Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Jäger R, Migliorini G, Henrion M, Kandaswamy R, Speedy HE, Heindl A, Whiffin N, Carnicer MJ, Broome L, Dryden N, Nagano T, Schoenfelder S, Enge M, Yuan Y, Taipale J, Fraser P, Fletcher O, Houlston RS

Multiple regulatory elements distant from their targets on the linear genome can influence the expression of a single gene through chromatin looping. Chromosome conformation capture implemented in Hi-C allows for genome-wide agnostic characterization of chromatin contacts. However, detection of functional enhancer-promoter interactions is precluded by its effective resolution that is determined by both restriction fragmentation and sensitivity of the experiment. Here we develop a capture Hi-C (cHi-C) approach to allow an agnostic characterization of these physical interactions on a genome-wide scale. Single-nucleotide polymorphisms associated with complex diseases often reside within regulatory elements and exert effects through long-range regulation of gene expression. Applying this cHi-C approach to 14 colorectal cancer risk loci allows us to identify key long-range chromatin interactions in cis and trans involving these loci.

+view abstract Nature communications, PMID: 25695508 2015


+view abstract Nature, PMID: 25693522 2015

Veldhoen M, Veiga-Fernandes H Immunology

Immunologists studying the relationship between nutrition and immunological function face many challenges. We discuss here some of the historical skepticism with which nutritional research has often been faced and the complexities that need to be overcome in order to provide meaningful mechanistic insights.

+view abstract Nature immunology, PMID: 25689432 2015

Berrens RV, Reik W Epigenetics

+view abstract The EMBO journal, PMID: 25687507 2015

Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC, Erdos MR, Davis SR, Roychoudhuri R, Restifo NP, Gadina M, Tang Z, Ruan Y, Collins FS, Sartorelli V, O'Shea JJ Immunology

Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity. Super-enhancers (SEs), also known as stretch-enhancers, are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease. CD4(+) T cells are critical for host defence and autoimmunity. Here we analysed maps of mouse T-cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. Nonetheless, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T-cell SE, revealing a network in which SE-associated genes critical for T-cell biology are repressed by BACH2. Disease-associated single-nucleotide polymorphisms for immune-mediated disorders, including rheumatoid arthritis, were highly enriched for T-cell SEs versus typical enhancers or SEs in other cell lineages. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor tofacitinib disproportionately altered the expression of rheumatoid arthritis risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a 'guardian' transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows the unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention.

+view abstract Nature, PMID: 25686607 2015

Díaz-Muñoz MD, Bell SE, Turner M Immunology

Post-transcriptional mRNA regulation by RNA binding proteins (RBPs) associated with AU-rich elements (AREs) present in the 3' untranslated region (3'UTR) of specific mRNAs modulates transcript stability and translation in eukaryotic cells. Here we have functionally characterised the importance of the AREs present within the Bcl2 3'UTR in order to maintain Bcl2 expression. Gene targeting deletion of 300 nucleotides of the Bcl2 3'UTR rich in AREs diminishes Bcl2 mRNA stability and protein levels in primary B cells, decreasing cell lifespan. Generation of chimeric mice indicates that Bcl2-ARE∆/∆ B cells have an intrinsic competitive disadvantage compared to wild type cells. Biochemical assays and predictions using a bioinformatics approach show that several RBPs bind to the Bcl2 AREs, including AUF1 and HuR proteins. Altogether, association of RBPs to Bcl2 AREs contributes to Bcl2 protein expression by stabilizing Bcl2 mRNA and promotes B cell maintenance.

+view abstract PloS one, PMID: 25680182 2015

Randall AS, Liu CH, Chu B, Zhang Q, Dongre SA, Juusola M, Franze K, Wakelam MJ, Hardie RC Signalling,Lipidomics

Drosophila phototransduction is mediated via a G-protein-coupled PLC cascade. Recent evidence, including the demonstration that light evokes rapid contractions of the photoreceptors, suggested that the light-sensitive channels (TRP and TRPL) may be mechanically gated, together with protons released by PLC-mediated PIP2 hydrolysis. If mechanical gating is involved we predicted that the response to light should be influenced by altering the physical properties of the membrane. To achieve this, we used diet to manipulate the degree of saturation of membrane phospholipids. In flies reared on a yeast diet, lacking polyunsaturated fatty acids (PUFAs), mass spectrometry showed that the proportion of polyunsaturated phospholipids was sevenfold reduced (from 38 to ∼5%) but rescued by adding a single species of PUFA (linolenic or linoleic acid) to the diet. Photoreceptors from yeast-reared flies showed a 2- to 3-fold increase in latency and time to peak of the light response, without affecting quantum bump waveform. In the absence of Ca(2+) influx or in trp mutants expressing only TRPL channels, sensitivity to light was reduced up to ∼10-fold by the yeast diet, and essentially abolished in hypomorphic G-protein mutants (Gαq). PLC activity appeared little affected by the yeast diet; however, light-induced contractions measured by atomic force microscopy or the activation of ectopic mechanosensitive gramicidin channels were also slowed ∼2-fold. The results are consistent with mechanosensitive gating and provide a striking example of how dietary fatty acids can profoundly influence sensory performance in a classical G-protein-coupled signaling cascade.

