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Multi-omics profiling of mouse gastrulation 
at single-cell resolution
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Yunlong Xiang7,8, Courtney W. Hanna2,9, Sebastien Smallwood2, Ximena Ibarra-Soria10, 
Florian Buettner11, Guido Sanguinetti3, Wei Xie7,8, Felix Krueger12, Berthold Göttgens5,6,  
Peter J. Rugg-Gunn2,5,6,9, Gavin Kelsey2,9, Wendy Dean13, Jennifer Nichols5, Oliver Stegle1,14,15*, 
John C. Marioni1,10,16* & Wolf Reik2,9,16*

Formation of the three primary germ layers during gastrulation is an essential step in 
the establishment of the vertebrate body plan and is associated with major 
transcriptional changes1–5. Global epigenetic reprogramming accompanies these 
changes6–8, but the role of the epigenome in regulating early cell-fate choice remains 
unresolved, and the coordination between different molecular layers is unclear. Here 
we describe a single-cell multi-omics map of chromatin accessibility, DNA 
methylation and RNA expression during the onset of gastrulation in mouse embryos. 
The initial exit from pluripotency coincides with the establishment of a global 
repressive epigenetic landscape, followed by the emergence of lineage-specific 
epigenetic patterns during gastrulation. Notably, cells committed to mesoderm and 
endoderm undergo widespread coordinated epigenetic rearrangements at enhancer 
marks, driven by ten-eleven translocation (TET)-mediated demethylation and a 
concomitant increase of accessibility. By contrast, the methylation and accessibility 
landscape of ectodermal cells is already established in the early epiblast. Hence, 
regulatory elements associated with each germ layer are either epigenetically primed 
or remodelled before cell-fate decisions, providing the molecular framework for a 
hierarchical emergence of the primary germ layers.

Recent technological advances have enabled the profiling of mul-
tiple molecular layers at single-cell resolution9–13, providing novel 
opportunities to study the relationship between the transcriptome and  
epigenome during cell-fate decisions. We applied single-cell nucleo-
some, methylome and transcriptome sequencing12 (scNMT-seq) to 
profile 1,105 single cells isolated from mouse embryos at four devel-
opmental stages (embryonic day (E)4.5, E5.5, E6.5 and E7.5) represent-
ing the exit from pluripotency and primary germ-layer specification 
(Fig. 1a–d, Extended Data Fig. 1). Cells were assigned to a specific  
lineage by mapping their RNA-expression profiles to a comprehensive 
single-cell atlas4 from the same stages when available or using marker 
genes (Extended Data Fig. 2). Using dimensionality reduction, we 
show that all three molecular layers contain sufficient information 
to separate cells by stage (Fig. 1b–d) and lineage identity (Extended 
Data Figs. 2, 3).

Epigenome dynamics at pluripotency exit
We characterized the changes in DNA methylation and chromatin 
accessibility during each stage transition. Globally, methylation levels 
increase from approximately 25% to approximately 75% in embryonic 
tissues and to about 50% in extra-embryonic tissues, driven mainly by a 
wave of de novo methylation from E4.5 to E5.5 that preferentially targets 
CpG-poor genomic loci6,8,14 (Fig. 1e, Extended Data Fig. 3). By contrast, 
we observed a more gradual decline in global chromatin accessibility 
from around 38% at E4.5 to around 30% at E7.5 (Fig. 1f), with no differ-
ences between embryonic and extra-embryonic tissues (Extended Data 
Fig. 3). To relate epigenetic changes to the transcriptional dynamics 
across stages, we calculated—for each gene and across all embryonic 
cells—the correlation between RNA expression and the corresponding 
DNA methylation or chromatin accessibility at the promoter. Out of 

https://doi.org/10.1038/s41586-019-1825-8

Received: 18 October 2018

Accepted: 22 October 2019

Published online: 11 December 2019

1European Bioinformatics Institute (EMBL-EBI), Cambridge, UK. 2Epigenetics Programme, Babraham Institute, Cambridge, UK. 3School of Informatics, University of Edinburgh, Edinburgh, UK. 
4MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. 5Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of 
Cambridge, Cambridge, UK. 6Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK. 7Center for Stem Cell Biology and Regenerative 
Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China. 8THU-PKU Center for Life Sciences, Tsinghua University, Beijing, China. 9Centre for 
Trophoblast Research, University of Cambridge, Cambridge, UK. 10Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. 11Helmholtz Zentrum München–German 
Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany. 12Bioinformatics Group, Babraham Institute, Cambridge, UK. 13Department of 
Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada. 14European Molecular Biology Laboratory (EMBL), 
Heidelberg, Germany. 15Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany. 16Wellcome Sanger Institute, Cambridge, 
UK. 17These authors contributed equally: Ricard Argelaguet, Stephen J. Clark, Hisham Mohammed, L. Carine Stapel. *e-mail: stephen.clark@babraham.ac.uk; o.stegle@dkfz.de; john.marioni@
cruk.cam.ac.uk; wolf.reik@babraham.ac.uk

https://doi.org/10.1038/s41586-019-1825-8
mailto:stephen.clark@babraham.ac.uk
mailto:o.stegle@dkfz.de
mailto:john.marioni@cruk.cam.ac.uk
mailto:john.marioni@cruk.cam.ac.uk
mailto:wolf.reik@babraham.ac.uk


488  |  Nature  |  Vol 576  |  19/26 December 2019

Article

5,000 genes tested, we identified 125 genes the expression of which 
shows significant correlation with promoter DNA methylation and 52 
with expression significantly correlated with chromatin accessibility 
(Fig. 1g, Extended Data Fig. 4, Supplementary Tables 1, 2). These loci 
largely comprise markers of early pluripotency and germ cells, such 
as Dppa4, Zfp42, Tex19.1 and Pou3f1 (Fig. 1g, h, Extended Data Fig. 4), 
which are repressed, coinciding with the global increase in methyla-
tion and decrease in accessibility. In addition, this analysis identified 
genes, including Trap1a and Zfp981, that may have unknown roles in 
development. Notably, of the genes that are upregulated after E4.5, 
only 39 and 9 show a significant correlation between RNA expression 
and promoter methylation or accessibility, respectively (Extended Data 
Fig. 4). This suggests that the upregulation of these genes is probably 
controlled by other regulatory elements.

Characterizing germ-layer epigenomes
To understand the relationships between all three molecular layers 
during germ-layer commitment we next applied multi-omics factor 
analysis (MOFA)15 to cells collected at E7.5. MOFA performs unsuper-
vised dimensionality reduction simultaneously across multiple data 
modalities, thereby capturing the global sources of cell-to-cell variabil-
ity via a small number of inferred factors. Notably, the model makes use 
of multimodal measurements from the same cells, thereby detecting 
coordinated changes between the different data modalities.

