Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Brucklacher-Waldert V, Ferreira C, Innocentin S, Kamdar S, Withers DR, Kullberg MC, Veldhoen M Immunology

The discovery of Th17 cell plasticity, in which CD4(+) IL-17-producing Th17 cells give rise to IL-17/IFN-γ double-producing cells and Th1-like IFNγ(+) ex-Th17 lymphocytes, has raised questions regarding which of these cell types contribute to immunopathology during inflammatory diseases. In this study, we show using Helicobacter hepaticus-induced intestinal inflammation that IL-17A(Cre)- or Rag1(Cre)-mediated deletion of Tbx21 has no effect on the generation of IL-17/IFN-γ double-producing cells, but leads to a marked absence of Th1-like IFNγ(+) ex-Th17 cells. Despite the lack of Th1-like ex-Th17 cells, the degree of H. hepaticus-triggered intestinal inflammation in mice in which Tbx21 was excised in IL-17-producing or Rag1-expressing cells is indistinguishable from that observed in control mice. In stark contrast, using experimental autoimmune encephalomyelitis, we show that IL-17A(Cre)-mediated deletion of Tbx21 prevents the conversion of Th17 cells to IL-17A/IFN-γ double-producing cells as well as Th1-like IFN-γ(+) ex-Th17 cells. However, IL-17A(Cre)-mediated deletion of Tbx21 has only limited effects on disease course in this model and is not compensated by Ag-specific Th1 cells. IL-17A(Cre)-mediated deletion of Rorc reveals that RORγt is essential for the maintenance of the Th17 cell lineage, but not immunopathology during experimental autoimmune encephalomyelitis. These results show that neither the single Th17 subset, nor its progeny, is solely responsible for immunopathology or autoimmunity.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 27183623 2016

Roychoudhuri R, Clever D, Li P, Wakabayashi Y, Quinn KM, Klebanoff CA, Ji Y, Sukumar M, Eil RL, Yu Z, Spolski R, Palmer DC, Pan JH, Patel SJ, Macallan DC, Fabozzi G, Shih HY, Kanno Y, Muto A, Zhu J, Gattinoni L, O'Shea JJ, Okkenhaug K, Igarashi K, Leonard WJ, Restifo NP Immunology

T cell antigen receptor (TCR) signaling drives distinct responses depending on the differentiation state and context of CD8(+) T cells. We hypothesized that access of signal-dependent transcription factors (TFs) to enhancers is dynamically regulated to shape transcriptional responses to TCR signaling. We found that the TF BACH2 restrains terminal differentiation to enable generation of long-lived memory cells and protective immunity after viral infection. BACH2 was recruited to enhancers, where it limited expression of TCR-driven genes by attenuating the availability of activator protein-1 (AP-1) sites to Jun family signal-dependent TFs. In naive cells, this prevented TCR-driven induction of genes associated with terminal differentiation. Upon effector differentiation, reduced expression of BACH2 and its phosphorylation enabled unrestrained induction of TCR-driven effector programs.

+view abstract Nature immunology, PMID: 27158840 2016

Clark DE, Waszkowycz B, Wong M, Lockey PM, Adalbert R, Gilley J, Clark J, Coleman MP Signalling,Biological Chemistry

NAMPT may represent a novel target for drug discovery in various therapeutic areas, including oncology and inflammation. Additionally, recent work has suggested that targeting NAMPT has potential in treating axon degeneration. In this work, publicly available X-ray co-crystal structures of NAMPT and the structures of two known NAMPT inhibitors were used as the basis for a structure- and ligand-based virtual screening campaign. From this, two novel series of NAMPT inhibitors were identified, one of which showed a statistically significant protective effect when tested in a cellular model of axon degeneration.

+view abstract Bioorganic & medicinal chemistry letters, PMID: 27158141 2016

Schofield EC, Carver T, Achuthan P, Freire-Pritchett P, Spivakov M, Todd JA, Burren OS

Promoter capture Hi-C (PCHi-C) allows the genome-wide interrogation of physical interactions between distal DNA regulatory elements and gene promoters in multiple tissue contexts. Visual integration of the resultant chromosome interaction maps with other sources of genomic annotations can provide insight into underlying regulatory mechanisms. We have developed Capture HiC Plotter (CHiCP), a web-based tool that allows interactive exploration of PCHi-C interaction maps and integration with both public and user-defined genomic datasets.

