Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller AK, Moraru II, Nickerson D, Sahle S, Snoep JL, Le Novère N Signalling

The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools.

+view abstract BMC systems biology, PMID: 22172142 2011

A Paterson, CI Mockridge, JE Adams, S Krysov, KN Potter, AS Duncombe, SJ Cook, FK Stevenson, G Packham

B-cell receptor and microenvironment-derived signals promote accumulation of chronic lymphocytic leukemia (CLL) cells through increased proliferation and/or decreased apoptosis. In this study, we investigated the regulation of BIM, a proapoptotic BCL2-related protein, which is tightly regulated by phosphorylation. Surface IgM stimulation increased phosphorylation of 2 BIM isoforms, BIM(EL) and BIM(L), in a subset of CLL samples. In contrast, in normal B cells, anti-IgM triggered selective phosphorylation of BIM(EL) only. In CLL, anti-IgM-induced BIM phosphorylation correlated with unmutated IGHV gene status and with progressive disease. Strikingly, it was also associated with progressive disease within the mutated IGHV gene subset. BIM phosphorylation was dependent on MEK1/2 kinase activity, and we identified BIM(EL) serine 69, previously linked to pro-survival responses, as the major site of phosphorylation in CLL and in Ramos cells. BIM(EL)/BIM(L) phosphorylation was associated with release of the pro-survival protein MCL1. Coculture of CLL cells with HK cells, a model of the CLL microenvironment, promoted CLL cell survival and was associated with MEK1/2 activation and BIM(EL) phosphorylation. Hence, BIM phosphorylation appears to play a key role in apoptosis regulation in CLL cells, potentially coordinating antigen and microenvironment-derived survival signals. Antigen-mediated effects on BIM may be an important determinant of clinical behavior.

+view abstract Blood, PMID: 22160382 2012

A Burga, MO Casanueva, B Lehner

Many mutations, including those that cause disease, only have a detrimental effect in a subset of individuals. The reasons for this are usually unknown, but may include additional genetic variation and environmental risk factors. However, phenotypic discordance remains even in the absence of genetic variation, for example between monozygotic twins, and incomplete penetrance of mutations is frequent in isogenic model organisms in homogeneous environments. Here we propose a model for incomplete penetrance based on genetic interaction networks. Using Caenorhabditis elegans as a model system, we identify two compensation mechanisms that vary among individuals and influence mutation outcome. First, feedback induction of an ancestral gene duplicate differs across individuals, with high expression masking the effects of a mutation. This supports the hypothesis that redundancy is maintained in genomes to buffer stochastic developmental failure. Second, during normal embryonic development we find that there is substantial variation in the induction of molecular chaperones such as Hsp90 (DAF-21). Chaperones act as promiscuous buffers of genetic variation, and embryos with stronger induction of Hsp90 are less likely to be affected by an inherited mutation. Simultaneously quantifying the variation in these two independent responses allows the phenotypic outcome of a mutation to be more accurately predicted in individuals. Our model and methodology provide a framework for dissecting the causes of incomplete penetrance. Further, the results establish that inter-individual variation in both specific and more general buffering systems combine to determine the outcome inherited mutations in each individual.

+view abstract Nature, PMID: 22158248 2011

B Kreck, G Marnellos, J Richter, F Krueger, R Siebert, A Franke

Bisulfite sequencing, a combination of bisulfite treatment and high-throughput sequencing, has proved to be a valuable method for measuring DNA methylation at single base resolution. Here, we present B-SOLANA, an approach for the analysis of two-base encoding (colorspace) bisulfite sequencing data on the SOLiD platform of Life Technologies. It includes the alignment of bisulfite sequences and the determination of methylation levels in CpG as well as non-CpG sequence contexts. B-SOLANA enables a fast and accurate analysis of large raw sequence datasets.

