodal methylation landscape is present, with hypermethylated domains prevalent over hypomethylated domains, similar to human, while in the mouse the proportions are reversed.An oocyte-like pattern of methylation persists in the cleavage stages, albeit with some reduction in methylation level, persisting to blastocysts in cow, while pig blastocysts have a highly hypomethylated landscape. In the pig, there was evidence of transient de novo methylation at the 8-16 cell stages of domains unmethylated in oocytes, revealing a complex dynamic of methylation reprogramming. The methylation datasets were used to identify germline differentially methylated regions (gDMRs) of known imprinted genes and for the basis of detection of novel imprinted loci. Strikingly in the pig, we detected a consistent reduction in gDMR methylation at the 8-16 cell stages, followed by recovery to the blastocyst stage, suggesting an active period of imprint stabilization in preimplantation embryos. Transcriptome analysis revealed absence of expression in oocytes of both species of ZFP57, a key factor in the mouse for gDMR methylation maintenance, but presence of the alternative imprint regulator ZNF445. In conclusion, our study reveals species differences in DNA methylation reprogramming and suggests that porcine or bovine models may be closer to human in key aspects than in the mouse model.
Obesity is associated with infertility, decreased ovarian performance and lipotoxicity. However, little is known about the aetiology of these reproductive impairments. Here, we hypothesise that the majority of changes in ovarian physiology in diet-induced obesity (DIO) are a consequence of transcriptional changes downstream of altered leptin signalling. Therefore, we investigated the extent to which leptin signalling is altered in the ovary upon obesity with particular emphasis on effects on cumulus cells (CCs), the intimate functional companions of the oocyte. Furthermore, we used the pharmacological hyperleptinemic (LEPT) mouse model to compare transcriptional profiles to DIO.
The mammalian genome experiences profound setting and resetting of epigenetic patterns during the life-course. This is understood best for DNA methylation: the specification of germ cells, gametogenesis, and early embryo development are characterised by phases of widespread erasure and rewriting of methylation. While mitigating against intergenerational transmission of epigenetic information, these processes must also ensure correct genomic imprinting that depends on faithful and long-term memory of gamete-derived methylation states in the next generation. This underscores the importance of understanding the mechanisms of methylation programming in the germline. methylation in the oocyte is of particular interest because of its intimate association with transcription, which results in a bimodal methylome unique amongst mammalian cells. Moreover, this methylation landscape is entirely set up in a non-dividing cell, making the oocyte a fascinating model system in which to explore mechanistic determinants of methylation. Here, we summarise current knowledge on the oocyte DNA methylome and how it is established, focussing on recent insights from knockout models in the mouse that explore the interplay between methylation and chromatin states. We also highlight some remaining paradoxes and enigmas, in particular the involvement of non-nuclear factors for correct methylation.
After publication of the original article [1], we were notified that the software used to create the figures has exported them wrong so they display incomplete
Mitochondrial DNA (mtDNA) is widely used in several fields including medical genetics, forensic science, genetic genealogy, and evolutionary anthropology. In this study, mtDNA haplotype diversity was determined for 293 unrelated subjects from Jordanian population (Circassians, Chechens, and the original inhabitants of Jordan). A total of 102 haplotypes were identified and analyzed among the populations to describe the maternal lineage landscape. Our results revealed that the distribution of mtDNA haplotype frequencies among the three populations showed disparity and significant differences when compared to each other. We also constructed mitochondrial haplotype classification trees for the three populations to determine the phylogenetic relationship of mtDNA haplotype variants, and we observed clear differences in the distribution of maternal genetic ancestries, especially between Arab and the minority ethnic populations. To our knowledge, this study is the first, to date, to characterize mitochondrial haplotypes and haplotype distributions in a population-based sample from the Jordanian population. It provides a powerful reference for future studies investigating the contribution of mtDNA variation to human health and disease and studying population history and evolution by comparing the mtDNA haplotypes to other populations.
In vitro follicle culture (IFC), as applied in the mouse system, allows the growth and maturation of a large number of immature preantral follicles to become mature and competent oocytes. In the human oncofertility clinic, there is increasing interest in developing this technique as an alternative to ovarian cortical tissue transplantation and to preserve the fertility of prepubertal cancer patients. However, the effect of IFC and hormonal stimulation on DNA methylation in the oocyte is not fully known, and there is legitimate concern over epigenetic abnormalities that could be induced by procedures applied during assisted reproductive technology (ART).
Maternal effect mutations in the components of the subcortical maternal complex (SCMC) of the human oocyte can cause early embryonic failure, gestational abnormalities and recurrent pregnancy loss. Enigmatically, they are also associated with DNA methylation abnormalities at imprinted genes in conceptuses: in the devastating gestational abnormality biparental complete hydatidiform mole (BiCHM) or in multi-locus imprinting disease (MLID). However, the developmental timing, genomic extent and mechanistic basis of these imprinting defects are unknown. The rarity of these disorders and the possibility that methylation defects originate in oocytes have made these questions very challenging to address.
Formation of the three primary germ layers during gastrulation is an essential step in the establishment of the vertebrate body plan and is associated with major transcriptional changes. Global epigenetic reprogramming accompanies these changes, but the role of the epigenome in regulating early cell-fate choice remains unresolved, and the coordination between different molecular layers is unclear. Here we describe a single-cell multi-omics map of chromatin accessibility, DNA methylation and RNA expression during the onset of gastrulation in mouse embryos. The initial exit from pluripotency coincides with the establishment of a global repressive epigenetic landscape, followed by the emergence of lineage-specific epigenetic patterns during gastrulation. Notably, cells committed to mesoderm and endoderm undergo widespread coordinated epigenetic rearrangements at enhancer marks, driven by ten-eleven translocation (TET)-mediated demethylation and a concomitant increase of accessibility. By contrast, the methylation and accessibility landscape of ectodermal cells is already established in the early epiblast. Hence, regulatory elements associated with each germ layer are either epigenetically primed or remodelled before cell-fate decisions, providing the molecular framework for a hierarchical emergence of the primary germ layers.
Epigenetic information in the mammalian oocyte has the potential to be transmitted to the next generation and influence gene expression; this occurs naturally in the case of imprinted genes. Therefore, it is important to understand how epigenetic information is patterned during oocyte development and growth. Here, we review the current state of knowledge of de novo DNA methylation mechanisms in the oocyte: how a distinctive gene-body methylation pattern is created, and the extent to which the DNA methylation machinery reads chromatin states. Recent epigenomic studies building on advances in ultra-low input chromatin profiling methods, coupled with genetic studies, have started to allow a detailed interrogation of the interplay between DNA methylation establishment and chromatin states; however, a full mechanistic description awaits.
Genomic imprinting is an epigenetic phenomenon that allows a subset of genes to be expressed mono-allelically based on the parent of origin and is typically regulated by differential DNA methylation inherited from gametes. Imprinting is pervasive in murine extra-embryonic lineages, and uniquely, the imprinting of several genes has been found to be conferred non-canonically through maternally inherited repressive histone modification H3K27me3. However, the underlying regulatory mechanisms of non-canonical imprinting in post-implantation development remain unexplored.
Does imprinted DNA methylation or imprinted gene expression differ between human blastocysts from conventional ovarian stimulation (COS) and an optimized two-step IVM method (CAPA-IVM) in age-matched polycystic ovary syndrome (PCOS) patients?