As input to the model we used RNA-sequencing (RNA-seq) data across 
protein-coding genes and DNA methylation and chromatin accessibility 

data across putative regulatory elements. This includes promoters 
and germ-layer-specific chromatin immunoprecipitation with DNA 
sequencing (ChIP–seq) peaks for distal H3K27ac (enhancers) and 
H3K4me3 (transcription start sites)16 (Extended Data Fig. 5). MOFA iden-
tified six factors, with the top two (sorted by variance explained) captur-
ing the emergence of the three germ layers (Fig. 2a, b). Notably, MOFA 
links the variation at the gene-expression level to concerted methylation 
and accessibility changes at lineage-specific enhancer marks (Fig. 2c).  
By contrast, epigenetic changes at promoters or at H3K4me3-
marked regions show much weaker associations with germ-layer 
formation (Fig. 2a, Extended Data Fig. 6, Supplementary Tables 3, 4).  
This supports other studies that have identified distal enhancers as 
lineage-driving regulatory regions8,17–19. Inspection of gene–enhancer 
associations identified enhancers linked to key germ-layer markers 
including Lefty2 and Mesp2 (mesoderm), Foxa2 and Bmp2 (endoderm), 
and Bcl11a and Sp8 (ectoderm) (Fig. 2c, Extended Data Fig. 7). Notably, 
ectoderm-specific enhancers display fewer associations than their 
mesoderm and endoderm counterparts, a finding that is explored 
further below.

The four remaining factors correspond to additional transcriptional 
and epigenetic signatures related to anterior–posterior axial pattern-
ing (factor 3), notochord formation (factor 4), mesoderm patterning 
(factor 5) and cell cycle (factor 6) (Extended Data Fig. 8).

Finally, we sought to identify transcription factors that could drive or 
respond to epigenetic changes in germ-layer commitment. Integrating 
differential-expression information with motif enrichment at differ-
entially accessible loci revealed that lineage-specific enhancers were 
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Fig. 1 | Single-cell multi-omics profiling of mouse gastrulation. a, Schematic 
of the developing mouse embryo, with stages and lineages considered in this 
study labelled. b, Dimensionality reduction of RNA-expression data using 
UMAP. Cells are coloured by stage. There are 1,061 cells included from 28 
embryos sequenced using scNMT-seq and 1,419 cells from 26 embryos 
sequenced using scRNA-seq. c, d, Dimensionality reduction of DNA 
methylation data (c) and chromatin accessibility data (d) from scNMT-seq 
using factor analysis (Methods). Cells are coloured by stage. There are 986 
cells included for DNA methylation data and 864 cells for chromatin 
accessibility data. e, f, Heat map of per cent DNA methylation levels (e) and per 
cent chromatin accessibility levels (f) by stage and genomic context. g, Scatter 

plot of Pearson correlation coefficients of promoter methylation (Met) versus 
RNA expression (x axis) and promoter accessibility versus RNA expression  
( y axis). Each dot corresponds to one gene (n = 4,927). Red dots depict 
significant associations for both correlation types (n = 39, false discovery rate 
(FDR) < 10%). Examples of early pluripotency and germ cell markers among the 
significant hits are labelled. h, Illustrative example of epigenetic repression of 
Dppa4. Box and violin plots show the distribution of RNA expression (log 
normalized counts, green), promoter methylation (red) and accessibility (Acc) 
(blue) per stage. Box plots show median levels and the first and third quartile, 
whiskers show 1.5× the interquartile range. Each dot corresponds to one cell.
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enriched for binding sites associated with key developmental transcrip-
tion factors, including POU3F1, SOX2 and SP8 for ectoderm, SOX17, 
HNF1B, and FOXA2 for endoderm, and GATA4, HAND1 and TWIST1 for 
mesoderm (Fig. 2d).

Time resolution of the enhancer epigenome
We next investigated how the epigenomic patterns associated with germ-
layer specification arise during development. DNA methylation levels 
in endoderm- and mesoderm-defining enhancers follow the genome-
wide dynamics, increasing from an average of 25% to 80% in all cell types 
(Fig. 3, Extended Data Fig. 9). Upon lineage specification, they undergo 
concerted demethylation to about 50% in a cell-type-specific manner. The 
opposite pattern is observed for chromatin accessibility; accessibility of 
mesoderm- and endoderm-defining enhancers initially decreases from 
approximately 40% to 30% (following the genome-wide dynamics) before 
becoming more accessible (approximately 45%) upon lineage specifica-
tion. The general dynamics of demethylation and chromatin opening of 
enhancers during embryogenesis are therefore apparently conserved 
in zebrafish, Xenopus and mouse19. Consistent with these data, when 
quantifying the H3K27ac levels of lineage-defining enhancers in more-
differentiated tissues (E10.5 midbrain, E12.5 intestine and E10.5 heart)20,21, 
we observe that a substantial number of enhancers remain marked by 
H3K27ac (Extended Data Fig. 5). This indicates that the enhancers estab-
lished at E7.5 are, to a large extent, maintained later in development.

In contrast to the mesoderm and endoderm enhancers, the ectoderm 
enhancers are open and demethylated as early as E4.5 in the epiblast 
(Fig. 3, Extended Data Fig. 9). Only in cells committed to mesendoderm 

fate do the ectoderm enhancers become partially repressed. Consist-
ently, when measuring the accessibility dynamics at sites containing 
motifs for ectoderm-defining transcription factors (SOX2 and SP8), 
we find that these motifs are already accessible in the epiblast and lose 
accessibility specifically upon mesendoderm commitment. Conversely, 
motifs associated with endoderm- and mesoderm-defining transcrip-
tion factors become accessible in their respective lineages only at E7.5 
(Extended Data Fig. 9).

These observations can be explained by either priming of an ecto-
dermal signature in the epiblast or the maintenance of a pluripotency 
signature in the ectoderm. To investigate this, we overlapped the E7.5 
enhancer annotations with published H3K27ac ChIP–seq data from 
embryonic stem cells (ES cells) and E10.5 midbrain21,22. The E7.5 ecto-
derm enhancers display almost-exclusively pluripotent or neural 
signatures with notably different DNA methylation and chromatin 
accessibility dynamics (Extended Data Fig. 10). Pluripotency enhanc-
ers show an increase in methylation and a decrease in accessibility 
over time, suggesting a repression of these enhancers with similar 
dynamics to promoters of pluripotency genes (Fig. 1g, h). By contrast, 
neuroectoderm enhancers remain hypomethylated and accessible 
from E4.5 (Extended Data Fig. 10).