+view abstract Bioinformatics (Oxford, England), PMID: 22155865 2012

KS Lassen, H Schultz, NH Heegaard, M He

High-throughput DNA sequencing technologies are increasingly becoming powerful systems for the comprehensive analysis of variations in whole genomes or various DNA libraries. As they are capable of producing massive collections of short sequences with varying lengths, a major challenge is how to turn these reads into biologically meaningful information. The first stage is to assemble the short reads into longer sequences through an in silico process. However, currently available software/programs allow only the assembly of abundant sequences, which apparently results in the loss of highly variable (or rare) sequences or creates artefact assemblies. In this paper, we describe a novel program (DNAseq) that is capable of assembling highly variable sequences and displaying them directly for phylogenetic analysis. In addition, this program is Microsoft Windows-based and runs by a normal PC with 700MB RAM for a general use. We have applied it to analyse a human naive single-chain antibody (scFv) library, comprehensively revealing the diversity of antibody variable complementarity-determining regions (CDRs) and their families. Although only a scFv library was exemplified here, we envisage that this program could be applicable to other genome libraries.

+view abstract New biotechnology, PMID: 22155428 2012

N Juty, N Le Novère, C Laibe Signalling

The Minimum Information Required in the Annotation of Models Registry (http://www.ebi.ac.uk/miriam) provides unique, perennial and location-independent identifiers for data used in the biomedical domain. At its core is a shared catalogue of data collections, for each of which an individual namespace is created, and extensive metadata recorded. This namespace allows the generation of Uniform Resource Identifiers (URIs) to uniquely identify any record in a collection. Moreover, various services are provided to facilitate the creation and resolution of the identifiers. Since its launch in 2005, the system has evolved in terms of the structure of the identifiers provided, the software infrastructure, the number of data collections recorded, as well as the scope of the Registry itself. We describe here the new parallel identification scheme and the updated supporting software infrastructure. We also introduce the new Identifiers.org service (http://identifiers.org) that is built upon the information stored in the Registry and which provides directly resolvable identifiers, in the form of Uniform Resource Locators (URLs). The flexibility of the identification scheme and resolving system allows its use in many different fields, where unambiguous and perennial identification of data entities are necessary.

+view abstract Nucleic acids research, PMID: 22140103 2012

Voigt P, Reinberg D Epigenetics

The chromatin adapter BRD4 may be crucial for transmitting epigenetic information by acting as a histone acetylation-dependent gene bookmark and accelerating post-mitotic transcriptional reactivation.

+view abstract Genome biology, PMID: 22126464

E Zudaire, L Gambardella, C Kurcz, S Vermeren

Angiogenesis is the generation of mature vascular networks from pre-existing vessels. Angiogenesis is crucial during the organism' development, for wound healing and for the female reproductive cycle. Several murine experimental systems are well suited for studying developmental and pathological angiogenesis. They include the embryonic hindbrain, the post-natal retina and allantois explants. In these systems vascular networks are visualised by appropriate staining procedures followed by microscopical analysis. Nevertheless, quantitative assessment of angiogenesis is hampered by the lack of readily available, standardized metrics and software analysis tools. Non-automated protocols are being used widely and they are, in general, time--and labour intensive, prone to human error and do not permit computation of complex spatial metrics. We have developed a light-weight, user friendly software, AngioTool, which allows for quick, hands-off and reproducible quantification of vascular networks in microscopic images. AngioTool computes several morphological and spatial parameters including the area covered by a vascular network, the number of vessels, vessel length, vascular density and lacunarity. In addition, AngioTool calculates the so-called "branching index" (branch points/unit area), providing a measurement of the sprouting activity of a specimen of interest. We have validated AngioTool using images of embryonic murine hindbrains, post-natal retinas and allantois explants. AngioTool is open source and can be downloaded free of charge.

+view abstract PloS one, PMID: 22110636 2011

CR Lindsay, S Lawn, AD Campbell, WJ Faller, F Rambow, RL Mort, P Timpson, A Li, P Cammareri, RA Ridgway, JP Morton, B Doyle, S Hegarty, M Rafferty, IG Murphy, EW McDermott, K Sheahan, K Pedone, AJ Finn, PA Groben, NE Thomas, H Hao, C Carson, JC Norman, LM Machesky, WM Gallagher, IJ Jackson, L Van Kempen, F Beermann, C Der, L Larue, HC Welch, BW Ozanne, OJ Sansom

Metastases are the major cause of death from melanoma, a skin cancer that has the fastest rising incidence of any malignancy in the Western world. Molecular pathways that drive melanoblast migration in development are believed to underpin the movement and ultimately the metastasis of melanoma. Here we show that mice lacking P-Rex1, a Rac-specific Rho GTPase guanine nucleotide exchange factor, have a melanoblast migration defect during development evidenced by a white belly. Moreover, these P-Rex1(-/-) mice are resistant to metastasis when crossed to a murine model of melanoma. Mechanistically, this is associated with P-Rex1 driving invasion in a Rac-dependent manner. P-Rex1 is elevated in the majority of human melanoma cell lines and tumour tissue. We conclude that P-Rex1 has an important role in melanoblast migration and cancer progression to metastasis in mice and humans.