DNA methyltransferases (DNMTs) deposit DNA methylation, which regulates gene expression and is essential for mammalian development. Histone post-translational modifications modulate the recruitment and activity of DNMTs. The PWWP domains of DNMT3A and DNMT3B are posited to interact with histone 3 lysine 36 trimethylation (H3K36me3); however, the functionality of this interaction for DNMT3A remains untested in vivo. Here we present a mouse model carrying a D329A point mutation in the DNMT3A PWWP domain. The mutation causes dominant postnatal growth retardation. At the molecular level, it results in progressive DNA hypermethylation across domains marked by H3K27me3 and bivalent chromatin, and de-repression of developmental regulatory genes in adult hypothalamus. Evaluation of non-CpG methylation, a marker of de novo methylation, further demonstrates the altered recruitment and activity of DNMT3A at bivalent domains. This work provides key molecular insights into the function of the DNMT3A-PWWP domain and role of DNMT3A in regulating postnatal growth.
Complex multicellular organisms, such as mammals, express two complete sets of chromosomes per nucleus, combining the genetic material of both parents. However, epigenetic studies have demonstrated violations to this rule that are necessary for mammalian physiology; the most notable parental allele expression phenomenon is genomic imprinting. With the identification of endogenous imprinted genes, genomic imprinting became well-established as an epigenetic mechanism in which the expression pattern of a parental allele influences phenotypic expression. The expanding study of genomic imprinting is revealing a significant impact on brain functions and associated diseases. Here, we review key milestones in the field of imprinting and discuss mechanisms and systems in which imprinted genes exert a significant role.
Pluripotency is accompanied by the erasure of parental epigenetic memory, with naïve pluripotent cells exhibiting global DNA hypomethylation both in vitro and in vivo. Exit from pluripotency and priming for differentiation into somatic lineages is associated with genome-wide de novo DNA methylation. We show that during this phase, co-expression of enzymes required for DNA methylation turnover, DNMT3s and TETs, promotes cell-to-cell variability in this epigenetic mark. Using a combination of single-cell sequencing and quantitative biophysical modeling, we show that this variability is associated with coherent, genome-scale oscillations in DNA methylation with an amplitude dependent on CpG density. Analysis of parallel single-cell transcriptional and epigenetic profiling provides evidence for oscillatory dynamics both in vitro and in vivo. These observations provide insights into the emergence of epigenetic heterogeneity during early embryo development, indicating that dynamic changes in DNA methylation might influence early cell fate decisions.
Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored.
Parallel single-cell sequencing protocols represent powerful methods for investigating regulatory relationships, including epigenome-transcriptome interactions. Here, we report a single-cell method for parallel chromatin accessibility, DNA methylation and transcriptome profiling. scNMT-seq (single-cell nucleosome, methylation and transcription sequencing) uses a GpC methyltransferase to label open chromatin followed by bisulfite and RNA sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic stem cells, finding links between all three molecular layers and revealing dynamic coupling between epigenomic layers during differentiation.
Histone 3 K4 trimethylation (depositing H3K4me3 marks) is typically associated with active promoters yet paradoxically occurs at untranscribed domains. Research to delineate the mechanisms of targeting H3K4 methyltransferases is ongoing. The oocyte provides an attractive system to investigate these mechanisms, because extensive H3K4me3 acquisition occurs in nondividing cells. We developed low-input chromatin immunoprecipitation to interrogate H3K4me3, H3K27ac and H3K27me3 marks throughout oogenesis. In nongrowing oocytes, H3K4me3 was restricted to active promoters, but as oogenesis progressed, H3K4me3 accumulated in a transcription-independent manner and was targeted to intergenic regions, putative enhancers and silent H3K27me3-marked promoters. Ablation of the H3K4 methyltransferase gene Mll2 resulted in loss of transcription-independent H3K4 trimethylation but had limited effects on transcription-coupled H3K4 trimethylation or gene expression. Deletion of Dnmt3a and Dnmt3b showed that DNA methylation protects regions from acquiring H3K4me3. Our findings reveal two independent mechanisms of targeting H3K4me3 to genomic elements, with MLL2 recruited to unmethylated CpG-rich regions independently of transcription.
A major limitation of embryo epigenotyping by chromatin immunoprecipitation analysis is the reduced amount of sample available from an embryo biopsy. We developed an in vitro system to expand trophectoderm cells from an embryo biopsy to overcome this limitation. This work analyzes whether expanded trophectoderm (EX) is representative of the trophectoderm (TE) methylation or adaptation to culture has altered its epigenome. We took a small biopsy from the trophectoderm (30-40 cells) of in vitro produced bovine-hatched blastocysts and cultured it on fibronectin-treated plates until we obtained ∼4 × 104 cells. The rest of the embryo was allowed to recover its spherical shape and, subsequently, TE and inner cell mass were separated. We examined whether there were DNA methylation differences between TE and EX of three bovine embryos using whole-genome bisulfite sequencing. As a consequence of adaptation to culture, global methylation, including transposable elements, was higher in EX, with 5.3% of quantified regions showing significant methylation differences between TE and EX. Analysis of individual embryos indicated that TE methylation is more similar to its EX counterpart than to TE from other embryos. Interestingly, these similarly methylated regions are enriched in CpG islands, promoters and transcription units near genes involved in biological processes important for embryo development. Our results indicate that EX is representative of the embryo in terms of DNA methylation, thus providing an informative proxy for embryo epigenotyping.
Single-cell multi-omics has recently emerged as a powerful technology by which different layers of genomic output-and hence cell identity and function-can be recorded simultaneously. Integrating various components of the epigenome into multi-omics measurements allows for studying cellular heterogeneity at different time scales and for discovering new layers of molecular connectivity between the genome and its functional output. Measurements that are increasingly available range from those that identify transcription factor occupancy and initiation of transcription to long-lasting and heritable epigenetic marks such as DNA methylation. Together with techniques in which cell lineage is recorded, this multilayered information will provide insights into a cell's past history and its future potential. This will allow new levels of understanding of cell fate decisions, identity, and function in normal development, physiology, and disease.
DNA methylation can be considered a component of epigenetic memory with a critical role during embryo development, and which undergoes dramatic reprogramming after fertilization. Though it has been a focus of research for many years, the reprogramming mechanism is still not fully understood. Recent results suggest that absence of maintenance at DNA replication is a major factor, and that there is an unexpected role for TET3-mediated oxidation of 5mC to 5hmC in guarding against de novo methylation. Base-resolution and genome-wide profiling methods are enabling more comprehensive assessments of the extent to which ART might impair DNA methylation reprogramming, and which sequence elements are most vulnerable. Indeed, as we also review here, studies showing the effect of culture media, ovarian stimulation or embryo transfer on the methylation pattern of embryos emphasize the need to face ART-associated defects and search for strategies to mitigate adverse effects on the health of ART-derived children.
Inheritance of DNA methylation states from gametes determines genomic imprinting in mammals. A new study shows that repressive chromatin in oocytes can also confer imprinting.