+view abstract Bioinformatics (Oxford, England), PMID: 27153610 2016

Devos FC, Boonen B, Alpizar YA, Maes T, Hox V, Seys S, Pollaris L, Liston A, Nemery B, Talavera K, Hoet PH, Vanoirbeek JA Immunology

Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves, in chemical-induced AHR.In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-induced AHR was also abolished in mast cell deficient Kit(Wsh) (/Wsh) mice, and in wild-type mice pretreated with the mast cell stabiliser ketotifen, without changes in immunological parameters.These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the development of TDI-elicited AHR.

+view abstract The European respiratory journal, PMID: 27126687 2016

Novo CL, Tang C, Ahmed K, Djuric U, Fussner E, Mullin NP, Morgan NP, Hayre J, Sienerth AR, Elderkin S, Nishinakamura R, Chambers I, Ellis J, Bazett-Jones DP, Rugg-Gunn PJ Epigenetics

An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells.

+view abstract Genes & development, PMID: 27125671 2016

Murray A, Sienerth AR, Hemberger M Epigenetics

Gene loci that are hypermethylated and repressed in embryonic (ESCs) but hypomethylated and expressed in trophoblast (TSCs) stem cells are very rare and may have particularly important roles in early developmental cell fate decisions, as previously shown for Elf5. Here, we assessed another member of this small group of genes, Placenta Expressed Transcript 1 (Plet1), for its function in establishing trophoblast lineage identity and modulating trophoblast differentiation. We find that Plet1 is tightly repressed by DNA methylation in ESCs but expressed on the cell surface of TSCs and trophoblast giant cells. In hypomethylated ESCs that are prone to acquire some trophoblast characteristics, Plet1 is required to confer a trophoblast-specific gene expression pattern, including up-regulation of Elf5. Plet1 displays an unusual biphasic expression profile during TSC differentiation and thus may be pivotal in balancing trophoblast self-renewal and differentiation. Furthermore, overexpression and CRISPR/Cas9-mediated knockout in TSCs showed that high Plet1 levels favour differentiation towards the trophoblast giant cell lineage, whereas lack of Plet1 preferentially induces syncytiotrophoblast formation. Thus, the endogenous dynamics of Plet1 expression establish important patterning cues within the trophoblast compartment by promoting differentiation towards the syncytiotrophoblast or giant cell pathway in Plet1-low and Plet1-high cells, respectively.

+view abstract Scientific reports, PMID: 27121762 2016

Galloway A, Saveliev A, Łukasiak S, Hodson DJ, Bolland D, Balmanno K, Ahlfors H, Monzón-Casanova E, Mannurita SC, Bell LS, Andrews S, Díaz-Muñoz MD, Cook SJ, Corcoran A, Turner M Immunology,Bioinformatics

Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR-induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-μ at the pre-BCR checkpoint.

+view abstract Science (New York, N.Y.), PMID: 27102483 2016

Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W Epigenetics

Emerging single-cell epigenomic methods are being developed with the exciting potential to transform our knowledge of gene regulation. Here we review available techniques and future possibilities, arguing that the full potential of single-cell epigenetic studies will be realized through parallel profiling of genomic, transcriptional, and epigenetic information.

+view abstract Genome biology, PMID: 27091476 2016

Ktistakis NT, Tooze SA Signalling

Autophagy is a catabolic 'self-eating' pathway that is emerging as a crucial integration point in cell physiology. With its own set of genes, the autophagy pathway communicates with virtually all signalling networks and organelles. Recent advances have been made in understanding the origin of the autophagosomal membrane, novel regulators, and the mechanisms by which specific intracellular membranes become autophagy substrates. New studies on noncanonical autophagy, mediated by subsets of autophagy proteins, and the role of autophagy proteins in non-autophagy pathways are also emerging in many different biological contexts. Our understanding of canonical autophagy, including membrane origin and autophagy proteins, needs to be considered together with emerging noncanonical pathways.