+view abstract Nature communications, PMID: 22109529 2011

JE Mermoud, SP Rowbotham, PD Varga-Weisz

Disruption of chromatin organization during replication poses a major challenge to the maintenance and integrity of genome organization. It creates the need to accurately reconstruct the chromatin landscape following DNA duplication but there is little mechanistic understanding of how chromatin based modifications are restored on newly synthesized DNA. ATP-dependent chromatin remodeling activities serve multiple roles during replication and recent work underscores their requirement in the maintenance of proper chromatin organization. A new component of chromatin replication, the SWI/SNF-like chromatin remodeler SMARCAD1, acts at replication sites to facilitate deacetylation of newly assembled histones. Deacetylation is a pre-requisite for the restoration of epigenetic signatures in heterochromatin regions following replication. In this way, SMARCAD1, in concert with histone modifying activities and transcriptional repressors, reinforces epigenetic instructions to ensure that silenced loci are correctly perpetuated in each replication cycle. The emerging concept is that remodeling of nucleosomes is an early event imperative to promote the re-establishment of histone modifications following DNA replication.

+view abstract Cell cycle (Georgetown, Tex.), PMID: 22101266 2011

MR Branco, G Ficz, W Reik

Just over 2 years ago, TET1 was found to catalyse the oxidation of 5-methylcytosine, a well-known epigenetic mark, into 5-hydroxymethylcytosine in mammalian DNA. The exciting prospect of a novel epigenetic modification that may dynamically regulate DNA methylation has led to the rapid accumulation of publications from a wide array of fields, from biochemistry to stem cell biology. Although we have only started to scratch the surface, interesting clues on the role of 5-hydroxymethylcytosine are quickly emerging.

+view abstract Nature reviews. Genetics, PMID: 22083101 2012

AG Torres, MM Fabani, E Vigorito, D Williams, N Al-Obaidi, F Wojciechowski, RH Hudson, O Seitz, MJ Gait

Anti-miRs are oligonucleotide inhibitors complementary to miRNAs that have been used extensively as tools to gain understanding of specific miRNA functions and as potential therapeutics. We showed previously that peptide nucleic acid (PNA) anti-miRs containing a few attached Lys residues were potent miRNA inhibitors. Using miR-122 as an example, we report here the PNA sequence and attached amino acid requirements for efficient miRNA targeting and show that anti-miR activity is enhanced substantially by the presence of a terminal-free thiol group, such as a Cys residue, primarily due to better cellular uptake. We show that anti-miR activity of a Cys-containing PNA is achieved by cell uptake through both clathrin-dependent and independent routes. With the aid of two PNA analogues having intrinsic fluorescence, thiazole orange (TO)-PNA and [bis-o-(aminoethoxy)phenyl]pyrrolocytosine (BoPhpC)-PNA, we explored the subcellular localization of PNA anti-miRs and our data suggest that anti-miR targeting of miR-122 may take place in or associated with endosomal compartments. Our findings are valuable for further design of PNAs and other oligonucleotides as potent anti-miR agents.

+view abstract Nucleic acids research, PMID: 22070883 2012

LR James, S Andrews, S Walker, PR de Sousa, A Ray, NA Russell, TC Bellamy

Astrocytes express a wide range of receptors for neurotransmitters and hormones that are coupled to increases in intracellular Ca(2+) concentration, enabling them to detect activity in both neuronal and vascular networks. There is increasing evidence that astrocytes are able to discriminate between different Ca(2+)-linked stimuli, as the efficiency of some Ca(2+) dependent processes--notably release of gliotransmitters--depends on the stimulus that initiates the Ca(2+) signal. The spatiotemporal complexity of Ca(2+) signals is substantial, and we here tested the hypothesis that variation in the kinetics of Ca(2+) responses could offer a means of selectively engaging downstream targets, if agonists exhibited a "signature shape" in evoked Ca(2+) response. To test this, astrocytes were exposed to three different receptor agonists (ATP, glutamate and histamine) and the resultant Ca(2+) signals were analysed for systematic differences in kinetics that depended on the initiating stimulus. We found substantial heterogeneity between cells in the time course of Ca(2+) responses, but the variation did not correlate with the type or concentration of the stimulus. Using a simple metric to quantify the extent of difference between populations, it was found that the variation between agonists was insufficient to allow signal discrimination. We conclude that the time course of global intracellular Ca(2+) signals does not offer the cells a means for distinguishing between different neurotransmitters.