Germ cell development involves major reprogramming of the epigenome to prime the zygote for totipotency. Histone 3 lysine 4 (H3K4) methylations are universal epigenetic marks mediated in mammals by six H3K4 methyltransferases related to fly Trithorax, including two yeast Set1 orthologs: Setd1a and Setd1b. Whereas Setd1a plays no role in oogenesis, we report that Setd1b deficiency causes female sterility. Oocyte specific Gdf9iCre conditional knockout (Setd1b(Gdf9) cKO) ovaries develop through all stages however follicular loss accumulated with age and unfertilized metaphase II (MII) oocytes exhibited irregularities of the zona pellucida and meiotic spindle. Most Setd1b(Gdf9) cKO zygotes remained in the pronuclear stage and displayed polyspermy in the perivitelline space. Expression profiling of Setd1b(Gdf9) cKO MII oocytes revealed (i) that Setd1b promotes the expression of the major oocyte transcription factors including Obox1, 2, 5, 7, Meis2 and Sall4; and (ii) two-times more up- than downregulated mRNAs suggesting that Setd1b also promotes the expression of negative regulators of oocyte development with multiple Zfp-KRAB factors implicated. Together, these findings indicate that Setd1b serves as maternal effect gene through regulation of the oocyte gene expression program.
Gametogenesis in mammals entails profound re-patterning of the epigenome. In the female germline, DNA methylation is acquired late in oogenesis from an essentially unmethylated baseline and is established largely as a consequence of transcription events. Molecular and functional studies have shown that imprinted genes become methylated at different times during oocyte growth; however, little is known about the kinetics of methylation gain genome wide and the reasons for asynchrony in methylation at imprinted loci.
DNA methylation (DNAme) is an important epigenetic mark in diverse species. Our current understanding of DNAme is based on measurements from bulk cell samples, which obscures intercellular differences and prevents analyses of rare cell types. Thus, the ability to measure DNAme in single cells has the potential to make important contributions to the understanding of several key biological processes, such as embryonic development, disease progression and aging. We have recently reported a method for generating genome-wide DNAme maps from single cells, using single-cell bisulfite sequencing (scBS-seq), allowing the quantitative measurement of DNAme at up to 50% of CpG dinucleotides throughout the mouse genome. Here we present a detailed protocol for scBS-seq that includes our most recent developments to optimize recovery of CpGs, mapping efficiency and success rate; reduce hands-on time; and increase sample throughput with the option of using an automated liquid handler. We provide step-by-step instructions for each stage of the method, comprising cell lysis and bisulfite (BS) conversion, preamplification and adaptor tagging, library amplification, sequencing and, lastly, alignment and methylation calling. An individual with relevant molecular biology expertise can complete library preparation within 3 d. Subsequent computational steps require 1-3 d for someone with bioinformatics expertise.
The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability to. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT.
Epigenetic modifications established during gametogenesis regulate transcription and other nuclear processes in gametes, but also have influences in the zygote, embryo and postnatal life. This is best understood for DNA methylation which, established at discrete regions of the oocyte and sperm genomes, governs genomic imprinting. In this review, we describe how imprinting has informed our understanding of de novo DNA methylation mechanisms, highlight how recent genome-wide profiling studies have provided unprecedented insights into establishment of the sperm and oocyte methylomes and consider the fate and function of gametic methylation and other epigenetic modifications after fertilization.
Emerging single-cell epigenomic methods are being developed with the exciting potential to transform our knowledge of gene regulation. Here we review available techniques and future possibilities, arguing that the full potential of single-cell epigenetic studies will be realized through parallel profiling of genomic, transcriptional, and epigenetic information.
The maternal and paternal copies of the genome are both required for mammalian development and this is primarily due to imprinted genes, those that are mono-allelically expressed based on parent-of-origin. Typically, this pattern of expression is regulated by differentially methylated regions (DMRs) that are established in the germline and maintained after fertilisation. There are a large number of germline DMRs that have not yet been associated with imprinting and their function in development is unknown. In this study, we developed a genome-wide approach to identify novel imprinted DMRs in the human placenta, and investigated the dynamics of these imprinted DMRs during development in somatic and extra-embryonic tissues. DNA methylation was evaluated using the Illumina HumanMethylation450 array in 134 human tissue samples, publically available reduced representation bisulfite sequencing in the human embryo and germ cells, and targeted bisulfite sequencing in term placentas. 43 known and 101 novel imprinted DMRs were identified in the human placenta, by comparing methylation between diandric and digynic triploid conceptions in addition to female and male gametes. 72 novel DMRs showed a pattern consistent with placental-specific imprinting and this mono-allelic methylation was entirely maternal in origin. Strikingly, these DMRs exhibited polymorphic imprinted methylation between placental samples. These data suggest that imprinting in human development is far more extensive and dynamic than previously reported and that the placenta preferentially maintains maternal germline-derived DNA methylation.
We report scM&T-seq, a method for parallel single-cell genome-wide methylome and transcriptome sequencing that allows for the discovery of associations between transcriptional and epigenetic variation. Profiling of 61 mouse embryonic stem cells confirmed known links between DNA methylation and transcription. Notably, the method revealed previously unrecognized associations between heterogeneously methylated distal regulatory elements and transcription of key pluripotency genes.
Erasure and subsequent reinstatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in nondividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome. Using a chromatin immunoprecipitation (ChIP) and genome-wide sequencing (ChIP-seq) protocol optimized for low cell numbers and novel techniques for isolating primary and growing oocytes, profiles were generated for histone modifications implicated in promoting or inhibiting DNA methylation. CGIs destined for DNA methylation show reduced protective H3K4 dimethylation (H3K4me2) and trimethylation (H3K4me3) in both primary and growing oocytes, while permissive H3K36me3 increases specifically at these CGIs in growing oocytes. Methylome profiling of oocytes deficient in H3K4 demethylase KDM1A or KDM1B indicated that removal of H3K4 methylation is necessary for proper methylation establishment at CGIs. This work represents the first systematic study performing ChIP-seq in oocytes and shows that histone remodeling in the mammalian oocyte helps direct de novo DNA methylation events.
The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and -independent assembly pathways. To address the role of histone deposition in the absence of DNA replication, we deleted the H3.3 chaperone Hira in developing mouse oocytes. We show that chromatin of non-replicative developing oocytes is dynamic and that lack of continuous H3.3/H4 deposition alters chromatin structure, resulting in increased DNase I sensitivity, the accumulation of DNA damage, and a severe fertility phenotype. On the molecular level, abnormal chromatin structure leads to a dramatic decrease in the dynamic range of gene expression, the appearance of spurious transcripts, and inefficient de novo DNA methylation. Our study thus unequivocally shows the importance of continuous histone replacement and chromatin homeostasis for transcriptional regulation and normal developmental progression in a non-replicative system in vivo.
Previously, a role was demonstrated for transcription in the acquisition of DNA methylation at imprinted control regions in oocytes. Definition of the oocyte DNA methylome by whole genome approaches revealed that the majority of methylated CpG islands are intragenic and gene bodies are hypermethylated. Yet, the mechanisms by which transcription regulates DNA methylation in oocytes remain unclear. Here, we systematically test the link between transcription and the methylome.
A hallmark of CpG islands is their unmethylated state, and determining how DNA methylation can invade these elements is therefore important for understanding developmental gene regulation and disease. A new study shows that FBXL10, a protein commonly altered by mutation in leukemia, is part of a mechanism that blocks methylation of CpG islands.
We report a single-cell bisulfite sequencing (scBS-seq) method that can be used to accurately measure DNA methylation at up to 48.4% of CpG sites. Embryonic stem cells grown in serum or in 2i medium displayed epigenetic heterogeneity, with '2i-like' cells present in serum culture. Integration of 12 individual mouse oocyte datasets largely recapitulated the whole DNA methylome, which makes scBS-seq a versatile tool to explore DNA methylation in rare cells and heterogeneous populations.
