The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
KRAB zinc finger proteins (KZFPs) represent one of the largest families of DNA-binding proteins in vertebrate genomes and appear to have evolved to silence transposable elements (TEs) including endogenous retroviruses through sequence-specific targeting of repressive chromatin states. ZFP57 is required to maintain the post-fertilization DNA methylation memory of parental origin at genomic imprints. Here we conduct RNA-seq and ChIP-seq analyses in normal and ZFP57 mutant mouse ES cells to understand the relative importance of ZFP57 at imprints, unique and repetitive regions of the genome.
Does imprinted DNA methylation or imprinted gene expression differ between human blastocysts from conventional ovarian stimulation (COS) and an optimized two-step IVM method (CAPA-IVM) in age-matched polycystic ovary syndrome (PCOS) patients?
Class-switch recombination (CSR) is a DNA recombination process that replaces the immunoglobulin (Ig) constant region for the isotype that can best protect against the pathogen. Dysregulation of CSR can cause self-reactive BCRs and B cell lymphomas; understanding the timing and location of CSR is therefore important. Although CSR commences upon T cell priming, it is generally considered a hallmark of germinal centers (GCs). Here, we have used multiple approaches to show that CSR is triggered prior to differentiation into GC B cells or plasmablasts and is greatly diminished in GCs. Despite finding a small percentage of GC B cells expressing germline transcripts, phylogenetic trees of GC BCRs from secondary lymphoid organs revealed that the vast majority of CSR events occurred prior to the onset of somatic hypermutation. As such, we have demonstrated the existence of IgM-dominated GCs, which are unlikely to occur under the assumption of ongoing switching.
Gene dosage alterations caused by aneuploidy are a common feature of most cancers yet pose severe proteotoxic challenges. Therefore, cells have evolved various dosage compensation mechanisms to limit the damage caused by the ensuing protein level imbalances. For instance, for heteromeric protein complexes, excess nonstoichiometric subunits are rapidly recognized and degraded. In this issue of , Brennan et al. (pp. 1031-1047) reveal that sequestration of nonstoichiometric subunits into aggregates is an alternative mechanism for dosage compensation in aneuploid budding yeast and human cell lines. Using a combination of proteomic and genetic techniques, they found that excess proteins undergo either degradation or aggregation but not both. Which route is preferred depends on the half-life of the protein in question. Given the multitude of diseases linked to either aneuploidy or protein aggregation, this study could serve as a springboard for future studies with broad-spanning implications.
The dynamics and coordination between autophagy machinery and selective receptors during mitophagy are unknown. Also unknown is whether mitophagy depends on pre-existing membranes or is triggered on the surface of damaged mitochondria. Using a ubiquitin-dependent mitophagy inducer, the lactone ivermectin, we have combined genetic and imaging experiments to address these questions. Ubiquitination of mitochondrial fragments is required the earliest, followed by auto-phosphorylation of TBK1. Next, early essential autophagy proteins FIP200 and ATG13 act at different steps, whereas ULK1 and ULK2 are dispensable. Receptors act temporally and mechanistically upstream of ATG13 but downstream of FIP200. The VPS34 complex functions at the omegasome step. ATG13 and optineurin target mitochondria in a discontinuous oscillatory way, suggesting multiple initiation events. Targeted ubiquitinated mitochondria are cradled by endoplasmic reticulum (ER) strands even without functional autophagy machinery and mitophagy adaptors. We propose that damaged mitochondria are ubiquitinated and dynamically encased in ER strands, providing platforms for formation of the mitophagosomes.
The induction of adaptive immunity is dependent on the structural organization of LNs, which is in turn governed by the stromal cells that underpin LN architecture. Using a novel fate-mapping mouse model, we trace the developmental origin of mesenchymal LN stromal cells (mLNSCs) to a previously undescribed embryonic fibroblast activation protein-α (FAP) progenitor. FAP cells of the LN anlagen express lymphotoxin β receptor (LTβR) and vascular cell adhesion molecule (VCAM), but not intercellular adhesion molecule (ICAM), suggesting they are early mesenchymal lymphoid tissue organizer (mLTo) cells. Clonal labeling shows that FAP progenitors locally differentiate into mLNSCs. This process is also coopted in nonlymphoid tissues in response to infection to facilitate the development of tertiary lymphoid structures, thereby mimicking the process of LN ontogeny in response to infection.