+view abstract PloS one, PMID: 22046396 2011

CH Eskiw, P Fraser

RNA polymerase II (RNAPII) transcription has been proposed to occur at transcription factories; nuclear focal accumulations of the active, phosphorylated forms of RNAPII. The low ratio of transcription factories to active genes and transcription units suggests that genes must share factories. Our previous analyses using light microscopy have indicated that multiple genes could share the same factory. Furthermore, we found that a small number of specialized transcription factories containing high levels of the erythroid-specific transcription factor KLF1 preferentially transcribed a network of KLF1-regulated genes. Here we used correlative light microscopy in combination with energy filtering transmission electron microscopy (EFTEM) and electron microscopy in situ hybridization (EMISH) to analyse transcription factories, transcribing genes, and their nuclear environments at the ultrastructural level in ex vivo mouse foetal liver erythroblasts. We show that transcription factories in this tissue can be recognized as large nitrogen-rich structures with a mean diameter of 130 nm, which is considerably larger than that previously seen in transformed cultured cell lines. We show that KLF1-specialized factories are significantly larger, with the majority of measured factories occupying the upper 25th percentile of this distribution with an average diameter of 174 nm. In addition, we show that very highly transcribed genes associated with erythroid differentiation tend to occupy and share the largest factories with an average diameter of 198 nm. Our results suggest that individual factories are dynamically organized and able to respond to the increased transcriptional load imposed by multiple highly transcribed genes by significantly increasing in size.

+view abstract Journal of cell science, PMID: 22045738 2011

E Moens, M Veldhoen

The external surfaces of the body, such as the skin and the gastrointestinal mucosal membrane, are an important line of defence preventing the invasion of microorganisms and their products. Mucosal immune cells, especially intraepithelial lymphocytes, are involved in maintaining the integrity of these epithelial barriers. They contribute towards the tolerance to commensal organisms, which occupy these same sites, and to the immune responses against harmful organisms and their products. The composition of the microbiota is influenced by immune cells as well as external environmental factors, especially the use of antibiotics and diet. There is an increasing appreciation that the microbiota affects systemic immune responses in addition to local immunity. Failure to control the occupancy by microorganisms may result in the disruption of the delicate homeostasis between beneficial and harmful microorganisms and contribute to inflammatory pathologies. This review will discuss some of our current understanding of the impact of immune cells and diet on the microbiota.

+view abstract Immunology, PMID: 22044254 2012

Ribeiro de Almeida C, Stadhouders R, de Bruijn MJ, Bergen IM, Thongjuea S, Lenhard B, van Ijcken W, Grosveld F, Galjart N, Soler E, Hendriks RW

Regulation of immunoglobulin (Ig) V(D)J gene rearrangement is dependent on higher-order chromatin organization. Here, we studied the in vivo function of the DNA-binding zinc-finger protein CTCF, which regulates interactions between enhancers and promoters. By conditional deletion of the Ctcf gene in the B cell lineage, we demonstrate that loss of CTCF allowed Ig heavy chain recombination, but pre-B cell proliferation and differentiation was severely impaired. In the absence of CTCF, the Igκ light chain locus showed increased proximal and reduced distal Vκ usage. This was associated with enhanced proximal Vκ and reduced Jκ germline transcription. Chromosome conformation capture experiments demonstrated that CTCF limits interactions of the Igκ enhancers with the proximal V(κ) gene region and prevents inappropriate interactions between these strong enhancers and elements outside the Igκ locus. Thus, although Ig gene recombination can occur in the absence of CTCF, it is a critical factor determining Vκ segment choice for recombination.