Finally, to infer temporal dependencies of enhancer activation, we 
used the RNA-expression profiles to order cells across two trajectories 
corresponding to mesoderm and endoderm commitment (Extended 
Data Fig. 11). By plotting the average DNA methylation and chromatin 
accessibility for each class of lineage-defining enhancer, we find that 
the methylation gain (and accessibility loss) of ectoderm enhancers 
precedes the demethylation (and accessibility gain) of mesoderm and 
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Fig. 2 | Multi-omics factor analysis reveals coordinated epigenetic and 
transcriptomic variation at enhancer elements during germ-layer 
commitment. a, Percentage of variance explained (R2) by each MOFA factor 
(rows) across data modalities (columns). b, Scatter plot of MOFA factor 1 (x axis) 
and MOFA factor 2 ( y axis). Cells are coloured according to their lineage 
assignment (n = 840). c, Scatter plots showing differential DNA methylation  
(x axis) and chromatin accessibility ( y axis) at lineage-specific enhancers at 
E7.5. Ectoderm versus non-ectoderm cells (left, n = 2,992), endoderm versus 
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cells (right, n = 1,448) are shown. Black dots depict gene–enhancer pairs with 

significant changes in RNA expression and methylation or accessibility 
(Pearson’s χ2 test, FDR <10%). d, Transcription factor motif enrichment  
at lineage-defining enhancers. Motif enrichment (Fisher’s exact test,  
−log(q value), y axis, n = 746 motifs) versus differential RNA expression (log fold 
change, x axis) of the corresponding transcription factor is shown. The analysis 
is performed separately for ectoderm- (left), endoderm- (middle) and 
mesoderm- (right) defining enhancers. Transcription factors with significant 
motif enrichment (FDR <1%) and differential RNA expression (edgeR quasi-
likelihood test, FDR <1%) are labelled.
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endoderm enhancers. In both cases, changes in methylation and acces-
sibility co-occur, suggesting tight co-regulation of the two epigenetic 
layers.

TET enzymes drive enhancer demethylation
TET methylcytosine dioxygenase enzymes have been implicated  
in enhancer demethylation23,24, and loss-of-function experiments  
suggest that TET enzymes are vital for gastrulation25,26. To test whether 
TET enzymes drive lineage-specific demethylation, we differenti-
ated both wild-type ES cells and ES cells deficient for all three TET 
enzymes (Tet TKO) into embryoid bodies and analysed the cells using 
scNMT-seq.

Mapping the RNA-expression profiles to the in vivo gastrulation 
atlas shows that wild-type embryoid bodies recapitulate the transition 
from a pluripotent epiblast at day 2 of differentiation to the primitive 
streak between days 4 and 5 (Fig. 4a, b). At days 6 and 7, we observe the 
emergence of mature mesoderm structures including haematopoi-
etic cell types (Fig. 4a, b, Extended Data Fig. 12). Expression of marker 
genes is restricted to the expected lineage and differential expression 
between lineages agrees with the in vivo results (Extended Data Fig. 12). 
Moreover, the global dynamics of DNA methylation and chromatin 
accessibility in wild-type embryoid bodies substantially mirror the 
in vivo data (Extended Data Fig. 12).

Comparison of wild type with Tet TKO differentiation in the epiblast-
like cells at day 2 revealed higher DNA methylation in ectoderm enhanc-
ers in the Tet TKO cells, but no differences in mesoderm or endoderm 
enhancers (Fig. 4c). Re-analysis of methylation measurements from 
Tet TKO embryos confirms that the same pattern is observed in vivo25 
(Extended Data Fig. 12). Impaired demethylation is also associated 
with differences in differentiation timing, with Tet TKO cells showing 
an increased proportion of early mesendoderm differentiation at day 
4 to 5 (Fig. 4a, b). However, at day 6 to 7 Tet TKO cells do not properly 

demethylate lineage-specific enhancers and do not differentiate into 
mature mesodermal cell types (Fig. 4c).

These observations indicate that demethylation of lineage-defin-
ing enhancers is at least partially driven by TET proteins. Although 
enhancer demethylation does not seem to be required for early meso-
derm commitment, the lack of haematopoietic cells in the Tet TKO 
cells suggests that demethylation may be important for subsequent 
lineage progression. Consistently, Tet TKO embryos are able to initiate 
gastrulation, but by E8.5 they display defects in mesoderm-derived cell 
types, including heart or somites25.

Discussion
Our results show that pluripotent epiblast cells are epigenetically 
primed for an ectoderm fate as early as E4.5. This finding supports 
the existence of a ‘default’ path in Waddington’s epigenetic land-
scape model, providing a potential mechanism for the phenomenon 
of ‘default’ differentiation of neurectodermal tissue from ES cells27,28. 
By contrast, endoderm and mesoderm are actively diverted from the 
default path by demethylation and chromatin opening at the corre-
sponding enhancer elements17,24,25. Thus, the germ-layer epigenome is 
defined during gastrulation by a hierarchical, or asymmetric, epigenetic 
model (Fig. 3a).

More generally, these results have important implications for the 
role of the epigenome in defining lineage commitment. We speculate 
that asymmetric epigenetic priming—whereby early progenitors are 
epigenetically primed for a default cell type—may be a more general fea-
ture of lineage commitment in vivo. In support of this hypothesis, two 
recent studies have identified default pathways in foregut specification 
and osteogenesis29,30. Future studies that use multi-omics approaches 
to investigate cell populations have the potential to transform our 
understanding of cell-fate decisions, with important implications for 
stem cell biology.
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Fig. 4 | TET enzymes are required for efficient demethylation of mesoderm-
defining enhancers and subsequent blood differentiation in embryoid 
bodies. a, UMAP projection of stages E6.5 to E8.5 of the atlas dataset (no extra-
embryonic cells). Top left, cells coloured by lineage assignment. The remaining 
plots show, for different days of embryoid body differentiation, the nearest 
neighbours that were used to assign cell-type labels to the embryoid body 
dataset. Wild-type (WT) cells are red (n = 438), Tet TKO cells are blue (n = 436). 
We grouped days 4–5 and 6–7 together because of the similarity in the cell 
types recovered. b, Bar plots showing the numbers of each cell type for each 

day of embryoid body differentiation, grouped by genotype (n = 438 WT and 
436 KO). c, Overlaid box and violin plots show the distribution of DNA 
methylation (top) or chromatin accessibility (bottom) for lineage-defining 
enhancers in epiblast-like cells at day 2 (n = 46 (WT) and n = 44 (Tet TKO)) and 
mesoderm-like cells at days 6–7 (n = 22 (WT) and n = 32 (Tet TKO)). The y axes 
show methylation or accessibility scaled to the genome-wide levels. Box plots 
show median levels and the first and third quartile, whiskers show 1.5× the 
interquartile range. P values shown result from comparisons of group means  
(t-test). Asterisks denote significant differences (FDR <10%).
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Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized. The investigators were not blinded 
to allocation during experiments and outcome assessment.

Embryos and single cell isolation
All mice used in this study were C57BL/6Babr and were bred and main-
tained in the Babraham Institute Biological Support Unit. Ambient 
temperature was about 19–21 °C and relative humidity was 52%. Lighting 
was provided on a 12 h:12 h light:dark cycle, including 15 min ‘dawn’ and 
‘dusk’ periods of subdued lighting. After weaning, mice were trans-
ferred to individually ventilated cages with 1–5 mice per cage. Mice 
were fed CRM (P) VP diet (Special Diet Services) ad libitum and received 
seeds (for example, sunflower or millet) at the time of cage-cleaning as 
part of their environmental enrichment. All mouse experimentation 
was approved by the Babraham Institute Animal Welfare and Ethical 
Review Body. Animal husbandry and experimentation complied with 
existing European Union and United Kingdom Home Office legislation 
and local standards. Sample sizes were determined to obtain at least 50 
cells for each germ layer. No randomization or blinding was performed. 
Sex of embryos was not known at the time of collection. Single-cells 
from E4.5 to E5.5 embryos were collected as previously described2. E6.5 
and E7.5 embryos were dissected to remove extra-embryonic tissues 
and dissociated in TryplE for 10 min at room temperature. Undigested 
portions were physically removed and the remainder filtered through 
a 30-μm filter before isolation using flow cytometry.