+view abstract The Journal of neuroscience : the official journal of the Society for Neuroscience, PMID: 25673862 2015

Siggs OM, Miosge LA, Daley SR, Asquith K, Foster PS, Liston A, Goodnow CC Immunology

Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 25662996 2015

Doisne JM, Hüber CM, Okkenhaug K, Colucci F Immunology

Allogeneic hematopoietic stem cell transplantation (HSCT) can treat certain hematologic malignancies due to the graft versus leukemia (GvL) effect but is complicated by graft versus host disease (GvHD). Expression of the p110δ catalytic subunit of the phosphoinositide 3-kinase pathway is restricted to leukocytes, where it regulates proliferation, migration, and cytokine production. Here, in a mouse model of fully mismatched hematopoietic cell transplantation (HCT), we show that genetic inactivation of p110δ in T cells leads to milder GvHD, whereas GvL is preserved. Inactivation of p110δ in human lymphocytes reduced T cell allorecognition. We demonstrate that both allostimulation and granzyme B expression were dependent on p110δ in naive T cells, which are the main mediators of GvHD, whereas memory T cells were unaffected. Strikingly, p110δ is not mandatory for either naive or memory T cells to mediate GvL. Therefore, immunomodulation of selective naive T cell functions by p110δ inactivation improves the outcome of allogeneic HSCT.

+view abstract Cell reports, PMID: 25660021 2015

Le Novère N

Behaviours of complex biomolecular systems are often irreducible to the elementary properties of their individual components. Explanatory and predictive mathematical models are therefore useful for fully understanding and precisely engineering cellular functions. The development and analyses of these models require their adaptation to the problems that need to be solved and the type and amount of available genetic or molecular data. Quantitative and logic modelling are among the main methods currently used to model molecular and gene networks. Each approach comes with inherent advantages and weaknesses. Recent developments show that hybrid approaches will become essential for further progress in synthetic biology and in the development of virtual organisms.

+view abstract Nature reviews. Genetics, PMID: 25645874 2015

Chandra T, Ewels PA, Schoenfelder S, Furlan-Magaril M, Wingett SW, Kirschner K, Thuret JY, Andrews S, Fraser P, Reik W Epigenetics,Bioinformatics

Cellular senescence has been implicated in tumor suppression, development, and aging and is accompanied by large-scale chromatin rearrangements, forming senescence-associated heterochromatic foci (SAHF). However, how the chromatin is reorganized during SAHF formation is poorly understood. Furthermore, heterochromatin formation in senescence appears to contrast with loss of heterochromatin in Hutchinson-Gilford progeria. We mapped architectural changes in genome organization in cellular senescence using Hi-C. Unexpectedly, we find a dramatic sequence- and lamin-dependent loss of local interactions in heterochromatin. This change in local connectivity resolves the paradox of opposing chromatin changes in senescence and progeria. In addition, we observe a senescence-specific spatial clustering of heterochromatic regions, suggesting a unique second step required for SAHF formation. Comparison of embryonic stem cells (ESCs), somatic cells, and senescent cells shows a unidirectional loss in local chromatin connectivity, suggesting that senescence is an endpoint of the continuous nuclear remodelling process during differentiation.

+view abstract Cell reports, PMID: 25640177 2015

Wimalaratne SM, Bolleman J, Juty N, Katayama T, Dumontier M, Redaschi N, Le Novère N, Hermjakob H, Laibe C Signalling

On the Semantic Web, in life sciences in particular, data is often distributed via multiple resources. Each of these sources is likely to use their own IRI (International Resource Identifier) for conceptually the same resource or database record. The lack of correspondence between identifiers introduces a barrier when executing federated SPARQL queries across life science data.