The intestinal epithelium undergoes constant regeneration driven by intestinal stem cells. How old age affects the transcriptome in this highly dynamic tissue is an important, but poorly explored question. Using transcriptomics on sorted intestinal stem cells and adult enterocytes, we identified candidate genes, which change expression on aging. Further validation of these on intestinal epithelium of multiple middle-aged versus old-aged mice highlighted the consistent up-regulation of the expression of the gene encoding chemokine receptor Ccr2, a mediator of inflammation and several disease processes. We observed also increased expression of Strc, coding for stereocilin, and dramatically decreased expression of Rps4l, coding for a ribosome subunit. Ccr2 and Rps4l are located close to the telomeric regions of chromosome 9 and 6, respectively. As only few genes were differentially expressed and we did not observe significant protein level changes of identified ageing markers, our analysis highlights the overall robustness of murine intestinal epithelium gene expression to old age.
The unfolded protein response of the endoplasmic reticulum (UPR) is a crucial mediator of secretory pathway homeostasis. Expression of the spliced and active form of the UPR transcription factor XBP-1, XBP-1s, in the nervous system triggers activation of the UPR in the intestine of Caenorhabditis elegans (C. elegans) through release of a secreted signal, leading to increased longevity. We find that expression of XBP-1s in the neurons or intestine of the worm strikingly improves proteostasis in multiple tissues, through increased clearance of toxic proteins. To identify the mechanisms behind this enhanced proteostasis, we conducted intestine-specific RNA-seq analysis to identify genes upregulated in the intestine when XBP-1s is expressed in neurons. This revealed that neuronal XBP-1s increases the expression of genes involved in lysosome function. Lysosomes in the intestine of animals expressing neuronal XBP-1s are more acidic, and lysosomal protease activity is higher. Moreover, intestinal lysosome function is necessary for enhanced lifespan and proteostasis. These findings suggest that activation of the UPR in the intestine through neuronal signaling can increase the activity of lysosomes, leading to extended longevity and improved proteostasis across tissues.
Antigen receptor assembly in lymphocytes involves stringently regulated coordination of specific DNA rearrangement events across several large chromosomal domains. Previous studies indicate that transcription factors such as paired box 5 (PAX5), Yin Yang 1 (YY1), and CCCTC-binding factor (CTCF) play a role in regulating the accessibility of the antigen receptor loci to the V(D)J recombinase, which is required for these rearrangements. To gain clues about the role of CTCF binding at the murine immunoglobulin heavy chain (IgH) locus, we utilized a computational approach that identified 144 putative CTCF-binding sites within this locus. We found that these CTCF sites share a consensus motif distinct from other CTCF sites in the mouse genome. Additionally, we could divide these CTCF sites into three categories: intergenic sites remote from any coding element, upstream sites present within 8 kb of the VH-leader exon, and recombination signal sequence (RSS)-associated sites characteristically located at a fixed distance (~18 bp) downstream of the RSS. We noted that the intergenic and upstream sites are located in the distal portion of the VH locus, whereas the RSS-associated sites are located in the DH-proximal region. Computational analysis indicated that the prevalence of CTCF-binding sites at the IgH locus is evolutionarily conserved. In all species analyzed, these sites exhibit a striking strand-orientation bias, with > 98% of the murine sites being present in one orientation with respect to VH gene transcription. Electrophoretic mobility shift and enhancer-blocking assays and ChIP-chip analysis confirmed CTCF binding to these sites both in vitro and in vivo.