+view abstract Trends in cell biology, PMID: 27050762 2016

Hillhouse EE, Liston A, Collin R, Desautels E, Goodnow CC, Lesage S Immunology

Linkage analysis studies for autoimmune diabetes have revealed multiple non-major histocompatibility complex (MHC) chromosomal regions linked to disease susceptibility. To date, more than 20 insulin-dependent diabetes (Idd) loci linked to diabetes susceptibility have been identified in NOD mice and validated via congenic breeding. Importantly, evidence suggests that Idd loci may regulate at least two pathological steps during autoimmune diabetes development, namely the onset of insulitis and the transition from insulitis to overt diabetes. Here we assess the role of various non-MHC Idd diabetes-resistance loci, which have been validated in the non-transgenic setting, on autoimmune diabetes progression in the transgenic setting. Specifically, we generated multiple Idd congenic strains in the 3A9-TCR:insHEL NOD.H2(k) transgenic model and monitored their diabetes incidence. We show that 3A9-TCR:insHEL NOD.H2(k) mice congenic for Idd3 or Idd5 display a reduction in diabetes development, whereas mice congenic for Idd9 or Idd13 exhibit an increase, in comparison with 3A9-TCR:insHEL NOD.H2(k) mice. These results suggest that the presence of the 3A9-TCR and hen egg lysosyme transgenes can offset the regulatory function of certain diabetes-resistance genetic variants contained within the Idd loci, including Idd9 and Idd13. We propose the antigen-specific 3A9-TCR:insHEL transgenic model as a useful tool for the study of the genetics of autoimmune diabetes development.

+view abstract Immunology and cell biology, PMID: 27046082 2016

Rodriguez N, Pettit JB, Dalle Pezze P, Li L, Henry A, van Iersel MP, Jalowicki G, Kutmon M, Natarajan KN, Tolnay D, Stefan MI, Evelo CT, Le Novère N Signalling

Interoperability between formats is a recurring problem in systems biology research. Many tools have been developed to convert computational models from one format to another. However, they have been developed independently, resulting in redundancy of efforts and lack of synergy.

+view abstract BMC bioinformatics, PMID: 27044654 2016

Peck B, Schug ZT, Zhang Q, Dankworth B, Jones DT, Smethurst E, Patel R, Mason S, Jiang M, Saunders R, Howell M, Mitter R, Spencer-Dene B, Stamp G, McGarry L, James D, Shanks E, Aboagye EO, Critchlow SE, Leung HY, Harris AL, Wakelam MJ, Gottlieb E, Schulze A Signalling,Lipidomics

Enhanced macromolecule biosynthesis is integral to growth and proliferation of cancer cells. Lipid biosynthesis has been predicted to be an essential process in cancer cells. However, it is unclear which enzymes within this pathway offer the best selectivity for cancer cells and could be suitable therapeutic targets.

+view abstract Cancer & metabolism, PMID: 27042297 2016

Hill CS, Coleman MP, Menon DK Signalling

Traumatic axonal injury (TAI) is an important pathoanatomical subgroup of traumatic brain injury (TBI) and a major driver of mortality and functional impairment. Experimental models have provided insights into the effects of mechanical deformation on the neuronal cytoskeleton and the subsequent processes that drive axonal injury. There is also increasing recognition that axonal or white matter loss may progress for years post-injury and represent one mechanistic framework for progressive neurodegeneration after TBI. Previous trials of novel therapies have failed to make an impact on clinical outcome, in both TBI in general and TAI in particular. Recent advances in understanding the cellular and molecular mechanisms of injury have the potential to translate into novel therapeutic targets.

+view abstract Trends in neurosciences, PMID: 27040729 2016

Masters SL, Lagou V, Jéru I, Baker PJ, Van Eyck L, Parry DA, Lawless D, De Nardo D, Garcia-Perez JE, Dagley LF, Holley CL, Dooley J, Moghaddas F, Pasciuto E, Jeandel PY, Sciot R, Lyras D, Webb AI, Nicholson SE, De Somer L, van Nieuwenhove E, Ruuth-Praz J, Copin B, Cochet E, Medlej-Hashim M, Megarbane A, Schroder K, Savic S, Goris A, Amselem S, Wouters C, Liston A Immunology