Tet TKO cell culture
Tet1−/−Tet2−/−Tet3−/− (C57BL6/129/FVB) and matching wild-type mouse 
ES cells31 were cultured in 2i+LIF medium (50/50 DMEM-F12 (Gibco, 
31330-038) and Neurobasal medium (Gibco, 21103-49) with serum-free 
N2B27 (0.5% N2 and 1% B27; Gibco), 0.1 mM 2-mercaptoethanol (Life 
Technologies, 31350-010) and 2 mM l-glutamine (Life Technologies, 
25030-024) supplemented with LIF, MEK inhibitor PD0325901 (1 µM) 
and GSK3 inhibitor CHIR99021 (3 µM), all from Department of Bio-
chemistry, University of Cambridge). ES cells were cultured on tissue 
culture plastic pre-coated with 0.1% gelatine in H2O and were passaged 
when approaching confluence (every 2–3 days).

For the embryoid body differentiation assay, 2 × 104 ES cells were 
collected in medium consisting of DMEM (Life Technologies, 10566-
016), 15% fetal bovine serum (Gibco, 10270106), 1× non-essential amino 
acids (NEAA) (Life Technologies, 11140050), 0.1 mM 2-mercaptoethanol 
(Life Technologies, 31350-010), 2 mM l-glutamine (Life Technologies, 
25030-024) in ultra-low attachment 96-well plates (Sigma-Aldrich, 
CLS7007). All cells were cultured in a humidified incubator at 37 °C 
in 5% CO2 and 20% O2. Embryoid bodies were collected 2, 4, 5, 6 and 7 
days after induction of differentiation and dissociated into single cells 
using accutase before flow sorting. Cell lines were subject to routine 
mycoplasma testing using the MycoAlert testing kit (Lonza) and tested 
negative. Cell lines were not authenticated.

scNMT-seq library preparation
Single cells were flow-sorted (E6.5 and E7.5 stages, using a BD Influx or 
BD Aria III) or manually picked when cell numbers were too low (E4.5, 
E5.5). Cells were isolated into 96-well PCR plates containing 2.5μl 
of methylase reaction buffer (1 × M.CviPI Reaction buffer (NEB), 2 U 
M.CviPI (NEB), 160 μM S-adenosylmethionine (NEB), 1 U μl−1 RNasein 
(Promega), 0.1% IGEPAL CA-630 (Sigma)). Samples were incubated for 
15 min at 37 °C to methylate accessible chromatin before the reaction 
was stopped with the addition of RLT plus buffer (Qiagen) and samples 
frozen down and stored at −80 °C before processing. Poly-A RNA was 
captured on oligo-dT conjugated to magnetic beads and amplified 
cDNA was prepared according to the G&T-seq32 and Smartseq2 proto-
cols33. The lysate containing gDNA was purified on AMPureXP beads 

before bisulfite-sequencing (BS-seq) libraries were prepared according 
to the scBS-seq protocol34.

A subset of embryo cells were processed for scRNA-seq only (1,419 
cells after QC). These followed the same protocol but we discarded 
the gDNA after separation.

A full step-by-step protocol for scNMT-seq is available at https://doi.
org/10.17504/protocols.io.6jnhcme.

Sequencing
All sequencing was carried out on a NextSeq500 instrument. BS-seq 
libraries were sequenced in 48-plex pools using 75-bp paired-end reads 
in high-output mode. RNA-seq libraries were pooled as either 384 plexes 
and sequenced using 75-bp paired-end reads in high-output mode or 
192 plexes and sequenced using 75-bp paired-end reads in mid-output 
mode. This yielded a mean raw sequencing depth of 8.5 million (BS-seq) 
and 1 million (RNA-seq) paired-end reads per cell.

RNA-seq alignment and quantification
RNA-seq libraries were aligned to the GRCm38 mouse genome build 
using HiSat235 (v.2.1.0) using options–dta–sp. 1000,1000–no-mixed–
no-discordant, yielding a mean of 681,000 aligned reads per cell. Sub-
sequently, gene expression counts were quantified from the mapped 
reads using featureCounts36 with the Ensembl gene annotation37 (v.87). 
Only protein-coding genes matching canonical chromosomes were 
considered. The read counts were log-transformed and size-factor 
adjusted38.

BS-seq alignment and methylation/accessibility quantification
BS-seq libraries were aligned to the bisulfite converted GRCm38 mouse 
genome using Bismark39 (v.0.19.1) in single-end nondirectional mode. 
Following the removal of PCR duplicates, we retained a mean of 1.6 mil-
lion reads per cell. Methylation calling and separation of endogenous 
methylation (from A-C-G and T-C-G trinucleotides) and chromatin 
accessibility (G-C-A, G-C-C and G-C-T trinucleotides) was performed 
with Bismark using the–NOMe option of the coverage2cytosine script.

Following a previous approach40, individual CpG or GpC sites in each 
cell were modelled using a binomial distribution in which the number 
of successes is the number of reads that support methylation and the 
number of trials is the total number of reads. A CpG methylation or 
GpC accessibility rate for each site and cell was calculated by maxi-
mum likelihood. The rates were subsequently rounded to the nearest 
integer (0 or 1).

When aggregating over genomic features, CpG methylation and 
GpC accessibility rates were computed assuming a binomial model, 
with the number of trials being the number of observed CpG sites 
and the number of successes being the number of methylated CpGs.  
Notably, this implies that DNA methylation and chromatin accessibility  
is quantified as a rate (or a percentage). We avoid binarizing DNA meth-
ylation and chromatin accessibility values into low and high states, as 
this is not a good representation of the continuous nature of the data 
(Extended Data Fig. 3).

ChIP–seq data processing
ChIP–seq data were obtained from the Gene Expression Omnibus 
accession code GSE125318. Reads were trimmed using Trim Galore 
(v.0.4.5, cutadapt 1.15, single end mode) and mapped to Mus musculus 
GRCm38 using Bowtie241 (v.2.3.2). Read 2 was excluded from the analysis 
for paired-end samples because of low-quality scores (Phred <25). All 
analyses were performed using SeqMonk (https://www.bioinformatics.
babraham.ac.uk/projects/seqmonk/). For quantification, read length 
was extended to 300 bp and regions of coverage outliers and extreme 
strand bias were excluded as these were assumed to be alignment arte-
facts. Comparison of datasets with different read lengths did not reveal 
major mapping differences, and thus mapped, extended reads were 
merged for samples that were sequenced across more than one lane. 

https://doi.org/10.17504/protocols.io.6jnhcme
https://doi.org/10.17504/protocols.io.6jnhcme
https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/
https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/


Samples were similar overall regarding total mapped read numbers, 
distribution of reads and ChIP enrichment.