+view abstract Immunity, PMID: 22035845 2011

Courtot M, Juty N, Knüpfer C, Waltemath D, Zhukova A, Dräger A, Dumontier M, Finney A, Golebiewski M, Hastings J, Hoops S, Keating S, Kell DB, Kerrien S, Lawson J, Lister A, Lu J, Machne R, Mendes P, Pocock M, Rodriguez N, Villeger A, Wilkinson DJ, Wimalaratne S, Laibe C, Hucka M, Le Novère N Signalling

The use of computational modeling to describe and analyze biological systems is at the heart of systems biology. Model structures, simulation descriptions and numerical results can be encoded in structured formats, but there is an increasing need to provide an additional semantic layer. Semantic information adds meaning to components of structured descriptions to help identify and interpret them unambiguously. Ontologies are one of the tools frequently used for this purpose. We describe here three ontologies created specifically to address the needs of the systems biology community. The Systems Biology Ontology (SBO) provides semantic information about the model components. The Kinetic Simulation Algorithm Ontology (KiSAO) supplies information about existing algorithms available for the simulation of systems biology models, their characterization and interrelationships. The Terminology for the Description of Dynamics (TEDDY) categorizes dynamical features of the simulation results and general systems behavior. The provision of semantic information extends a model's longevity and facilitates its reuse. It provides useful insight into the biology of modeled processes, and may be used to make informed decisions on subsequent simulation experiments.

+view abstract Molecular systems biology, PMID: 22027554 2011

SA Smallwood, G Kelsey

DNA methylation is a fundamentally important epigenetic modification of the mammalian genome that has widespread influences on gene expression. During germ-cell specification and maturation, epigenetic reprogramming occurs and the DNA methylation landscape is profoundly remodelled. Defects in this process have major consequences for embryonic development and are associated with several genetic disorders. In this review we report our current understanding of the molecular mechanisms associated with de novo DNA methylation in germ cells. We discuss recent discoveries connecting histone modifications, transcription and the DNA methylation machinery, and consider how these new findings could lead to a model for methylation establishment. Elucidating how DNA methylation marks are established in the germline has been a challenge for nearly 20 years, but represents a key step towards a full understanding of several biological processes including genomic imprinting, epigenetic reprogramming and the establishment of the pluripotent state in early embryos.

+view abstract Trends in genetics : TIG, PMID: 22019337 2012

Ascierto ML,Worschech A,Yu Z,Adams S,Reinboth J,Chen NG,Pos Z,Roychoudhuri R,Di Pasquale G,Bedognetti D,Uccellini L,Rossano F,Ascierto PA,Stroncek DF,Restifo NP,Wang E,Szalay AA,Marincola FM Immunology

Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo.

+view abstract BMC cancer, PMID: 22011439 2011

O Florey, SE Kim, CP Sandoval, CM Haynes, M Overholtzer

Autophagy normally involves the formation of double-membrane autophagosomes that mediate bulk cytoplasmic and organelle degradation. Here we report the modification of single-membrane vacuoles in cells by autophagy proteins. LC3 (Light chain 3) a component of autophagosomes, is recruited to single-membrane entotic vacuoles, macropinosomes and phagosomes harbouring apoptotic cells, in a manner dependent on the lipidation machinery including ATG5 and ATG7, and the class III phosphatidylinositol-3-kinase VPS34. These downstream components of the autophagy machinery, but not the upstream mammalian Tor (mTor)-regulated ULK-ATG13-FIP200 complex, facilitate lysosome fusion to single membranes and the degradation of internalized cargo. For entosis, a live-cell-engulfment program, the autophagy-protein-dependent fusion of lysosomes to vacuolar membranes leads to the death of internalized cells. As pathogen-containing phagosomes can be targeted in a similar manner, the death of epithelial cells by this mechanism mimics pathogen destruction. These data demonstrate that proteins of the autophagy pathway can target single-membrane vacuoles in cells in the absence of pathogenic organisms.

+view abstract Nature cell biology, PMID: 22002674 2011

Y Li, S Innocentin, DR Withers, NA Roberts, AR Gallagher, EF Grigorieva, C Wilhelm, M Veldhoen

The body's surfaces form the interface with the external environment, protecting the host. These epithelial barriers are also colonized by a controlled diversity of microorganisms, disturbances of which can give rise to disease. Specialized intraepithelial lymphocytes (IELs), which reside at these sites, are important as a first line of defense as well as in epithelial barrier organization and wound repair. We show here that the aryl hydrocarbon receptor (AhR) is a crucial regulator in maintaining IEL numbers in both the skin and the intestine. In the intestine, AhR deficiency or the lack of AhR ligands compromises the maintenance of IELs and the control of the microbial load and composition, resulting in heightened immune activation and increased vulnerability to epithelial damage. AhR activity can be regulated by dietary components, such as those present in cruciferous vegetables, providing a mechanistic link between dietary compounds, the intestinal immune system, and the microbiota.