At the heart of genomic imprinting in mammals are imprinting control regions (ICRs), which are the discrete genetic elements that confer imprinted monoallelic expression to several genes in imprinted gene clusters. A characteristic of the known ICRs is that they acquire different epigenetic states, exemplified by differences in DNA methylation, in the sperm and egg, and these imprint marks remain on the sperm- and oocyte-derived alleles into the next generation as a lifelong memory of parental origin. Although there has been much focus on gametic marking of ICRs as the point of imprint specification, recent mechanistic studies and genome-wide DNA methylation profiling do not support the existence of a specific imprinting machinery in germ cells. Rather, ICRs are part of more widespread methylation events that occur during gametogenesis. Instead, a decisive component in the specification of imprints is the choice of which sites of gamete-derived methylation to maintain in the zygote and preimplantation embryo at a time when much of the remainder of the genome is being demethylated. Among the factors involved in this selection, the zinc-finger protein Zfp57 can be regarded as an imprint-specific, sequence-specific DNA binding factor responsible for maintaining methylation at most ICRs. The recent insights into the balance of gametic and zygotic contributions to imprint specification should help understand mechanistic opportunities and constraints on the evolution of imprinting in mammals.
Induced pluripotent stem cells (iPSCs) hold great promise for in vitro generation of disease-relevant cell types, such as mesodiencephalic dopaminergic (mdDA) neurons involved in Parkinson's disease. Although iPSC-derived midbrain DA neurons have been generated, detailed genetic and epigenetic characterizations of such neurons are lacking. The goal of this study was to examine the authenticity of iPSC-derived DA neurons obtained by established protocols. We FACS purified mdDA (Pitx3 (Gfp/+) ) neurons derived from mouse iPSCs and primary mdDA (Pitx3 (Gfp/+) ) neurons to analyze and compare their genetic and epigenetic features. Although iPSC-derived DA neurons largely adopted characteristics of their in vivo counterparts, relevant deviations in global gene expression and DNA methylation were found. Hypermethylated genes, mainly involved in neurodevelopment and basic neuronal functions, consequently showed reduced expression levels. Such abnormalities should be addressed because they might affect unambiguous long-term functionality and hamper the potential of iPSC-derived DA neurons for in vitro disease modeling or cell-based therapy.
DNA methylation in the oocyte has a particular significance: it may contribute to gene regulation in the oocyte and marks specific genes for activity in the embryo, as in the case of imprinted genes. Despite the fundamental importance of DNA methylation established in the oocyte, knowledge of the mechanisms by which it is conferred and how much is stably maintained in the embryo has remained very limited. Next generation sequencing approaches have dramatically altered our views on DNA methylation in oocytes. They have revealed that most methylation occurs in gene bodies in the oocyte. This observation ties in with genetic evidence showing that transcription is essential for methylation of imprinted genes, and is consistent with a model in which DNA methyltransferases are recruited by the histone modification patterns laid down by transcription events. These findings lead to a new perspective that transcription events dictate the placing and timing of methylation in specific genes and suggest a mechanism by which methylation could be coordinated by the events and factors regulating oocyte growth. With these new insights into the de novo methylation mechanism and new methods that allow high resolution profiling of DNA methylation in oocytes, we should be in a position to investigate whether and how DNA methylation errors could arise in association with assisted reproduction technologies or in response to exposure to environmental toxins.
Fundamental to genomic imprinting in mammals is the acquisition of epigenetic marks that differ in male and female gametes at 'imprinting control regions' (ICRs). These marks mediate the allelic expression of imprinted genes in the offspring. Much has been learnt about the nature of imprint marks, the times during gametogenesis at which they are laid down and some of the factors responsible especially for DNA methylation. Recent work has revealed that transcription and histone modifications are critically involved in DNA methylation acquisition, and these findings allow us to propose rational models for methylation establishment. A completely novel perspective on gametic DNA methylation has emerged from epigenomic profiling. Far more differentially methylated loci have been identified in gametes than known imprinted genes, which leads us to revise the notion that methylation of ICRs is a specifically targeted process. Instead, it seems to obey default processes in germ cells, giving rise to distinct patterns of DNA methylation in sperm and oocytes. This new insight, together with the identification of proteins that preserve DNA methylation after fertilization, emphasizes the key role played by mechanisms that selectively retain differential methylation at imprinted loci during early development. Addressing these mechanisms will be essential to understanding the specificity and evolution of genomic imprinting.
The nutritional environment in which the mammalian fetus or infant develop is recognized as influencing the risk of chronic diseases, such as type 2 diabetes and hypertension, in a phenomenon that has become known as developmental programming. The late onset of such diseases in response to earlier transient experiences has led to the suggestion that developmental programming may have an epigenetic component, because epigenetic marks such as DNA methylation or histone tail modifications could provide a persistent memory of earlier nutritional states. One class of genes that has been considered a potential target or mediator of programming events is imprinted genes, because these genes critically depend upon epigenetic modifications for correct expression and because many imprinted genes have roles in controlling fetal growth as well as neonatal and adult metabolism. In this study, we have used an established model of developmental programming-isocaloric protein restriction to female mice during gestation or lactation-to examine whether there are effects on expression and DNA methylation of imprinted genes in the offspring. We find that although expression of some imprinted genes in liver of offspring is robustly and sustainably changed, methylation of the differentially methylated regions (DMRs) that control their monoallelic expression remains largely unaltered. We conclude that deregulation of imprinting through a general effect on DMR methylation is unlikely to be a common factor in developmental programming.
Development of high-throughput sequencing technologies now enables genome-wide analysis of DNA methylation of mammalian cells and tissues. Here, we present a protocol for Reduced Representation Bisulfite Sequencing (RRBS) applicable to low amounts of starting material (from 200 to 5,000 cells). RRBS is a cost-effective and powerful technique offering the advantages of absolute DNA methylation quantification and single nucleotide resolution while covering mainly CpG islands. Typically one sequencing experiment using the Illumina Genome Analyser IIx platform provides information on the DNA methylation status of more than half of the CpG islands of the mouse genome.
Maternal deletion of the NESP55 differentially methylated region (DMR) (delNESP55/ASdel3-4(m), delNAS(m)) from the GNAS locus in humans causes autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib(delNASm)), a disorder of proximal tubular parathyroid hormone (PTH) resistance associated with loss of maternal GNAS methylation imprints. Mice carrying a similar, maternally inherited deletion of the Nesp55 DMR (ΔNesp55(m)) replicate these Gnas epigenetic abnormalities and show evidence for PTH resistance, yet these mice demonstrate 100% mortality during the early postnatal period. We investigated whether the loss of extralarge αs (XLαs) imprinting and the resultant biallelic expression of XLαs are responsible for the early postnatal lethality in ΔNesp55(m) mice. First, we found that ΔNesp55(m) mice are hypoglycemic and have reduced stomach-to-body weight ratio. We then generated mice having the same epigenetic abnormalities as the ΔNesp55(m) mice but with normalized XLαs expression due to the paternal disruption of the exon giving rise to this Gnas product. These mice (ΔNesp55(m)/Gnasxl(m+/p-)) showed nearly 100% survival up to postnatal day 10, and a substantial number of them lived to adulthood. The hypoglycemia and reduced stomach-to-body weight ratio observed in 2-d-old ΔNesp55(m) mice were rescued in the ΔNesp55(m)/Gnasxl(m+/p-) mice. Surviving double-mutant animals had significantly reduced Gαs mRNA levels and showed hypocalcemia, hyperphosphatemia, and elevated PTH levels, thus providing a viable model of human AD-PHP-Ib. Our findings show that the hypoglycemia and early postnatal lethality caused by the maternal deletion of the Nesp55 DMR result from biallelic XLαs expression. The double-mutant mice will help elucidate the pathophysiological mechanisms underlying AD-PHP-Ib.