To best represent the underlying ChIP–seq signal, different meth-
ods to define enriched genomic regions were used for H3K4me3 and 
H3K27ac marks. For H3K4me3, a SeqMonk implementation of MACS42 
with the local rescoring step omitted was used (P < 10−15, fragment size 
300 bp), and enriched regions closer than 100 bp were merged. Peaks 
were called separately for each lineage. For H3K27ac, reads were quan-
titated per 500-bp tiles correcting per million total reads and excluding 
duplicate reads. Smoothing subtraction quantification was used to 
identify local maxima (value >1), and peaks closer than 500 bp apart 
were merged. Lineage-specific peak annotations exclude peaks that 
are also present in one of the other lineages, and only peaks present in 
both replicates were considered (Extended Data Fig. 5).

Publicly available ChIP–seq libraries for H3K27ac20–22 were processed 
with Trim Galore and Bowtie2 (see above), and analysed in Seqmonk. 
Read counts were determined for 1-kb non-overlapping tiles and, sep-
arately, for lineage-specific enhancers (average length 1.2 kb). The 
genomic tiles were used to determine the distribution of H3K27ac 
across the genome. Enhancers were classified as marked if their read 
counts were within the top 5% of the distribution.

scRNA-seq and scBS-seq quality control
For RNA expression, cells with less than 100,000 mapped reads and 
with less than 500 expressed genes were excluded. For DNA meth-
ylation and chromatin accessibility, cells with less than 50,000 CpG 
sites and 500,000 GpC sites covered, respectively, were discarded 
(Extended Data Fig. 1).

Lineage assignment using RNA expression
Lineages were assigned by mapping the RNA-expression profiles to 
a comprehensive single-cell atlas from the same stages4, when avail-
able (stages E6.5 and E7.5), or by SC343 otherwise (stages E4.5 and E5.5) 
(Extended Data Fig. 2). Extra-embryonic cells were identified by these 
methods and excluded from further analyses.

The mapping was performed by matching mutual nearest neigh-
bours44. First, count matrices from both experiments were concat-
enated and normalized together. Highly variable genes were selected38 
from the resulting expression matrix and were used as input for princi-
pal components analysis. Subsequently, batch correction was applied 
to remove the technical variability between the two experiments and 
a k-nearest neighbours graph was computed between them. For each 
scNMT-seq cell, the cell type was selected as the mode from a Dirichlet 
distribution given by the cell type distribution of the top 30 nearest 
neighbours in the atlas (that is, majority voting).

Correlation analysis
To identify genes with an association between the mRNA expression 
and promoter epigenetic status, we calculated the correlation coef-
ficient for each gene across all cells between the RNA expression and 
the corresponding DNA methylation or chromatin accessibility levels 
at the gene’s promoter ±2 kb around the transcription start site (TSS).

As a filtering criterion, we required, for each genomic feature, a mini-
mum number of 1 CpG (methylation) or 5 GpC (accessibility) measure-
ments in at least 50 cells. Additionally, the top-5,000 most variable 
genes (across all cells) were selected, according to the rationale of 
independent filtering45. Two-tailed Student’s t-tests were performed 
to test for evidence against the null hypothesis of no correlation, and 
P values were adjusted for multiple testing using the Benjamini–Hoch-
berg procedure46.

Differential DNA methylation and chromatin accessibility 
analysis
Differential analysis of DNA methylation and chromatin accessibil-
ity was performed using a Fisher exact test independently for each 

genomic element. Cells were aggregated into two exclusive groups 
and, for a given genomic element, we created a contingency table by 
aggregating (across cells) the number of methylated and unmethyl-
ated nucleotides. Multiple testing correction was applied using the 
Benjamini–Hochberg procedure. As a filtering criteria, we required 
1 CpG (methylation) and 5 GpC (accessibility) observations in at least 
10 cells per group. Non-variable regions were filtered out before dif-
ferential testing.

Motif enrichment
To find transcription factor motifs enriched in lineage-associated sites, 
we used H3K27ac sites that were identified as differentially accessible 
between lineages as explained above. We tested for enrichment over a 
background of all H3K27ac sites using ame (meme suite47 v.4.10.1) with 
parameters –method fisher–scoring avg. Position frequency matrices 
were downloaded from the Jaspar core vertebrates database48. This 
is a curated list of experimentally derived binding motifs and not an 
exhaustive set, which means that some important transcription factors 
will not be analysed, owing to absence of their motifs.

Differential RNA-expression analysis
Differential RNA-expression analysis between prespecified groups of 
interest was performed using the genewise negative binomial general-
ized linear model with quasi-likelihood test from edgeR49. Significant 
hits were called with a 1% FDR (Benjamini–Hochberg procedure) and a 
minimum log2 fold change of 1. Genes with low expression (mean log2 
counts <0.5) were filtered out before differential testing45.

Dimensionality reduction for DNA methylation and chromatin 
accessibility data using Bayesian factor analysis
To handle the large number of missing values in DNA methylation and 
chromatin accessibility data, we used a linear Bayesian factor analysis 
model15. The linearity assumption renders the model output directly 
interpretable, and more robust to changes in hyperparameters than 
nonlinear methods, particularly with small numbers of cells. We trained 
every model using the top-5,000 most variable features and we con-
strained the latent space to two latent factors, which were used for 
visualization (Fig. 1c, d, Extended Data Fig. 3). Variance-explained 
estimates were computed using the coefficient of determination as 
previously described15.

MOFA
The input to MOFA is a list of matrices, in which each matrix represents 
a different data modality. RNA-expression measurements were defined 
as one data modality. For DNA methylation and chromatin accessi-
bility, we defined separate matrices for promoters, distal H3K27ac 
sites (enhancers) and H3K4me3 (TSS). Promoters were defined as a 
bidirectional 2-kb window around the TSS of protein-coding genes. 
For each genomic context, we created a DNA methylation matrix and 
a chromatin accessibility matrix by quantifying M-values for each cell 
and genomic element.

As a filtering criterion, genomic features were required to have a 
minimum of 1 CpG (methylation) or 5 GpC (accessibility) observed 
in at least 25 cells. Genes were required to have a minimum  
cellular detection rate of 25%. In addition, to reduce computational 
complexity, the top 1,000 most variable features were selected per 
view. Similarly, the top 2,500 most variable genes were selected for 
RNA expression.

Similar to most latent dimensionality reduction methods, the optimi-
zation procedure of MOFA is not guaranteed to find a global optimum. 
Following ref. 15, model selection was performed by selecting the model 
with the highest evidence lower bound out of ten trials.

The number of factors was calculated by requiring a minimum of 1% 
variance explained in the RNA. The robustness of factors across trials 
was assessed by calculating the correlation coefficients between every 
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pair of factors across the ten trials. All inferred factors were consistently 
found in all model instances.