+view abstract Bioinformatics (Oxford, England), PMID: 25638809 2015

Hu W, Dooley J, Chung SS, Chandramohan D, Cimmino L, Mukherjee S, Mason CE, de Strooper B, Liston A, Park CY Immunology

Hematopoietic stem cells (HSCs) possess the ability to generate all hematopoietic cell types and to self-renew over long periods, but the mechanisms that regulate their unique properties are incompletely understood. Herein, we show that homozygous deletion of the miR-29a/b-1 bicistron results in decreased numbers of hematopoietic stem and progenitor cells (HSPCs), decreased HSC self-renewal, and increased HSC cell cycling and apoptosis. The HSPC phenotype is specifically due to loss of miR-29a, because miR-29b expression is unaltered in miR-29a/b-1-null HSCs, and only ectopic expression of miR-29a restores HSPC function both in vitro and in vivo. HSCs lacking miR-29a/b-1 exhibit widespread transcriptional dysregulation and adopt gene expression patterns similar to normal committed progenitors. A number of predicted miR-29 target genes, including Dnmt3a, are significantly upregulated in miR-29a/b-1-null HSCs. The loss of negative regulation of Dnmt3a by miR-29a is a major contributor to the miR-29a/b-1-null HSPC phenotype, as both in vitro Dnmt3a short hairpin RNA knockdown assays and a genetic haploinsufficiency model of Dnmt3a restored the frequency and long-term reconstitution capacity of HSCs from miR-29a/b-1-deficient mice. Overall, these data demonstrate that miR-29a is critical for maintaining HSC function through its negative regulation of Dnmt3a.

+view abstract Blood, PMID: 25634742 2015

Dutta-Roy R, Rosenmund C, Edelstein SJ, Le Novère N Signalling

Modulation of the properties of AMPA receptors at the post-synaptic membrane is one of the main suggested mechanisms underlying fast synaptic transmission in the central nervous system of vertebrates. Electrophysiological recordings of single channels stimulated with agonists showed that both recombinant and native AMPA receptors visit multiple conductance states in an agonist concentration dependent manner. We propose an allosteric model of the multiple conductance states based on concerted conformational transitions of the four subunits, as an iris diaphragm. Our model predicts that the thermodynamic behaviour of the conductance states upon full and partial agonist stimulations can be described with increased affinity of receptors as they progress to higher conductance states. The model also predicts the existence of AMPA receptors in non-liganded conductive substates. However, the probability of spontaneous openings decreases with increasing conductances. Finally, we predict that the large conductance states are stabilized within the rise phase of a whole-cell EPSC in glutamatergic hippocampal neurons. Our model provides a mechanistic link between ligand concentration and conductance states that can explain thermodynamic and kinetic features of AMPA receptor gating.

+view abstract PloS one, PMID: 25629405 2015

Franckaert D, Schlenner SM, Heirman N, Gill J, Skogberg G, Ekwall O, Put K, Linterman MA, Dooley J, Liston A Immunology

The thymus is the organ devoted to T-cell production. The thymus undergoes multiple rounds of atrophy and redevelopment before degenerating with age in a process known as involution. This process is poorly understood, despite the influence the phenomenon has on peripheral T-cell numbers. Here we have investigated the FVB/N mouse strain, which displays premature thymic involution. We find multiple architectural and cellular features that precede thymic involution, including disruption of the epithelial-endothelial relationship and a progressive loss of pro-T cells. The architectural features, reminiscent of the human thymus, are intrinsic to the non-hematopoietic compartment and are neither necessary nor sufficient for thymic involution. By contrast, the loss of pro-T cells is intrinsic to the hematopoietic compartment, and is sufficient to drive premature involution. These results identify pro-T-cell loss as the main driver of premature thymic involution, and highlight the plasticity of the thymic stroma, capable of maintaining function across diverse inter-strain architectures. This article is protected by copyright. All rights reserved.

+view abstract European journal of immunology, PMID: 25627671 2015

Arand J, Wossidlo M, Lepikhov K, Peat JR, Reik W, Walter J Epigenetics

DNA methylomes are extensively reprogrammed during mouse pre-implantation and early germ cell development. The main feature of this reprogramming is a genome-wide decrease in 5-methylcytosine (5mC). Standard high-resolution single-stranded bisulfite sequencing techniques do not allow discrimination of the underlying passive (replication-dependent) or active enzymatic mechanisms of 5mC loss. We approached this problem by generating high-resolution deep hairpin bisulfite sequencing (DHBS) maps, allowing us to follow the patterns of symmetric DNA methylation at CpGs dyads on both DNA strands over single replications.