DNA methylation is a fundamentally important epigenetic modification of the mammalian genome that has widespread influences on gene expression. During germ-cell specification and maturation, epigenetic reprogramming occurs and the DNA methylation landscape is profoundly remodelled. Defects in this process have major consequences for embryonic development and are associated with several genetic disorders. In this review we report our current understanding of the molecular mechanisms associated with de novo DNA methylation in germ cells. We discuss recent discoveries connecting histone modifications, transcription and the DNA methylation machinery, and consider how these new findings could lead to a model for methylation establishment. Elucidating how DNA methylation marks are established in the germline has been a challenge for nearly 20 years, but represents a key step towards a full understanding of several biological processes including genomic imprinting, epigenetic reprogramming and the establishment of the pluripotent state in early embryos.
Imprinted genes are the prototypical epigenetically regulated genes. On the basis of findings in adult lung stem cells, Zacharek et al. (2011) suggest in this issue of Cell Stem Cell that epigenetic silencing of imprinted genes is a common requirement for maintaining self-renewal in adult stem cell populations.
Genomic imprinting is an important and enigmatic form of gene regulation in mammals in which one copy of a gene is silenced in a manner determined by its parental history. Imprinted genes range from those with constitutive monoallelic silencing to those, typically more remote from imprinting control regions, that display developmentally regulated, tissue-specific or partial monoallelic expression. This diversity may make these genes, and the processes they control, more or less sensitive to factors that modify or disrupt epigenetic marks. Imprinted genes have important functions in development and physiology, including major endocrine/neuroendocrine axes. Owing to is central role in coordinating growth, metabolism and reproduction, as well as evidence from genetic and knockout studies, the hypothalamus may be a focus for imprinted gene action. Are there unifying principles that explain why a gene should be imprinted? Conflict between parental genomes over limiting maternal resources, but also co-adaptation between mothers and offspring, have been invoked to explain the evolution of imprinting. Recent reports suggest there may be many more genes imprinted in the hypothalamus than hitherto expected, and it will be important for these new candidates to be validated and to determine whether they conform to current notions of how imprinting is regulated. In fully evaluating the role of imprinted genes in the hypothalamus, much work needs to be done to identify the specific neuronal populations in which particular genes are expressed, establish whether there are pathways in common and whether imprinted genes are involved in long-term programming of hypothalamic functions.
Elucidating how and to what extent CpG islands (CGIs) are methylated in germ cells is essential to understand genomic imprinting and epigenetic reprogramming. Here we present, to our knowledge, the first integrated epigenomic analysis of mammalian oocytes, identifying over a thousand CGIs methylated in mature oocytes. We show that these CGIs depend on DNMT3A and DNMT3L but are not distinct at the sequence level, including in CpG periodicity. They are preferentially located within active transcription units and are relatively depleted in H3K4me3, supporting a general transcription-dependent mechanism of methylation. Very few methylated CGIs are fully protected from post-fertilization reprogramming but, notably, the majority show incomplete demethylation in embryonic day (E) 3.5 blastocysts. Our study shows that CGI methylation in gametes is not entirely related to genomic imprinting but is a strong factor in determining methylation status in preimplantation embryos, suggesting a need to reassess mechanisms of post-fertilization demethylation.
In pancreatic β cells, elevated glucose concentrations stimulate mitochondrial oxidative metabolism to raise intracellular ATP/ADP levels, prompting insulin secretion. Unusually low levels of expression of genes encoding the plasma membrane monocarboxylate transporter, MCT1 (SLC16A1), as well as lactate dehydrogenase A (LDHA) ensure that glucose-derived pyruvate is efficiently metabolized by mitochondria, while exogenous lactate or pyruvate is unable to stimulate metabolism and hence insulin secretion inappropriately. We show here that whereas DNA methylation at the Mct1 promoter is unlikely to be involved in cell-type-specific transcriptional repression, three microRNAs (miRNAs), miR-29a, miR-29b, and miR-124, selectively target both human and mouse MCT1 3' untranslated regions. Mutation of the cognate miR-29 or miR-124 binding sites abolishes the effects of the corresponding miRNAs, demonstrating a direct action of these miRNAs on the MCT1 message. However, despite reports of its expression in the mouse β-cell line MIN6, miR-124 was not detectably expressed in mature mouse islets. In contrast, the three isoforms of miR-29 are highly expressed and enriched in mouse islets. We show that inhibition of miR-29a in primary mouse islets increases Mct1 mRNA levels, demonstrating that miR-29 isoforms contribute to the β-cell-specific silencing of the MCT1 transporter and may thus affect insulin release.
There is increasing evidence that non-coding macroRNAs are major elements for silencing imprinted genes, but their mechanism of action is poorly understood. Within the imprinted Gnas cluster on mouse chromosome 2, Nespas is a paternally expressed macroRNA that arises from an imprinting control region and runs antisense to Nesp, a paternally repressed protein coding transcript. Here we report a knock-in mouse allele that behaves as a Nespas hypomorph. The hypomorph mediates down-regulation of Nesp in cis through chromatin modification at the Nesp promoter but in the absence of somatic DNA methylation. Notably there is reduced demethylation of H3K4me3, sufficient for down-regulation of Nesp, but insufficient for DNA methylation; in addition, there is depletion of the H3K36me3 mark permissive for DNA methylation. We propose an order of events for the regulation of a somatic imprint on the wild-type allele whereby Nespas modulates demethylation of H3K4me3 resulting in repression of Nesp followed by DNA methylation. This study demonstrates that a non-coding antisense transcript or its transcription is associated with silencing an overlapping protein-coding gene by a mechanism independent of DNA methylation. These results have broad implications for understanding the hierarchy of events in epigenetic silencing by macroRNAs.
Transcriptome sequencing has identified more than a thousand potentially imprinted genes in the mouse brain. This comes as a revelation to someone who cut his teeth on the identification of imprinted genes when only a handful was known. Genomic imprinting, an epigenetic mechanism that determines expression of alleles according to sex of transmitting parent, was discovered over 25  years ago in mice but remains an enigmatic phenomenon. Why do these genes disobey the normal Mendelian logic of inheritance, do they function in specific processes, and how is their imprinting conferred? Next generation sequencing technologies are providing an unprecedented opportunity to survey the whole genome for imprinted genes and are beginning to reveal that imprinting may be more pervasive than we had come to believe. Such advances should lay the foundation for a definitive account of imprinting, but may also challenge accepted views on what it means to be imprinted. Editor's suggested further reading in BioEssays RNA as the substrate for epigenome-environment interactions Abstract.