The downstream characterization of the model output included 
several analyses. (1) Variance decomposition: quantification of the 
fraction of variance explained (R2) by each factor in each view, using a 
coefficient of determination15. (2) Visualization of weights/loadings: 
the model learns a weight for every feature in each factor, which can 
be interpreted as a measure of feature importance. Features with large 
weights (in absolute value) are highly correlated with the factor val-
ues. (3) Visualization of factors: each MOFA factor captures a different 
dimension of cellular heterogeneity. All together, they define a latent 
space that maximizes the variance explained in the data (under some 
important sparsity assumptions15). The cells can be visualized in the 
latent space by plotting scatter plots of combinations of factors. (4) 
Gene set enrichment analysis: when inspecting the weights for a given 
factor, multiple features can be combined into a gene set-based annota-
tion. For a given gene set G, we evaluate its significance via a parametric 
t-test (two-sided), whereby we compare the mean of the weights of 
the foreground set (features that belong to the set G) with the mean 
of the weights in the background set (features that do not belong to 
the set G). Resulting P values are adjusted for multiple testing using 
the Benjamini–Hochberg procedure from which significant pathways 
are called (FDR <10%).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw sequencing data together with processed files (RNA counts, CpG 
methylation reports, GpC accessibility reports) are available in the 
Gene Expression Omnibus under accession number GSE121708. Pro-
cessed data can be downloaded from ftp://ftp.ebi.ac.uk/pub/databases/
scnmt_gastrulation.

Code availability
All code used for analysis is available at https://github.com/rargelaguet/
scnmt_gastrulation.
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Extended Data Fig. 1 | scNMT-seq quality controls. a, b, Number of observed 
cytosines in CpG (red; a) or GpC (blue; b) contexts respectively. Each bar 
corresponds to one cell. Cells are sorted by total number of CpG or GpC sites. 
Cells below the dashed line were discarded on the basis of poor coverage 
(n = 1,105). c, RNA-library size per cell. Top, total number of reads. Bottom, 
number of expressed genes (read counts >0). Cells below the dashed line were 

discarded on the basis of poor coverage (n = 2,524). d, Venn diagram displaying 
the number of cells that pass quality control for RNA expression (green), DNA 
methylation (red) and chromatin accessibility (blue). e, Number of cells that 
pass quality control for each molecular layer, grouped by stage. For 1,419 out of 
2,524 total cells, only the RNA expression was sequenced.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Cell-type assignments based on RNA expression. a, b, 
Lineage assignment of E4.5 cells (a; n = 175) and E5.5 cells (b; n = 173). Top left, 
SC3 consensus plots representing the similarity between cells on the basis of 
averaging of clustering results from multiple combinations of clustering 
parameters. Top right, heat map showing the RNA expression (log normalized 
counts) of the ten most informative gene markers for each cluster. Bottom left, 
t-distributed stochastic neighbour embedding (t-SNE) representation of the 
RNA-expression data coloured by the expression of Fg f4 and Pou5f1, known 
E4.5 and E5.5 epiblast markers50,51, respectively. Bottom right, t-SNE 
representation of the RNA-expression data coloured by the expression of 
Gata6 and Amn, known E4.5 primitive endoderm and E5.5 visceral endoderm 

markers52. c, d, Lineage assignment of E6.5 cells (c; n = 977) and E7.5 cells (d; 
n = 1,155). Left, UMAP projection of the atlas dataset (stages E6.5 to E7.0 to 
assign E6.5 cells and E7.0 to E8.0 to assign E7.5 cells). In the top-left panel, cells 
are coloured by lineage assignment. In the bottom-left panel, the cells coloured 
in red are the nearest neighbours that were used to transfer labels to the 
scNMT-seq dataset. In right panels, cells are coloured by the relative RNA 
expression of lineage-marker genes. e, Top, number of cells per lineage, using 
the maximally resolved cell types reported in ref. 4. Bottom, number of cells per 
lineage after aggregation of cell types belonging to the same germ layer or 
extra-embryonic tissue type, as used in this study.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Global methylation and chromatin accessibility 
dynamics. a, b, Distribution of DNA methylation (a) and chromatin 
accessibility levels (b) per stage and genomic context. When aggregating over 
genomic features, CpG methylation and GpC accessibility levels (%) are 
computed assuming a binomial model, with the number of trials being the total 
number of observed CpG (or GpC) sites and the number of successes being the 
number of methylated CpG (or GpC) sites (Methods). Notably, this implies that 
DNA methylation and chromatin accessibility are quantified as a percentage 
and are not binarized into low or high states. As this figure shows, the 
distribution of DNA methylation and chromatin accessibility across loci (after 
aggregating measurements across all cells per stage) is largely continuous and 
does not show bimodality. Hence, a binary approach similar to that sometimes 
used for differentiated cell types would not provide a good representation of 
the data. c, d, Box plots showing the distribution of genome-wide CpG 
methylation levels (c) or GpC accessibility levels (d) per stage and lineage. Each 
dot represents a single cell. Box plots show median levels and the first and third 

quartile, whiskers show 1.5× the interquartile range. At a significance threshold 
of 0.01 (t-test, two-sided), the global DNA methylation levels differ between 
embryonic and extra-embryonic lineages, but the global chromatin 
accessibility levels do not. e, f, Dimensionality reduction of DNA methylation 
(e) and chromatin accessibility (f) data. To perform dimensionality reduction 
while handling the large amount of missing values, we used a Bayesian factor 
analysis model (Methods). Scatter plots of the first two latent factors (sorted by 
variance explained) for models trained with cells from the indicated stages are 
shown. From E4.5 to E6.5, cells are coloured by embryonic and extra-embryonic 
origin. At E7.5, cells are coloured by the primary germ layer. All lineage 
assignments were made using the cells’ corresponding RNA-expression levels 
(Extended Data Fig. 2). The fraction of variance explained by each factor is 
displayed in parentheses. The input data were M-values quantified over DNase I 
hypersensitive sites profiled in ES cells (n = 175,231, subset to the top 5,000 
most variable sites to fit the model).
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Extended Data Fig. 4 | DNA methylation and chromatin accessibility 
changes in promoters are associated with repression of early pluripotency 
and germ cell markers. a, Volcano plots display differential RNA-expression 
levels between E4.5 and E7.5 cells (in log2 counts, x axis) versus adjusted 
correlation P values (FDR <10% in red, Benjamini–Hochberg correction,  
n = 5,000 genes). Left, DNA methylation versus RNA-expression correlations; 
right, chromatin accessibility versus RNA expression. Negative values for 
differential RNA expression indicate higher expression in E4.5, whereas 

positive values indicate higher expression in E7.5. b, Illustrative examples of 
epigenetic repression of early pluripotency and germ cell markers. Box and 
violin plots show the distribution of RNA expression (log2 counts, green), DNA 
methylation (red) and chromatin accessibility (blue) levels per stage. Box plots 
show median coverage and the first and third quartile, whiskers show 1.5× the 
interquartile range. Each dot corresponds to one cell. For each gene a genomic 
track is shown on top, and the promoter region that is used to quantify DNA 
methylation and chromatin accessibility levels is highlighted in yellow.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Characterization of lineage-specific H3K27ac and 
H3K4me3 ChIP–seq data. a, Percentage of peaks overlapping promoters 
(±500 bp of TSS of annotated mRNAs (Ensembl v.87); lighter colour) and not 
overlapping promoters (distal peaks, darker colour). H3K27ac peaks tend to be 
distal from the promoters, marking putative enhancer elements53. H3K4me3 
peaks tend to overlap promoter regions, marking TSS54. b, Venn diagrams 
showing overlap of peaks for each lineage, for distal H3K27ac (left) and 
H3K4me3 (right). This shows that H3K27ac peaks tend to be lineage-specific, 
whereas H3K4me3 peaks tend to be shared between lineages. c, Illustrative 
example of the ChIP–seq profile for the ectoderm marker Cxcl12. The top tracks 
show wiggle plots of ChIP–seq read density (normalized by total read count) 