The global, three-dimensional organization of RNA molecules in the nucleus is difficult to determine using existing methods. Here we introduce Proximity RNA-seq, which identifies colocalization preferences for pairs or groups of nascent and fully transcribed RNAs in the nucleus. Proximity RNA-seq is based on massive-throughput RNA barcoding of subnuclear particles in water-in-oil emulsion droplets, followed by cDNA sequencing. Our results show RNAs of varying tissue-specificity of expression, speed of RNA polymerase elongation and extent of alternative splicing positioned at varying distances from nucleoli. The simultaneous detection of multiple RNAs in proximity to each other distinguishes RNA-dense from sparse compartments. Application of Proximity RNA-seq will facilitate study of the spatial organization of transcripts in the nucleus, including non-coding RNAs, and its functional relevance.
Genetic studies promise to provide insight into the molecular mechanisms underlying type 2 diabetes (T2D). Variants associated with T2D are often located in tissue-specific enhancer clusters or super-enhancers. So far, such domains have been defined through clustering of enhancers in linear genome maps rather than in three-dimensional (3D) space. Furthermore, their target genes are often unknown. We have created promoter capture Hi-C maps in human pancreatic islets. This linked diabetes-associated enhancers to their target genes, often located hundreds of kilobases away. It also revealed >1,300 groups of islet enhancers, super-enhancers and active promoters that form 3D hubs, some of which show coordinated glucose-dependent activity. We demonstrate that genetic variation in hubs impacts insulin secretion heritability, and show that hub annotations can be used for polygenic scores that predict T2D risk driven by islet regulatory variants. Human islet 3D chromatin architecture, therefore, provides a framework for interpretation of T2D genome-wide association study (GWAS) signals.
Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNA nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease.
The Deciphering the Mechanisms of Developmental Disorders programme has analysed the morphological and molecular phenotypes of embryonic and perinatal lethal mouse mutant lines in order to investigate the causes of embryonic lethality. Here we show that individual whole-embryo RNA-seq of 73 mouse mutant lines (>1000 transcriptomes) identifies transcriptional events underlying embryonic lethality and associates previously uncharacterised genes with specific pathways and tissues. For example, our data suggest that Hmgxb3 is involved in DNA-damage repair and cell-cycle regulation. Further, we separate embryonic delay signatures from mutant line-specific transcriptional changes by developing a baseline mRNA expression catalogue of wild-type mice during early embryogenesis (4-36 somites). Analysis of transcription outside coding sequence identifies deregulation of repetitive elements in Morc2a mutants and a gene involved in gene-specific splicing. Collectively, this work provides a large scale resource to further our understanding of early embryonic developmental disorders.
Studies suggest that placental nutrient supply adapts according to fetal demands. However, signaling events underlying placental adaptations remain unknown. Here we demonstrate that phosphoinositide 3-kinase p110α in the fetus and the trophoblast interplay to regulate placental nutrient supply and fetal growth. Complete loss of fetal p110α caused embryonic death, whilst heterozygous loss resulted in fetal growth restriction and impaired placental formation and nutrient transport. Loss of trophoblast p110α resulted in viable fetuses, abnormal placental development and a failure of the placenta to transport sufficient nutrients to match fetal demands for growth. Using RNA-seq we identified genes downstream of p110α in the trophoblast that are important in adapting placental phenotype. Using CRISPR/Cas9 we showed loss of p110α differentially affects gene expression in trophoblast and embryonic stem cells. Our findings reveal important, but distinct roles for p110α in the different compartments of the conceptus, which control fetal resource acquisition and growth.
The NIH-funded center for autophagy research named Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center is now completing its second year as a working center with a mission to promote autophagy research locally, nationally, and internationally. The center has thus far supported a cadre of 6 junior faculty (mentored PIs; mPIs) at a near-R01 level of funding. Two mPIs have graduated by obtaining their independent R01 funding and 3 of the remaining 4 have won significant funding from NIH in the form of R21 and R56 awards. The first year and a half of setting up the center has been punctuated by completion of renovations and acquisition and upgrades for equipment supporting autophagy, inflammation and metabolism studies. The scientific cores usage, and the growth of new studies is promoted through pilot grants and several types of enablement initiatives. The intent to cultivate AIM as a scholarly hub for autophagy and related studies is manifested in its Vibrant Campus Initiative, and the Tuesday AIM Seminar series, as well as by hosting a major scientific event, the 2019 AIM symposium, with nearly one third of the faculty from the International Council of Affiliate Members being present and leading sessions, giving talks, and conducting workshop activities. These and other events are often videostreamed for a worldwide scientific audience, and information about events at AIM and elsewhere are disseminated on Twitter and can be followed on the AIM web site. AIM intends to invigorate research on overlapping areas between autophagy, inflammation and metabolism with a number of new initiatives to promote metabolomic research. With the turnover of mPIs as they obtain their independent funding, new junior faculty are recruited and appointed as mPIs. All these activities are in keeping with AIM's intention to enable the next generation of autophagy researchers and help anchor, disseminate, and convey the depth and excitement of the autophagy field.