Mammalian imprinted genes are associated with differentially methylated regions (DMRs) that are CpG methylated on one of the two parental chromosomes. In mice, at least 21 DMRs acquire differential methylation in the germline and many of them act as imprint centres. We previously reported the physical extents of differential methylation at 15 DMRs in mouse embryos at 12.5 days postcoitum. To reveal the ontogeny of differential methylation, we determined and compared methylation patterns of the corresponding regions in sperm and oocytes. We found that the extent of the gametic DMRs differs significantly from that of the embryonic DMRs, especially in the case of paternal gametic DMRs. These results suggest that the gametic DMR sequences should be used to extract the features specifying methylation imprint establishment in the germline: from this analysis, we noted that the maternal gametic DMRs appear as unmethylated islands in male germ cells, which suggests a novel component in the mechanism of gamete-specific marking. Analysis of selected DMRs in blastocysts revealed dynamic changes in allelic methylation in early development, indicating that DMRs are not fully protected from the major epigenetic reprogramming events occurring during preimplantation development. Furthermore, we observed non-CpG methylation in oocytes, but not in sperm, which disappeared by the blastocyst stage. Non-CpG methylation was frequently found at maternally methylated DMRs as well as non-DMR regions, suggesting its prevalence in the oocyte genome. These results provide evidence for a unique methylation profile in oocytes and reveal the surprisingly dynamic nature of DMRs in the early embryo.
The GNAS locus on chromosome 20q13.11 is the archetypal complex imprinted locus. It comprises a bewildering array of alternative transcripts determined by differentially imprinted promoters which encode distinct proteins. It also provides the classic example of tissue-specific imprinted gene expression, in which the canonical GNAS transcript coding for Gsalpha is expressed predominantly from the maternal allele in a set of seemingly unrelated tissues. Functionally, this rather obscure imprinting is nevertheless of considerable clinical significance, as it dictates the nature of the disease caused by inactivating mutations in Gsalpha, with end organ hormone resistance specifically on maternal transmission (pseudohypoparathyroidism type 1a, PHP1a). In addition, there is a bona fide imprinting disorder, PHP1b, which is caused specifically by DNA methylation defects in the differentially methylated regions (DMRs) that determine tissue-specific monoallelic expression of GNAS. Although the genetic defect in PHP1a and the disrupted imprinting in PHP1b both essentially result in profound reduction of Gsalpha activity in tissues with monoallelic GNAS expression, and despite a growing awareness of the overlap in these two conditions, there are important pathophysiological differences between the two whose basis is not fully understood. PHP1b is one of the only imprinted gene syndromes in which cis-acting mutations have been discovered that disrupt methylation of germline-derived imprint marks; such imprinting mutations in GNAS are helping to provide important new insights into the mechanisms of imprinting establishment generally.
Crossing plants of the same species but different ploidies can have dramatic effects on seed growth, but little is known about the alterations to transcriptional programmes responsible for this. Parental genomic imbalance particularly affects proliferation of the endosperm, with an increased ratio of paternally to maternally contributed genomes ('paternal excess') associated with overproliferation, while maternal excess inhibits endosperm growth. One interpretation is that interploidy crosses disrupt the balance in the seed of active copies of parentally imprinted genes. This is supported by the observation that mutations in imprinted FIS-class genes of Arabidopsis thaliana share many features of the paternal excess phenotype. Here we investigated gene expression underlying parent-of-origin effects in Arabidopsis through transcriptional profiling of siliques generated by interploidy crosses and FIS-class mutants.
The heterotrimeric G protein alpha-subunit G(s)alpha links receptors to stimulation of cAMP/protein kinase A signaling, which inhibits skin fibroblast proliferation and collagen synthesis. We now describe the development of fibrous tumors in mice with heterozygous disruption of the Gnas gene, which encodes G(s)alpha and other gene products.
The hallmarks of epigenetics--the memory of defining earlier developmental events and the distinction of active and inactive genes--are exemplified by imprinted genes. In this article, I shall consider the imprinted Gnas locus in some detail. Gnas encodes the stimulatory G-protein subunit, Gsalpha, an essential intermediate between receptor coupling and cyclic adenosine monophosphate generation. It provides an excellent illustration of the pleiotropic effects of imprinted genes, particularly on skeletal growth and metabolism, and is a powerful example of the conflicting effects of imprinted genes with opposing patterns of imprinting. I shall describe the effects of Gsalpha deficiency in humans and the knowledge gained from genetic manipulation in the mouse. Finally, given the pervasive effects of imprinted genes, I shall discuss the likelihood that epigenetic deregulation, for example of imprinted genes, could contribute to the developmental programming of chronic adult diseases.
Genomic imprinting requires the differential marking by DNA methylation of genes in male and female gametes. In the female germline, acquisition of methylation imprint marks depends upon the de novo methyltransferase Dnmt3a and its cofactor Dnmt3L, but the reasons why specific sequences are targets for Dnmt3a and Dnmt3L are still poorly understood. Here, we investigate the role of transcription in establishing maternal germline methylation marks. We show that at the Gnas locus, truncating transcripts from the furthest upstream Nesp promoter disrupts oocyte-derived methylation of the differentially methylated regions (DMRs). Transcription through DMRs in oocytes is not restricted to this locus but occurs across the prospective DMRs at many other maternally marked imprinted domains, suggesting a common requirement for transcription events. The transcripts implicated here in gametic methylation are protein-coding, in contrast to the noncoding antisense transcripts involved in the monoallelic silencing of imprinted genes in somatic tissues, although they often initiate from alternative promoters in oocytes. We propose that transcription is a third essential component of the de novo methylation system, which includes optimal CpG spacing and histone modifications, and may be required to create or maintain open chromatin domains to allow the methylation complex access to its preferred targets.
Interspecific hybridization in mammals causes hybrid dysgenesis effects, such as sterility and abnormal placentation. Here, we describe a novel obesity syndrome caused by interspecific hybridization in the genus Mus and show that this obesity, appearing sporadically in F1 littermates derived from inbred strains, has an epigenetic basis. Mus hybrids from various strains of M. musculus and M. spretus were generated and the sporadic obese phenotype was confirmed through assessment of physiological and biochemical parameters in littermates. To understand the underlying mechanisms, large-scale and candidate gene expression assays, global DNA methylation assays and allelic expression analysis were performed. Studies showed that obese hybrids are similar to other known models of obesity. While increased axial growth indicated a defect in POMC pathway, comparison of global gene expression patterns in brain of obese F1 and obese Pomc mutant mice showed little similarity. In F1 obese mice many genes involved in the maintenance of epigenetic states, as well as several imprinted genes, were differentially expressed. Global DNA methylation analysis in brain showed that increased methylation levels were associated with obesity. The imprinted gene Gnasxl, known to be important in lipid homeostasis, was found over expressed in the obese hybrids. Allelic expression and methylation analysis of Gnasxl showed that alterations of epigenetic marks underlying F1 obesity are probably many and multi-factorial.
The stimulatory alpha-subunit of trimeric G-proteins Galpha(s), which upon ligand binding to seven-transmembrane receptors activates adenylyl cyclases to produce the second messenger cAMP, constitutes one of the archetypal signal transduction molecules that have been studied in much detail. Over the past few years, however, genetic as well as biochemical approaches have led to a range of novel insights into the Galpha(s) encoding guanine nucleotide binding protein, alpha-stimulating (Gnas) locus, its alternative protein products and its regulation by genomic imprinting, which leads to monoallelic, parental origin-dependent expression of the various transcripts. Here, we summarise the major characteristics of this complex gene locus and describe the physiological roles of Galpha(s) and its 'extra large' variant XLalpha(s) at post-natal and adult stages as defined by genetic mutations. Opposite and potentially antagonistic functions of the two proteins in the regulation of energy homeostasis and metabolism have been identified in Gnas- and Gnasxl (XLalpha(s))-deficient mice, which are characterised by obesity and leanness respectively. A comparison of findings in mice with symptoms of the corresponding human genetic disease 'Albright's hereditary osteodystrophy'/'pseudohypoparathyroidism' indicates highly conserved functions as well as unresolved phenotypic differences.