+view abstract Epigenetics & chromatin, PMID: 25621012 2015

Lai M, Brun D, Edelstein SJ, Le Novère N Signalling

Calmodulin is a calcium-binding protein ubiquitous in eukaryotic cells, involved in numerous calcium-regulated biological phenomena, such as synaptic plasticity, muscle contraction, cell cycle, and circadian rhythms. It exibits a characteristic dumbell shape, with two globular domains (N- and C-terminal lobe) joined by a linker region. Each lobe can take alternative conformations, affected by the binding of calcium and target proteins. Calmodulin displays considerable functional flexibility due to its capability to bind different targets, often in a tissue-specific fashion. In various specific physiological environments (e.g. skeletal muscle, neuron dendritic spines) several targets compete for the same calmodulin pool, regulating its availability and affinity for calcium. In this work, we sought to understand the general principles underlying calmodulin modulation by different target proteins, and to account for simultaneous effects of multiple competing targets, thus enabling a more realistic simulation of calmodulin-dependent pathways. We built a mechanistic allosteric model of calmodulin, based on an hemiconcerted framework: each calmodulin lobe can exist in two conformations in thermodynamic equilibrium, with different affinities for calcium and different affinities for each target. Each lobe was allowed to switch conformation on its own. The model was parameterised and validated against experimental data from the literature. In spite of its simplicity, a two-state allosteric model was able to satisfactorily represent several sets of experiments, in particular the binding of calcium on intact and truncated calmodulin and the effect of different skMLCK peptides on calmodulin's saturation curve. The model can also be readily extended to include multiple targets. We show that some targets stabilise the low calcium affinity T state while others stabilise the high affinity R state. Most of the effects produced by calmodulin targets can be explained as modulation of a pre-existing dynamic equilibrium between different conformations of calmodulin's lobes, in agreement with linkage theory and MWC-type models.

+view abstract PLoS computational biology, PMID: 25611683 2015

Vanderleyden I, Linterman MA, Smith KG Immunology

Germinal centres (GCs) are specialised lymphoid microenvironments that form in secondary B-cell follicles upon exposure to T-dependent antigens. In the GC, clonal expansion, selection and differentiation of GC B cells result in the production of high-affinity plasma cells and memory B cells that provide protection against subsequent infection. The GC is carefully regulated to fulfil its critical role in defence against infection and to ensure that immunological tolerance is not broken in the process. The GC response can be controlled by a number of mechanisms, one of which is by forkhead box p3 expressing regulatory T (Treg) cells, a suppressive population of CD4+ T cells. A specialised subset of Treg cells - follicular regulatory T (Tfr) cells - form after immunisation and are able to access the GC, where they control the size and output of the response. Our knowledge of Treg cell control of the GC is expanding. In this review we will discuss recent advances in the field, with a particular emphasis on the differentiation and function of Tfr cells in the GC.

+view abstract Arthritis research & therapy, PMID: 25606598 2014

Deladeriere A, Gambardella L, Pan D, Anderson KE, Hawkins PT, Stephens LR Signalling

Neutrophils, which migrate toward inflamed sites and kill pathogens by producing reactive oxygen species (ROS), are important in the defense against bacterial and fungal pathogens, but their inappropriate regulation causes various chronic inflammatory diseases. Phosphoinositide 3-kinase γ (PI3Kγ) functions downstream of proinflammatory G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) in neutrophils and is a therapeutic target. In neutrophils, PI3Kγ consists of a p110γ catalytic subunit, which is activated by the guanosine triphosphatase Ras, and either a p84 or p101 regulatory subunit. Loss or inhibition of p110γ or expression of a Ras-insensitive variant p110γ (p110γ(DASAA/DASAA)) impairs PIP3 production, Akt phosphorylation, migration, and ROS formation in response to GPCR activation. The p101 subunit binds to, and mediates PI3Kγ activation by, G protein βγ subunits, and p101(-/-) neutrophils have a similar phenotype to that of p110γ(-/-) neutrophils, except that ROS responses are normal. We found that p84(-/-) neutrophils displayed reduced GPCR-stimulated PIP3 and Akt signaling, which was indistinguishable from that of p101(-/-) neutrophils. However, p84(-/-) neutrophils produced less ROS and exhibited normal migration in response to GPCR stimulation. These data suggest that p84-containing PI3Kγ controls GPCR-dependent ROS production. Thus, the PI3Kγ regulatory subunits enable PI3Kγ to mediate distinct neutrophil responses, which may occur by targeting PIP3 signaling into spatially distinct domains.