Trophoblast stem cells (TSCs) are a heterogeneous cell population despite the presence of fibroblast growth factor (FGF) and transforming growth factor β (TGFB) as key growth factors in standard culture conditions. To understand what other signaling cascades control the stem cell state of mouse TSCs, we performed a kinase inhibitor screen and identified several novel pathways that cause TSC differentiation. Surprisingly, inhibition of phosphoinositide-3-kinase (PI3K) signaling increased the mRNA and protein expression of stem cell markers instead, and resulted in a tighter epithelial colony morphology and fewer differentiated cells. PI3K inhibition could not substitute for FGF or TGFB and did not affect phosphorylation of extracellular signal-regulated kinase, and thus acts independently of these pathways. Upon removal of PI3K inhibition, TSC transcription factor levels reverted to normal TSC levels, indicating that murine TSCs can reversibly switch between these two states. In summary, PI3K inhibition reduces the heterogeneity and seemingly heightens the stem cell state of TSCs as indicated by the simultaneous upregulation of multiple key marker genes and cell morphology. Stem Cells 2019;37:1307-1318.
There have been substantial strides forward in our understanding of the contribution of regulatory T (Treg) cells to cancer immunosuppression. In this issue, we present a series of papers highlighting emerging themes on this topic relevant not only to our understanding of the fundamental biology of tumour immunosuppression but also to the design of new immunotherapeutic approaches. The substantially shared biology of CD4 conventional T (Tconv) and Treg cells necessitates a detailed understanding of the potentially opposing functional consequences that immunotherapies will have on Treg and Tconv cells, a prominent example being the potential for Treg-mediated hyperprogressive disease following anti-PD-1 therapy. Such understanding will aid patient stratification and the rational design of combination therapies. It is also becoming clear, however, that Treg cells within tumours exhibit distinct biological features to both Tconv cells and Treg cells in other tissues. These distinct features provide the opportunity for development of targeted immunotherapies with greater efficacy and reduced potential for inducing systemic toxicity.
Extracellular regulated kinase 5 (ERK5) signalling has been implicated in driving a number of cellular phenotypes including endothelial cell angiogenesis and tumour cell motility. Novel ERK5 inhibitors were identified using high throughput screening, with a series of pyrrole-2-carboxamides substituted at the 4-position with an aroyl group being found to exhibit IC values in the micromolar range, but having no selectivity against p38α MAP kinase. Truncation of the N-substituent marginally enhanced potency (∼3-fold) against ERK5, but importantly attenuated inhibition of p38α. Systematic variation of the substituents on the aroyl group led to the selective inhibitor 4-(2-bromo-6-fluorobenzoyl)-N-(pyridin-3-yl)-1H-pyrrole-2-carboxamide (IC 0.82 μM for ERK5; IC > 120 μM for p38α). The crystal structure (PDB 5O7I) of this compound in complex with ERK5 has been solved. This compound was orally bioavailable and inhibited bFGF-driven Matrigel plug angiogenesis and tumour xenograft growth. The selective ERK5 inhibitor described herein provides a lead for further development into a tool compound for more extensive studies seeking to examine the role of ERK5 signalling in cancer and other diseases.
