Life Sciences Research for Lifelong Health

David Oxley

David obtained a degree in Chemistry from the University of Hull and completed a PhD studying the structures of the O- and K-polysaccharide antigens of the opportunistic pathogen Serratia marcescens. He then moved to the Plant Cell Biology Research Centre at the University of Melbourne in Australia, working first on the structure/function of the S-ribonucleases, the female component of the self-incompatibility system in the many flowering plants; and also on arabinogalactan proteins – ubiquitous plant cell surface and extracellular matrix proteoglycans. After a short spell at Proteome Systems Ltd – a biotech company in Sydney, where he set-up the LC-MS based platform for proteomic analysis and developed high sensitivity LC-MS methods for the analysis of glycoproteins. David joined the Babraham Institute in 2002 and established the Mass Spectrometry Facility, which he still runs.

Latest Publications

Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors.
Tsolakos N, Durrant TN, Chessa T, Suire SM, Oxley D, Kulkarni S, Downward J, Perisic O, Williams RL, Stephens L, Hawkins PT

Class IA PI3Ks have many roles in health and disease. The rules that govern intersubunit and receptor associations, however, remain unclear. We engineered mouse lines in which individual endogenous class IA PI3K subunits were C-terminally tagged with 17aa that could be biotinylated in vivo. Using these tools we quantified PI3K subunits in streptavidin or PDGFR pull-downs and cell lysates. This revealed that p85α and β bound equivalently to p110α or p110β but p85α bound preferentially to p110δ. p85s were found in molar-excess over p110s in a number of contexts including MEFs (p85β, 20%) and liver (p85α, 30%). In serum-starved MEFs, p110-free-p85s were preferentially, compared with heterodimeric p85s, bound to PDGFRs, consistent with in vitro assays that demonstrated they bound PDGFR-based tyrosine-phosphorylated peptides with higher affinity and co-operativity; suggesting they may act to tune a PI3K activation threshold. p110α-heterodimers were recruited 5-6× more efficiently than p110β-heterodimers to activated PDGFRs in MEFs or to PDGFR-based tyrosine-phosphorylated peptides in MEF-lysates. This suggests that PI3Kα has a higher affinity for relevant tyrosine-phosphorylated motifs than PI3Kβ. Nevertheless, PI3Kβ contributes substantially to acute PDGF-stimulation of PIP and PKB in MEFs because it is synergistically, and possibly sequentially, activated by receptor-recruitment and small GTPases (Rac/CDC42) via its RBD, whereas parallel activation of PI3Kα is independent of its RBD. These results begin to provide molecular clarity to the rules of engagement between class IA PI3K subunits in vivo and past work describing "excess p85," p85α as a tumor suppressor, and differential receptor activation of PI3Kα and PI3Kβ.

+ View Abstract

Proceedings of the National Academy of Sciences of the United States of America, 115, 1091-6490, 12176-12181, 2018

PMID: 30442661

Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data.
Olova N, Krueger F, Andrews S, Oxley D, Berrens RV, Branco MR, Reik W

Whole-genome bisulfite sequencing (WGBS) is becoming an increasingly accessible technique, used widely for both fundamental and disease-oriented research. Library preparation methods benefit from a variety of available kits, polymerases and bisulfite conversion protocols. Although some steps in the procedure, such as PCR amplification, are known to introduce biases, a systematic evaluation of biases in WGBS strategies is missing.

+ View Abstract

Genome biology, 19, 1474-760X, 33, 2018

PMID: 29544553

The Ageing Brain: Effects on DNA Repair and DNA Methylation in Mice.
Langie SA, Cameron KM, Ficz G, Oxley D, Tomaszewski B, Gorniak JP, Maas LM, Godschalk RW, van Schooten FJ, Reik W, von Zglinicki T, Mathers JC

Base excision repair (BER) may become less effective with ageing resulting in accumulation of DNA lesions, genome instability and altered gene expression that contribute to age-related degenerative diseases. The brain is particularly vulnerable to the accumulation of DNA lesions; hence, proper functioning of DNA repair mechanisms is important for neuronal survival. Although the mechanism of age-related decline in DNA repair capacity is unknown, growing evidence suggests that epigenetic events (e.g., DNA methylation) contribute to the ageing process and may be functionally important through the regulation of the expression of DNA repair genes. We hypothesize that epigenetic mechanisms are involved in mediating the age-related decline in BER in the brain. Brains from male mice were isolated at 3-32 months of age. Pyrosequencing analyses revealed significantly increased Ogg1 methylation with ageing, which correlated inversely with Ogg1 expression. The reduced Ogg1 expression correlated with enhanced expression of methyl-CpG binding protein 2 and ten-eleven translocation enzyme 2. A significant inverse correlation between Neil1 methylation at CpG-site2 and expression was also observed. BER activity was significantly reduced and associated with increased 8-oxo-7,8-dihydro-2'-deoxyguanosine levels. These data indicate that Ogg1 and Neil1 expression can be epigenetically regulated, which may mediate the effects of ageing on DNA repair in the brain.

+ View Abstract

Genes, 8, , , 2017

PMID: 28218666

01223 496258

Email David
View Profile

Keywords

 

Facility Members

Latest Publications

Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors.

Tsolakos N, Durrant TN, Chessa T

Proceedings of the National Academy of Sciences of the United States of America
115 1091-6490:12176-12181 (2018)

PMID: 30442661

The Ageing Brain: Effects on DNA Repair and DNA Methylation in Mice.

Langie SA, Cameron KM, Ficz G

Genes
8 : (2017)

PMID: 28218666

Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms.

Hore TA, von Meyenn F, Ravichandran M

Proceedings of the National Academy of Sciences of the United States of America
1091-6490: (2016)

PMID: 27729528

Resetting transcription factor control circuitry toward ground-state pluripotency in human.

Takashima Y, Guo G, Loos R

Cell
158 1097-4172:1254-69 (2014)

PMID: 25215486

The nuclear exosome is active and important during budding yeast meiosis.

Frenk S, Oxley D, Houseley J

PloS one
9 1932-6203:e107648 (2014)

PMID: 25210768

Dictyostelium uses ether-linked inositol phospholipids for intracellular signalling.

Clark J,Kay RR,Kielkowska A,Niewczas I,Fets L,Oxley D,Stephens LR,Hawkins PT

The EMBO journal
1460-2075: (2014)

PMID: 25180230