Pyrin responds to pathogen signals and loss of cellular homeostasis by forming an inflammasome complex that drives the cleavage and secretion of interleukin-1β (IL-1β). Mutations in the B30.2/SPRY domain cause pathogen-independent activation of pyrin and are responsible for the autoinflammatory disease familial Mediterranean fever (FMF). We studied a family with a dominantly inherited autoinflammatory disease, distinct from FMF, characterized by childhood-onset recurrent episodes of neutrophilic dermatosis, fever, elevated acute-phase reactants, arthralgia, and myalgia/myositis. The disease was caused by a mutation in MEFV, the gene encoding pyrin (S242R). The mutation results in the loss of a 14-3-3 binding motif at phosphorylated S242, which was not perturbed by FMF mutations in the B30.2/SPRY domain. However, loss of both S242 phosphorylation and 14-3-3 binding was observed for bacterial effectors that activate the pyrin inflammasome, such as Clostridium difficile toxin B (TcdB). The S242R mutation thus recapitulated the effect of pathogen sensing, triggering inflammasome activation and IL-1β production. Successful therapy targeting IL-1β has been initiated in one patient, resolving pyrin-associated autoinflammation with neutrophilic dermatosis. This disease provides evidence that a guard-like mechanism of pyrin regulation, originally identified for Nod-like receptors in plant innate immunity, also exists in humans.

+view abstract Science translational medicine, PMID: 27030597 2016

Dooley J, Tian L, Schonefeldt S, Delghingaro-Augusto V, Garcia-Perez JE, Pasciuto E, Di Marino D, Carr EJ, Oskolkov N, Lyssenko V, Franckaert D, Lagou V, Overbergh L, Vandenbussche J, Allemeersch J, Chabot-Roy G, Dahlstrom JE, Laybutt DR, Petrovsky N, Socha L, Gevaert K, Jetten AM, Lambrechts D, Linterman MA, Goodnow CC, Nolan CJ, Lesage S, Schlenner SM, Liston A

Type 1 (T1D) and type 2 (T2D) diabetes share pathophysiological characteristics, yet mechanistic links have remained elusive. T1D results from autoimmune destruction of pancreatic beta cells, whereas beta cell failure in T2D is delayed and progressive. Here we find a new genetic component of diabetes susceptibility in T1D non-obese diabetic (NOD) mice, identifying immune-independent beta cell fragility. Genetic variation in Xrcc4 and Glis3 alters the response of NOD beta cells to unfolded protein stress, enhancing the apoptotic and senescent fates. The same transcriptional relationships were observed in human islets, demonstrating the role of beta cell fragility in genetic predisposition to diabetes.

+view abstract Nature genetics, PMID: 26998692 2016

Barros-Martins J, Schmolka N, Fontinha D, Pires de Miranda M, Simas JP, Brok I, Ferreira C, Veldhoen M, Silva-Santos B, Serre K Immunology

γδ T lymphocytes are programmed into distinct IFN-γ-producing CD27(+) (γδ27(+)) and IL-17-producing CD27(-) (γδ27(-)) subsets that play key roles in protective or pathogenic immune responses. Although the signature cytokines are shared with their αβ Th1 (for γδ27(+)) and Th17 (for γδ27(-)) cell counterparts, we dissect in this study similarities and differences in the transcriptional requirements of murine effector γδ27(+), γδ27(-)CCR6(-), and γδ27(-)CCR6(+) γδ T cell subsets and αβ T cells. We found they share dependence on the master transcription factors T-bet and RORγt for IFN-γ and IL-17 production, respectively. However, Eomes is fully dispensable for IFN-γ production by γδ T cells. Furthermore, the Th17 cell auxiliary transcription factors RORα and BATF are not required for IL-17 production by γδ27(-) cell subsets. We also show that γδ27(-) (but not γδ27(+)) cells become polyfunctional upon IL-1β plus IL-23 stimulation, cosecreting IL-17A, IL-17F, IL-22, GM-CSF, and IFN-γ. Collectively, our in vitro and in vivo data firmly establish the molecular segregation between γδ27(+) and γδ27(-) T cell subsets and provide novel insight on the nonoverlapping transcriptional networks that control the differentiation of effector γδ versus αβ T cell subsets.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 26994218 2016

Linterman MA, Hill DL Immunology

The success of most vaccines relies on the generation of antibodies to provide protection against subsequent infection; this in turn depends on a robust germinal centre (GC) response that culminates in the production of long-lived antibody-secreting plasma cells. The size and quality of the GC response are directed by a specialised subset of CD4 (+) T cells: T follicular helper (Tfh) cells. Tfh cells provide growth and differentiation signals to GC B cells and mediate positive selection of high-affinity B cell clones in the GC, thereby determining which B cells exit the GC as plasma cells and memory B cells. Because of their central role in the production of long-lasting humoral immunity, Tfh cells represent an interesting target for rational vaccine design.