Capture Hi-C is a powerful approach for detecting chromosomal interactions involving, at least on one end, DNA regions of interest, such as gene promoters. We present Chicdiff, an R package for robust detection of differential interactions in Capture Hi-C data. Chicdiff enhances a state-of-the-art differential testing approach for count data with bespoke normalisation and multiple testing procedures that account for specific statistical properties of Capture Hi-C. We validate Chicdiff on published Promoter Capture Hi-C data in human Monocytes and CD4+ T cells, identifying multitudes of cell type-specific interactions, and confirming the overall positive association between promoter interactions and gene expression.
Hedgehog pathway inhibitors (HPI) inactivating SMO , have become first line treatment for patients with locally advanced BCC (laBCC). HPI safety and efficacy have been shown in clinical trials . Nevertheless, common adverse events lead to treatment discontinuation. This article is protected by copyright. All rights reserved.
The generation of protective humoral immunity after vaccination relies on the productive interaction between antigen-specific B cells and T follicular helper (Tfh) cells. Despite the central role of Tfh cells in vaccine responses, there is currently no validated way to enhance their differentiation in humans. From paired human lymph node and blood samples, we identify a population of circulating Tfh cells that are transcriptionally and clonally similar to germinal center Tfh cells. In a clinical trial of vaccine formulations, circulating Tfh cells were expanded in Tanzanian volunteers when an experimental malaria vaccine was adjuvanted in GLA-SE but not when formulated in Alum. The GLA-SE-formulated peptide was associated with an increase in the extrafollicular antibody response, long-lived antibody production, and the emergence of public TCRβ clonotypes in circulating Tfh cells. We demonstrate that altering vaccine adjuvants is a rational approach for enhancing Tfh cells in humans, thereby supporting the long-lived humoral immunity that is required for effective vaccines.
Alternative translation is an important mechanism of post-transcriptional gene regulation leading to the expression of different protein isoforms originating from the same mRNA. Here, we describe an abundant long isoform of the stress/p38-activated protein kinase MK2. This isoform is constitutively translated from an alternative CUG translation initiation start site located in the 5' UTR of its mRNA. The RNA helicase eIF4A1 is needed to ensure translation of the long and the known short isoforms of MK2, of which the molecular properties were determined. Only the short isoform phosphorylated Hsp27 in vivo, supported migration and stress-induced immediate early gene (IEG) expression. Interaction profiling revealed short-isoform-specific binding partners that were associated with migration. In contrast, the long isoform contains at least one additional phosphorylatable serine in its unique N terminus. In sum, our data reveal a longer isoform of MK2 with distinct physiological properties.
Ageing is a complex multifactorial process associated with a plethora of disorders, which contribute significantly to morbidity worldwide. One of the organs significantly affected by age is the gut. Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This change in microbial composition with age occurs in parallel with a decline in function of the gut immune system; however, it is not clear whether there is a causal link between the two. Here we report that the defective germinal centre reaction in Peyer's patches of aged mice can be rescued by faecal transfers from younger adults into aged mice and by immunisations with cholera toxin, without affecting germinal centre reactions in peripheral lymph nodes. This demonstrates that the poor germinal centre reaction in aged animals is not irreversible, and that it is possible to improve this response in older individuals by providing appropriate stimuli.
We recently derived mouse expanded potential stem cells (EPSCs) from individual blastomeres by inhibiting the critical molecular pathways that predispose their differentiation. EPSCs had enriched molecular signatures of blastomeres and possessed developmental potency for all embryonic and extra-embryonic cell lineages. Here, we report the derivation of porcine EPSCs, which express key pluripotency genes, are genetically stable, permit genome editing, differentiate to derivatives of the three germ layers in chimeras and produce primordial germ cell-like cells in vitro. Under similar conditions, human embryonic stem cells and induced pluripotent stem cells can be converted, or somatic cells directly reprogrammed, to EPSCs that display the molecular and functional attributes reminiscent of porcine EPSCs. Importantly, trophoblast stem-cell-like cells can be generated from both human and porcine EPSCs. Our pathway-inhibition paradigm thus opens an avenue for generating mammalian pluripotent stem cells, and EPSCs present a unique cellular platform for translational research in biotechnology and regenerative medicine.