for lineage-specific H3K27ac and H3K4me3. The coding sequence is shown in 
black. The bottom tracks show the lineage-specific peak calls (Methods). 
H3K27ac peaks are split into distal (putative enhancers) and proximal to the 
promoter. d, Left, bar plot of the fraction of E7.5 lineage-specific enhancers 
(n = 691 for ectoderm, 618 for endoderm and 340 for mesoderm) that are 
uniquely marked by H3K27ac in either E10.5 midbrain, E12.5 gut or E10.5 heart. 
Right, heat map displaying H3K27ac levels at individual lineage-specific 
enhancers (n = 2,039 for ectoderm, 1,124 for endoderm and 631 for mesoderm) 
in more differentiated tissues. E7.5 enhancers are predominantly marked in 
their differentiated-tissue counterparts (midbrain for ectoderm, gut for 
endoderm and heart for mesoderm).



Extended Data Fig. 6 | Differential DNA methylation and chromatin 
accessibility analysis at E7.5 for different genomic contexts. a, Bar plots 
showing the fraction (left) or the total number (right) of differentially 
methylated (red) or accessible (blue) loci (FDR <10%, y axis) per genomic 
context (x axis). Each subplot corresponds to the comparison of one cell type 
(group A) against cells comprising the other cell types present at E7.5 (group 
B). In the graphs on the right, positive values indicate an increase in DNA 
methylation or chromatin accessibility in group A, whereas negative values 
indicate a decrease in DNA methylation or chromatin accessibility. Differential 

analysis of DNA methylation and chromatin accessibility was performed 
independently for each genomic element using a two-sided Fisher’s exact test 
of equal proportions (Methods). b, Scatter plots showing differential DNA 
methylation (x axis) versus chromatin accessibility ( y axis) analysis at 
promoters. Ectoderm versus non-ectoderm cells (left), endoderm versus non-
endoderm cells (middle) and mesoderm versus non-mesoderm cells (right) are 
shown. Each dot corresponds to a gene (n = 2,038). Labelled black dots 
highlight genes with lineage-specific RNA expression that show significant 
differential methylation or accessibility in their promoters (FDR <10%).
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Extended Data Fig. 7 | Illustrative examples of putative epigenetic 
regulation in enhancer elements during germ-layer commitment. a–c, Box 
and violin plots showing the distribution of RNA expression (log2 counts, 
green), enhancer DNA methylation (red) and chromatin accessibility (blue) 
levels for key germ-layer markers per stage and cell type. Marker genes for 
ectoderm (a), mesoderm (b) and endoderm (c) are shown. Box plots show 

median levels and the first and third quartile, whiskers show 1.5× the 
interquartile range. Each dot corresponds to a single cell. For each gene, a 
genomic track is shown on the top. The enhancer region that is used to quantify 
DNA methylation and chromatin accessibility levels is represented with a star 
and highlighted in yellow. Genes were linked to putative enhancers by 
overlapping genomic coordinates with a maximum distance of 50 kb.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Characterization of MOFA factors. a, Factor 1 as 
mesoderm commitment factor. Left, RNA-expression loadings for factor 1. 
Genes with large positive loadings increase expression in the positive factor 
values (mesoderm cells). Middle, scatter plot of factor 1 (x axis) and factor 2 ( y 
axis) values. Each dot corresponds to a single cell, coloured by the average 
methylation levels of the top 100 enhancers with highest loading. Right, as the 
middle panel, except cells are coloured by the average accessibility levels. b, 
Factor 2 as the endoderm commitment factor. Left, RNA-expression loadings 
for factor 2. Genes with large positive loadings increase expression in the 
positive factor values (endoderm cells). Middle, scatter plot of factor 1 (x axis) 
and factor 2 ( y axis) values. Each dot corresponds to a single cell, coloured by 
the average methylation levels (%) of the top 100 enhancers with highest 
loading. Right, as the middle panel, but cells are coloured by the average 
accessibility levels. c, Characterization of MOFA factor 3 as anteroposterior 
axial patterning and mesoderm maturation. Left, bee swarm plot of factor 3 
values, grouped and coloured by cell type. The mesoderm cells are 

subclassified into nascent and mature mesoderm (Extended Data Fig. 2). Right, 
gene set enrichment analysis of the gene loadings of factor 3. The top most 
significant pathways from MSigDB C255 (Methods) are shown. d, 
Characterization of MOFA Factor 6 as cell cycle. Left, bee swarm plot of factor 6 
values, grouped by cell type and coloured by inferred cell-cycle state using 
cyclone56 (G1/2, cyan; G2/M, yellow). Right, gene set enrichment analysis of the 
gene loadings of factor 6. The top most significant pathways from MSigDB 
C255 are shown. e, Characterization of MOFA factor 4 as notochord formation. 
Left, bee swarm plot of factor 4 values, grouped and coloured by cell type. The 
endoderm cells are subclassified into notochord (dark green) and not 
notochord (green) (Extended Data Fig. 2). Middle, RNA-expression loadings for 
factor 4. Genes with large negative loadings increase expression in the negative 
factor values (notochord cells). Right, same bee swarm plots as in left but 
coloured by the relative RNA expression of Calca (gene with the highest 
loading).



Extended Data Fig. 9 | DNA methylation and chromatin accessibility 
dynamics of E7.5 lineage-specific enhancers and transcription factor motifs 
across development. a, Box plots showing the distribution of DNA 
methylation (top) or chromatin accessibility (bottom) levels of E7.5 lineage-
defining enhancers, across stages and cell types. Box plots show median levels 
and the first and third quartile, whiskers show 1.5× the interquartile range. The 
dashed lines represent the global background levels of DNA methylation at E7.5 