+view abstract Science signaling, PMID: 25605974 2015

Basset-Seguin N, Sharpe HJ, de Sauvage FJ Signalling

Basal cell carcinoma (BCC) is the most commonly diagnosed cancer. While most BCCs are amenable to surgery, some tumors can reach a more advanced stage or metastasize, and become ineligible for surgical resection or radiotherapy. Abnormal activation of the Hedgehog (Hh) pathway is a key driver in BCC pathophysiology. Consequently, inhibitors of the Hh pathway have been developed. Molecules that inhibit the receptor protein Smoothened (SMO) are the most advanced in clinical development. Vismodegib is the first-in-class SMO inhibitor and has been approved in a number of countries for the treatment of metastatic or locally advanced BCC. Several molecules have demonstrated antitumoral activity, but treatment may be limited in duration by a number of side effects, and it is not yet established whether these agents are truly curative or whether continued treatment will be required. Resistance to SMO inhibition has been reported in the clinic for which incidence and mechanisms must be elucidated to inform future therapeutic strategies. Intermittent dosing regimens to improve tolerability, as well as neoadjuvant use of Hh pathway inhibitors, are currently under investigation. Here, we review the most recent outcomes obtained with Hh inhibitors under clinical investigation in BCC.

+view abstract Molecular cancer therapeutics, PMID: 25585509 2015

Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, Goodwin LM, Smethurst E, Mason S, Blyth K, McGarry L, James D, Shanks E, Kalna G, Saunders RE, Jiang M, Howell M, Lassailly F, Thin MZ, Spencer-Dene B, Stamp G, van den Broek NJ, Mackay G, Bulusu V, Kamphorst JJ, Tardito S, Strachan D, Harris AL, Aboagye EO, Critchlow SE, Wakelam MJ, Schulze A, Gottlieb E Signalling,Lipidomics

A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment.

+view abstract Cancer cell, PMID: 25584894 2015

Sanchez-Wandelmer J, Ktistakis NT, Reggiori F Signalling

Autophagosomes are the hallmark of autophagy, but despite their central role in this degradative pathway that involves vesicle transport to lysosomes or vacuoles, the mechanism underlying their biogenesis still remains largely unknown. Our current concepts about autophagosome biogenesis are based on models suggesting that a small autonomous cisterna grows into an autophagosome through expansion at its extremities. Recent findings have revealed that endoplasmic reticulum (ER) exit sites (ERES), specialized ER regions where proteins are sorted into the secretory system, are key players in the formation of autophagosomes. Owing to the morphological connection of nascent autophagosomes with the ER, this has raised several questions that challenge our current perception of autophagosome biogenesis, such as are ERES the compartments where autophagosome formation takes place? What is the functional relevance of this connection? Are these compartments providing essential molecules for the generation of autophagosomes and/or are they structural platforms where these vesicles emerge? In this Hypothesis, we discuss recent data that have implicated the ERES in autophagosome biogenesis and we propose two models to describe the possible role of this compartment at different steps in the process of autophagosome biogenesis. This article is part of a Focus on Autophagosome biogenesis. For further reading, please see related articles: 'Membrane dynamics in autophagosome biogenesis' by Sven R. Carlsson and Anne Simonsen (J. Cell Sci. 128, 193-205) and 'WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome' by Tassula Proikas-Cezanne et al. (J. Cell Sci. 128, 207-217).

+view abstract Journal of cell science, PMID: 25568152 2015

Deans AR, Lewis SE, Huala E, Anzaldo SS, Ashburner M, Balhoff JP, Blackburn DC, Blake JA, Burleigh JG, Chanet B, Cooper LD, Courtot M, Csösz S, Cui H, Dahdul W, Das S, Dececchi TA, Dettai A, Diogo R, Druzinsky RE, Dumontier M, Franz NM, Friedrich F, Gkoutos GV, Haendel M, Harmon LJ, Hayamizu TF, He Y, Hines HM, Ibrahim N, Jackson LM, Jaiswal P, James-Zorn C, Köhler S, Lecointre G, Lapp H, Lawrence CJ, Le Novère N, Lundberg JG, Macklin J, Mast AR, Midford PE, Mikó I, Mungall CJ, Oellrich A, Osumi-Sutherland D, Parkinson H, Ramírez MJ, Richter S, Robinson PN, Ruttenberg A, Schulz KS, Segerdell E, Seltmann KC, Sharkey MJ, Smith AD, Smith B, Specht CD, Squires RB, Thacker RW, Thessen A, Fernandez-Triana J, Vihinen M, Vize PD, Vogt L, Wall CE, Walls RL, Westerfeld M, Wharton RA, Wirkner CS, Woolley JB, Yoder MJ, Zorn AM, Mabee P Signalling,Bioinformatics

Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.

+view abstract PLoS Biology, PMID: 25562316 2015

Nguyen TL, Vieira-Silva S, Liston A, Raes J Immunology

The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research.

+view abstract Disease models & mechanisms, PMID: 25561744 2015