Genomic imprinting is the epigenetic marking of gene subsets resulting in monoallelic or predominant expression of one of the two parental alleles according to their parental origin. We describe the systematic experimental verification of a prioritized 16 candidate imprinted gene set predicted by sequence-based bioinformatic analyses. We used Quantification of Allele-Specific Expression by Pyrosequencing (QUASEP) and discovered maternal-specific imprinted expression of the Kcnk9 gene as well as strain-dependent preferential expression of the Rarres1 gene in E11.5 (C57BL/6 x Cast/Ei)F1 and informative (C57BL/6 x Cast/Ei) x C57BL/6 backcross mouse embryos. For the remaining 14 candidate imprinted genes, we observed biallelic expression. In adult mouse tissues, we found that Kcnk9 expression was restricted to the brain and also was maternal-specific. QUASEP analysis of informative human fetal brain samples further demonstrated maternal-specific imprinted expression of the human KCNK9 orthologue. The CpG islands associated with the mouse and human Kcnk9/KCNK9 genes were not differentially methylated, but strongly hypomethylated. Thus, we speculate that mouse Kcnk9 imprinting may be regulated by the maternal germline differentially methylated region in Peg13, an imprinted non-coding RNA gene in close proximity to Kcnk9 on distal mouse chromosome 15. Our data have major implications for the proposed role of Kcnk9 in neurodevelopment, apoptosis and tumourigenesis, as well as for the efficiency of sequence-based bioinformatic predictions of novel imprinted genes.
The complex imprinted Gnas locus encodes several gene products including G(s)alpha, the ubiquitously expressed G protein alpha-subunit required for receptor-stimulated cAMP generation, and the neuroendocrine-specific G(s)alpha isoform XLalphas. XLalphas is only expressed from the paternal allele, whereas G(s)alpha is biallelically expressed in most tissues. XLalphas knock-out mice (Gnasxl(m+/p-)) have poor suckling and perinatal lethality, implicating XLalphas as critical for postnatal feeding. We have now examined the metabolic phenotype of adult Gnasxl(m+/p-) mice. Gnasxl(m+/p-) mice had reduced fat mass and lipid accumulation in adipose tissue, with increased food intake and metabolic rates. Gene expression profiling was consistent with increased lipid metabolism in adipose tissue. These changes likely result from increased sympathetic nervous system activity rather than adipose cell-autonomous effects, as we found that XLalphas is not normally expressed in adult adipose tissue, and Gnasxl(m+/p-) mice had increased urinary norepinephrine levels but not increased metabolic responsiveness to a beta3-adrenergic agonist. Gnasxl(m+/p-) mice were hypolipidemic and had increased glucose tolerance and insulin sensitivity. The similar metabolic profile observed in some prior paternal Gnas knock-out models results from XLalphas deficiency (or deficiency of the related alternative truncated protein XLN1). XLalphas (or XLN1) is a negative regulator of sympathetic nervous system activity in mice.
The epigenetic phenomenon of genomic imprinting provides an additional level of gene regulation that is confined to a limited number of genes, frequently, but not exclusively, important for embryonic development. The evolution and maintenance of imprinting has been linked to the balance between the allocation of maternal resources to the developing fetus and the mother's well being. Genes that are imprinted in both the embryo and extraembryonic tissues show extensive conservation between a mouse and a human. Here we examine the human orthologues of mouse genes imprinted only in the placenta, assaying allele-specific expression and epigenetic modifications. The genes from the KCNQ1 domain and the isolated human orthologues of the imprinted genes Gatm and Dcn all are expressed biallelically in the human, from first-trimester trophoblast through to term. This lack of imprinting is independent of promoter CpG methylation and correlates with the absence of the allelic histone modifications dimethylation of lysine-9 residue of H3 (H3K9me2) and trimethylation of lysine-27 residue of H3 (H3K27me3). These specific histone modifications are thought to contribute toward regulation of imprinting in the mouse. Genes from the IGF2R domain show polymorphic concordant expression in the placenta, with imprinting demonstrated in only a minority of samples. Together these findings have important implications for understanding the evolution of mammalian genomic imprinting. Because most human pregnancies are singletons, this absence of competition might explain the comparatively relaxed need in the human for placental-specific imprinting.
Gnas is an enigmatic and rather complex imprinted gene locus. A single transcription unit encodes three, and possibly more, distinct proteins. These are determined by overlapping transcripts from alternative promoters with different patterns of imprinting. The canonical Gnas transcript codes for Gsalpha, a highly conserved signalling protein and an essential intermediate in growth, differentiation and homeostatic pathways. Monoallelic expression of Gnas is highly tissue-restricted. The alternative transcripts encode XLalphas, an unusual variant of Gsalpha, and the chromogranin-like protein Nesp55. These transcripts are expressed specifically from the paternal and maternal chromosomes, respectively. Their existence in the Gnas locus might imply functional connections amongst them or with Gsalpha. In this review, we consider how imprinting of Gnas was discovered, the phenotypic consequences of mutations in each of the gene products, both in the mouse and human, and provide some conjectures to explain why this elaborate imprinted locus has evolved in this manner in mammals.
Genomic imprinting results in allele-specific silencing according to parental origin. Silencing is brought about by imprinting control regions (ICRs) that are differentially marked in gametogenesis. The group of imprinted transcripts in the mouse Gnas cluster (Nesp, Nespas, Gnasxl, Exon 1A and Gnas) provides a model for analyzing the mechanisms of imprint regulation. We previously identified an ICR that specifically regulates the tissue-specific imprinted expression of the Gnas gene. Here we identify a second ICR at the Gnas cluster. We show that a paternally derived targeted deletion of the germline differentially methylated region (DMR) associated with the antisense Nespas transcript unexpectedly affects both the expression of all transcripts in the cluster and methylation of two DMRs. Our results establish that the Nespas DMR is the principal ICR at the Gnas cluster and functions bidirectionally as a switch for modulating expression of the antagonistically acting genes Gnasxl and Gnas. Uniquely, the Nespas DMR acts on the downstream ICR at exon 1A to regulate tissue-specific imprinting of the Gnas gene.
The cis-acting regulatory sequences of imprinted genes are subject to germline-specific epigenetic modifications, the imprints, so that this class of genes is exclusively expressed from either the paternal or maternal allele in offspring. How genes are differentially marked in the germlines remains largely to be elucidated. Although the exact nature of the mark is not fully known, DNA methylation [at differentially methylated regions (DMRs)] appears to be a major, functional component. Recent data in mice indicate that Dnmt3a, an enzyme with de novo DNA methyltransferase activity, and the related protein Dnmt3L are required for methylation of imprinted loci in germ cells. Maternal methylation imprints, in particular, are strictly dependent on the presence of Dnmt3L. Here, we show that, unexpectedly, methylation imprints can be present in some progeny of Dnmt3L(-/-) females. This incomplete penetrance of the effect of Dnmt3L deficiency in oocytes is neither embryo nor locus specific, but stochastic. We establish that, when it occurs, methylation is present in both embryo and extra-embryonic tissues and results in a functional imprint. This suggests that this maternal methylation is inherited, directly or indirectly, from the gamete. Our results indicate that in the absence of Dnmt3L, factors such as Dnmt3a and possibly others can act alone to mark individual DMRs. However, establishment of appropriate maternal imprints at all loci does require a combination of all factors. This observation can provide a basis to understand mechanisms involved in some sporadic cases of imprinting-related diseases and polymorphic imprinting in human.