(Extended Data Fig. 3). b, Box plots showing the distribution of chromatin 
accessibility levels (scaled to the genome-wide background) for 200-bp 
windows around transcription factor motifs associated with commitment to 
ectoderm (top), endoderm (middle) and mesoderm (bottom). Box plots show 
median levels and the first and third quartile, whiskers show 1.5× the 
interquartile range.
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Extended Data Fig. 10 | E7.5 ectoderm enhancers contain a mixture of 
pluripotency and neural signatures with different epigenetic dynamics. a, 
Scatter plot showing H3K27ac levels for individual ectoderm enhancers 
(n = 2,039) quantified in serum-grown ES cells (pluripotency enhancers, x axis) 
versus E10.5 midbrain (neuroectoderm enhancers, y axis). H3K27ac levels in the 
two lineages are negatively correlated (Pearson’s R = −0.44), indicating that 
most enhancers are either marked in ES cells or in the brain. The top 250 
enhancers that show the strongest differential H3K27ac levels between 
midbrain and ES cells (blue for midbrain-specific enhancers and grey for ES cell-
specific enhancers) are highlighted. b, Density plots of H3K27ac levels in ES 
cells versus E10.5 midbrain. H3K27ac levels are negatively correlated at E7.5 
ectoderm enhancers, but not in E7.5 endoderm (n = 1,124) or mesoderm 
enhancers (n = 631). c, Profiles of DNA methylation (red) and chromatin 
accessibility (blue) along the epiblast–ectoderm trajectory. Panels show 
different genomic contexts: E7.5 ectoderm enhancers that are specifically 
marked by H3K27ac in the midbrain (middle) or ES cells (bottom) (highlighted 

populations in a). Running averages of 50-bp windows around the centre of the 
ChIP–seq peaks (2 kb upstream and downstream) are shown. Solid lines display 
the mean across cells (within a given lineage) and shading displays the s.d. 
Dashed horizontal lines represent genome-wide background levels for DNA 
methylation (red) and chromatin accessibility (blue). For comparison, we have 
also incorporated E7.5 endoderm enhancers (top), which follow the genome-
wide repressive dynamics. d, Box plots of the distribution of DNA methylation 
(top) and chromatin accessibility (bottom) levels along the epiblast–ectoderm 
trajectory. Panels show different genomic contexts: E7.5 ectoderm enhancers 
that are specifically marked by H3K27ac in the midbrain (middle) or ES cells 
(right) (highlighted populations in a). Box plots show median levels and the 
first and third quartile, whiskers show 1.5× the interquartile range. Dashed lines 
denote background DNA methylation and chromatin accessibility levels at the 
corresponding stage and lineage. For comparison, we have also incorporated 
E7.5 endoderm enhancers (left), which follow the genome-wide repressive 
dynamics.



Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Silencing of ectoderm enhancers precedes activation 
of mesoderm and endoderm enhancers. a, Reconstructed mesoderm (top) 
and endoderm (bottom) commitment trajectories using a diffusion 
pseudotime method applied to the RNA-expression data (Methods). Scatter 
plots of the first two diffusion components are shown, with cells coloured 
according to their lineage assignment (n = 1,154 for endoderm and n = 1,511 for 
mesoderm). For both cases, ranks along the first diffusion component are 
selected to order cells according to their differentiation state. b, DNA 
methylation (red) and chromatin accessibility (blue) dynamics of lineage-
defining enhancers along the mesoderm (top) and endoderm (bottom) 

trajectories. Each dot denotes a single cell (n = 387 for endoderm and n = 474 for 
mesoderm) and black curves represent non-parametric locally estimated 
scatterplot smoothing regression estimates. In addition, for each scenario we 
fit a piecewise linear regression model for epiblast, primitive streak and 
mesoderm or endoderm cells (vertical lines indicate the discretized lineage 
transitions). For each model fit, the slope (r) and its significance level are 
displayed in the top (− for nonsignificant, 0.01<*P < 0.1 and **P < 0.01). c, Density 
plots showing differential DNA methylation (x axis) and chromatin accessibility 
( y axis) at lineage-defining enhancers calculated for each of the lineage 
transitions.



Extended Data Fig. 12 | See next page for caption.
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Extended Data Fig. 12 | Embryoid bodies recapitulate the transcriptional, 
methylation and accessibility dynamics of the embryo. a, Embryoid bodies 
show high transcriptional similarity to gastrulation-stage embryos. Top left, 
UMAP projection of RNA expression for the embryoid body dataset (n = 775). 
Cells are coloured by lineage assignment and shaped by genotype (WT or Tet 
TKO). Bottom left, UMAP projection of stages E6.5 to E8.5 of the atlas dataset 
(no extra-embryonic cells) with the nearest neighbours that were used to 
assign cell type labels to the scNMT-seq embryoid body dataset coloured in red 
(WT) or blue (Tet TKO). Middle, UMAP projection of embryoid body cells 
coloured by the relative RNA expression of marker genes. Right, scatter plot of 
the differential gene expression (log2 normalized counts) between different 
assigned lineages for embryoid bodies (x axis) versus embryos ( y axis). Each 
dot represents one gene. Pearson correlation coefficient with corresponding  
P value (two-sided) are displayed. Lines show the linear regression fit. The top-
four genes with the largest differential expression are highlighted in red.  
b, Global DNA methylation and chromatin accessibility levels during embryoid 
body differentiation. Top, box plots showing the distribution of genome-wide 

CpG methylation (left) or GpC accessibility levels (right) per time point and 
lineage (compare with Extended Data Fig. 3). Each dot represents a single cell 
(only wild-type cells are used). Box plots show median levels and the first and 
third quartile, whiskers show 1.5× the interquartile range. Bottom, heat map of 
DNA methylation (left) or chromatin accessibility (right) levels per time point 
and genomic context (compare with Fig. 1e, f). c, Ectoderm enhancers are more 
methylated in Tet TKO compared with wild-type epiblast cells in vivo. Bar plots 
show the mean (bulk) DNA methylation levels for ectoderm (left), endoderm 
(middle) and mesoderm (right) enhancers in E6.5 epiblast cells25. For each 
genotype, two replicates are shown. d, Profiles of DNA methylation (red) and 
chromatin accessibility (blue) at lineage-defining enhancers quantified over 
different lineages across embryoid body differentiation (only wild-type cells). 
Running averages in 50-bp windows around the centre of the ChIP–seq peaks 
(2 kb upstream and downstream) are shown. Solid lines display the mean across 
cells and shading displays the corresponding s.d. Dashed horizontal lines 
represent genome-wide background levels for methylation (red) and 
accessibility (blue).
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Sequencing was performed using an Illumina Nextseq500 instrument running NextSeq Control Software v4.0

Data analysis All analysis code is available at https://github.com/rargelaguet/scnmt_gastrulation

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

 Raw sequencing data together with processed files (RNA counts, CpG methylation reports, GpC accessibility reports) are available in the Gene Expression Omnibus 
under accession GSE121708. A link to the processed data is available in the GitHub project.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were determined in order to obtain at least 50 cells for each germ layer.

Data exclusions Regions of coverage outliers and extreme strand bias excluded as these were assumed to be alignment artefacts.

Replication For each developmental stage, we collected cells from at least 3 individual embryos and results were consistent across embryos.

Randomization This is not relevant since we did not use different experimental groups or conditions in our study.

Blinding This is not relevant since we did not use different experimental groups or conditions in our study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Tet[l-/- ,2 -/- ,3 -/-] (C57BL6/129/FVB) and matching wild-type mouse ES cells (Hu, X. et al. Cell Stem Cell 2014)

Authentication None

Mycoplasma contamination All cell lines tested negative for mycoplasma contamination with the MycoAlert testing kit (Lonza).

Commonly misidentified lines
(See ICLAC register)

None

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mus musculus, C57BL/6Babr. Embryos at 4.5 to 7.5 days post fertilization. Sex was unknown at the time of collection due to early 
embryonic stage.

Wild animals Study did not involve wild animals.

Field-collected samples Study did not involve field-collected samples.

Ethics oversight All mouse experiments were approved by the Babraham Institute Animal Welfare and Ethical Review Body.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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