+view abstract Cell, PMID: 21999944 2011

LJ Davison, C Wallace, JD Cooper, NF Cope, NK Wilson, DJ Smyth, JM Howson, N Saleh, A Al-Jeffery, KL Angus, HE Stevens, S Nutland, S Duley, RM Coulson, NM Walker, OS Burren, CM Rice, F Cambien, T Zeller, T Munzel, K Lackner, S Blankenberg, , P Fraser, B Gottgens, JA Todd, T Attwood, S Belz, P Braund, F Cambien, J Cooper, A Crisp-Hihn, P Diemert, P Deloukas, N Foad, J Erdmann, AH Goodall, J Gracey, E Gray, R Gwilliams, S Heimerl, C Hengstenberg, J Jolley, U Krishnan, H Lloyd-Jones, I Lugauer, P Lundmark, S Maouche, JS Moore, D Muir, E Murray, CP Nelson, J Neudert, D Niblett, K O'Leary, WH Ouwehand, H Pollard, A Rankin, CM Rice, H Sager, NJ Samani, J Sambrook, G Schmitz, M Scholz, L Schroeder, H Schunkert, AC Syvannen, S Tennstedt, C Wallace

The chromosome 16p13 region has been associated with several autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). CLEC16A has been reported as the most likely candidate gene in the region, since it contains the most disease-associated single-nucleotide polymorphisms (SNPs), as well as an imunoreceptor tyrosine-based activation motif. However, here we report that intron 19 of CLEC16A, containing the most autoimmune disease-associated SNPs, appears to behave as a regulatory sequence, affecting the expression of a neighbouring gene, DEXI. The CLEC16A alleles that are protective from T1D and MS are associated with increased expression of DEXI, and no other genes in the region, in two independent monocyte gene expression data sets. Critically, using chromosome conformation capture (3C), we identified physical proximity between the DEXI promoter region and intron 19 of CLEC16A, separated by a loop of >150 kb. In reciprocal experiments, a 20 kb fragment of intron 19 of CLEC16A, containing SNPs associated with T1D and MS, as well as with DEXI expression, interacted with the promotor region of DEXI but not with candidate DNA fragments containing other potential causal genes in the region, including CLEC16A. Intron 19 of CLEC16A is highly enriched for transcription-factor-binding events and markers associated with enhancer activity. Taken together, these data indicate that although the causal variants in the 16p13 region lie within CLEC16A, DEXI is an unappreciated autoimmune disease candidate gene, and illustrate the power of the 3C approach in progressing from genome-wide association studies results to candidate causal genes.

+view abstract Human molecular genetics, PMID: 21989056 2012

TB Nesterova, CE Senner, J Schneider, T Alcayna-Stevens, A Tattermusch, M Hemberger, N Brockdorff

Expression of Xist, the master regulator of X chromosome inactivation, is extinguished in pluripotent cells, a process that has been linked to programmed X chromosome reactivation. The key pluripotency transcription factors Nanog, Oct4 and Sox2 are implicated in Xist gene extinction, at least in part through binding to an element located in Xist intron 1. Other pathways, notably repression by the antisense RNA Tsix, may also be involved.

+view abstract Epigenetics & chromatin, PMID: 21982142 2011

Webster J, Oxley D Mass Spectrometry

MALDI-TOF mass spectrometers are now commonplace and their relative ease of use means that most non-specialist labs can readily access the technology for the rapid and sensitive analysis of biomolecules. One of the main uses of MALDI-TOF-MS is in the identification of proteins, by peptide mass fingerprinting (PMF). Here we describe a simple protocol that can be performed in a standard biochemistry laboratory, whereby proteins separated by 1D or 2D gel electrophoresis can be identified at femtomole levels. The procedure involves excision of the spot or band from the gel, washing and destaining, reduction and alkylation, in-gel trypsin digestion, MALDI-TOF-MS of the tryptic peptides and database searching of the PMF data. Up to 96 protein samples can easily be manually processed at one time by this method.

+view abstract Methods in molecular biology (Clifton, N.J.), PMID: 21964792 2012