The mammalian fetus is unique in its dependence during gestation on the supply of maternal nutrients through the placenta. Maternal supply and fetal demand for nutrients need to be fine tuned for healthy growth and development of the fetus along its genetic trajectory. An altered balance between supply and demand can lead to deviations from this trajectory with long-term consequences for health. We have previously shown that in a knockout lacking the imprinted placental-specific Igf2 transcript (P0), growth of the placenta is compromised from early gestation but fetal growth is normal until late gestation, suggesting functional adaptation of the placenta to meet the fetal demands. Here, we show that placental transport of glucose and amino acids are increased in the Igf2 P0(+/-) null and that this up-regulation of transport occurs, at least in part, through increased expression of the transporter genes Slc2a3 and Slc38a4, the imprinted member of the System A amino acid transporter gene family. Decreasing fetal demand genetically by removal of fetal Igf2 abolished up-regulation of both transport systems and reduced placental System A amino acid transport activity and expression of Slc38a2 in late gestation. Our results provide direct evidence that the placenta can respond to fetal demand signals through regulation of expression of specific placental transport systems. Thus, crosstalk between an imprinted growth demand gene (Igf2) and placental supply transporter genes (Slc38a4, Slc38a2, and Slc2a3) may be a component of the genetic control of nutrient supply and demand during mammalian development.
Genomic imprinting results in parent-of-origin-dependent monoallelic expression of selected genes. Although their importance in development and physiology is recognized, few imprinted genes have been investigated for their effects on brain function. Gnas is a complex imprinted locus whose gene products are involved in early postnatal adaptations and neuroendocrine functions. Gnas encodes the stimulatory G-protein subunit Gsalpha and two other imprinted protein-coding transcripts. Of these, the Nesp transcript, expressed exclusively from the maternal allele, codes for neuroendocrine secretory protein 55 (Nesp55), a chromogranin-like polypeptide associated with the constitutive secretory pathway but with an unknown function. Nesp is expressed in restricted brain nuclei, suggesting an involvement in specific behaviors. We have generated a knockout of Nesp55 in mice. Nesp55-deficient mice develop normally, excluding a role of this protein in the severe postnatal effects associated with imprinting of the Gnas cluster. Behavioral analysis of adult Nesp55 mutants revealed, in three separate tasks, abnormal reactivity to novel environments independent of general locomotor activity and anxiety. This phenotype may be related to prominent Nesp55 expression in the noradrenergic locus coeruleus. These results indicate a role of maternally expressed Nesp55 in controlling exploratory behavior and are the first demonstration that imprinted genes affect such a fundamental behavior.
Recent work has implicated imprinted gene functioning in neurodevelopment and behaviour and defining the expression patterns of these genes in brain tissue has become a key prerequisite to establishing function. In this work we report on the expression patterns of two novel imprinted loci, Nap1l5 and Peg13, in adult mouse brain using in situ hybridisation methods. Nap1l5 and Peg13 are located, respectively, within the introns of the non-imprinted genes Herc3 and the Tularik1 (T1)/KIAA1882 homologue in two separate microimprinted domains on mouse chromosomes 6 and 15. These 'host' genes are highly expressed in brain and consequently we were interested in assessing their expression patterns in parallel to the imprinted genes. The brain expression of all four genes appeared to be mainly neuronal. The detailed expression profiles of Nap1l5 and Peg13 were generally similar with widespread expression that was relatively high in the septal and hypothalamic regions, the hippocampus and the cerebral cortex. In contrast, there was some degree of dissociation between the imprinted genes and their non-imprinted hosts, in that, whilst there was again widespread expression of Herc3 and the T1/KIAA1882 homologue, these genes were also particularly highly expressed in Purkinje neurons and piriform cortex. We also examined expression of the novel imprinted genes in the adrenal glands. Nap1l5 expression was localised mainly to the adrenal medulla, whilst Peg13 expression was observed more generally throughout the adrenal medulla and the outer cortical layers.
Transient neonatal diabetes mellitus (TNDM) is a rare inherited diabetic syndrome apparent in the first weeks of life and again during early adulthood. The relative contributions of reduced islet beta cell number and impaired beta cell function to the observed hypoinsulinemia are unclear. The inheritance pattern of this imprinted disorder implicates overexpression of one or both genes within the TNDM locus: ZAC, which encodes a proapoptotic zinc finger protein, and HYMAI, which encodes an untranslated mRNA. To investigate the consequences for pancreatic function, we have developed a high-copy transgenic mouse line, TNDM29, carrying the human TNDM locus. TNDM29 neonates display hyperglycemia, and older adults, impaired glucose tolerance. Neonatal hyperglycemia occurs only on paternal transmission, analogous to paternal dependence of TNDM in humans. Embryonic pancreata of TNDM29 mice showed reductions in expression of endocrine differentiation factors and numbers of insulin-staining structures. By contrast, beta cell mass was normal or elevated at all postnatal stages, whereas pancreatic insulin content in neonates and peak serum insulin levels after glucose infusion in adults were reduced. Expression of human ZAC and HYMAI in these transgenic mice thus recapitulates key features of TNDM and implicates impaired development of the endocrine pancreas and beta cell function in disease pathogenesis.
Genomic imprinting, by which maternal and paternal alleles of some genes have different levels of activity, has profound effects on growth and development of the mammalian fetus. The action of imprinted genes after birth, in particular while the infant is dependent on maternal provision of nutrients, is far less well understood. We disrupted a paternally expressed transcript at the Gnas locus, Gnasxl, which encodes the unusual Gs alpha isoform XL alpha s. Mice with mutations in Gnasxl have poor postnatal growth and survival and a spectrum of phenotypic effects that indicate that XL alpha s controls a number of key postnatal physiological adaptations, including suckling, blood glucose and energy homeostasis. Increased cAMP levels in brown adipose tissue of Gnasxl mutants and phenotypic comparison with Gnas mutants suggest that XL alpha s can antagonize Gs alpha-dependent signaling pathways. The opposing effects of maternally and paternally expressed products of the Gnas locus provide tangible molecular support for the parental-conflict hypothesis of imprinting.
Imprinted genes have the unusual characteristic that the copy from one parent is destined to remain inactive. Though few in number they nonetheless constitute a functionally important part of the mammalian genome. With their memory of parental origin, imprinted genes represent an important model for the epigenetic regulation of gene function and will provide invaluable paradigms to test whether we can predict epigenetic state from DNA sequence. Since their first discovery, systematic screens and some good fortune have led to identification of over seventy imprinted genes in the mouse and human: recent microarray analysis may reveal many more. With a significant number of imprinted genes now identified and completion of key mammalian genome sequences, we are able systematically to examine the organization of imprinted loci, properties of their control elements and begin to recognize common themes in imprinted gene regulation.