+view abstract F1000Research, PMID: 26989476 2016

Lochhead PA, Clark J, Wang LZ, Gilmour L, Squires M, Gilley R, Foxton C, Newell DR, Wedge SR, Cook SJ Signalling,Biological Chemistry

ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRAS(G12C/G13D) or BRAF(V600E). Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target.

+view abstract Cell cycle (Georgetown, Tex.), PMID: 26959608 2016

Frej AD, Clark J, Roy CL, Lilla S, Thomason P, Otto GP, Churchill G, Insall R, Claus SP, Hawkins P, Stephens L, Williams RS Signalling

Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in inositol auxotrophy that can only be partially rescued by exogenous inositol. Removal of inositol supplementation from the ino1(-) mutant results in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis and substrate adhesion. Inositol depletion also caused a dramatic generalised decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 independent of inositol biosynthesis. To characterise this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) was identified with homology to mammalian macromolecular complex adaptor proteins. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.

+view abstract Molecular and cellular biology, PMID: 26951199 2016

Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, Seplyarskiy VB, Sharpe HJ, McKee T, Letourneau A, Ribaux PG, Popadin K, Basset-Seguin N, Ben Chaabene R, Santoni FA, Andrianova MA, Guipponi M, Garieri M, Verdan C, Grosdemange K, Sumara O, Eilers M, Aifantis I, Michielin O, de Sauvage FJ, Antonarakis SE, Nikolaev SI Signalling

Basal cell carcinoma (BCC) of the skin is the most common malignant neoplasm in humans. BCC is primarily driven by the Sonic Hedgehog (Hh) pathway. However, its phenotypic variation remains unexplained. Our genetic profiling of 293 BCCs found the highest mutation rate in cancer (65 mutations/Mb). Eighty-five percent of the BCCs harbored mutations in Hh pathway genes (PTCH1, 73% or SMO, 20% (P = 6.6 × 10(-8)) and SUFU, 8%) and in TP53 (61%). However, 85% of the BCCs also harbored additional driver mutations in other cancer-related genes. We observed recurrent mutations in MYCN (30%), PPP6C (15%), STK19 (10%), LATS1 (8%), ERBB2 (4%), PIK3CA (2%), and NRAS, KRAS or HRAS (2%), and loss-of-function and deleterious missense mutations were present in PTPN14 (23%), RB1 (8%) and FBXW7 (5%). Consistent with the mutational profiles, N-Myc and Hippo-YAP pathway target genes were upregulated. Functional analysis of the mutations in MYCN, PTPN14 and LATS1 suggested their potential relevance in BCC tumorigenesis.

+view abstract Nature genetics, PMID: 26950094 2016

Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J Epigenetics

Conventional generation of stem cells from human blastocysts produces a developmentally advanced, or primed, stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However, whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here, we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration, global gene expression, and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals.

+view abstract Stem cell reports, PMID: 26947977 2016

Humblet-Baron S, Franckaert D, Dooley J, Bornschein S, Cauwe B, Schönefeldt S, Bossuyt X, Matthys P, Baron F, Wouters C, Liston A Immunology

Hemophagocytic lymphohistiocytosis (HLH) is a severe inflammatory condition driven by excessive CD8(+) T-cell activation. HLH occurs as both acquired and familial hemophagocytic lymphohistiocytosis (FHL) forms. In both conditions, a sterile or infectious trigger is required for disease initiation, which then becomes self-sustaining and life-threatening. Recent studies have attributed the key distal event to excessive IFN-γ production; however, the proximal events driving immune dysregulation have remained undefined.

+view abstract The Journal of allergy and clinical immunology, PMID: 26947179 2016

Gilley J, Ando K, Seereeram A, Rodríguez-Martín T, Pooler AM, Sturdee L, Anderton BH, Brion JP, Hanger DP, Coleman MP Signalling

Hyperphosphorylation and fibrillar aggregation of the microtubule-associated protein tau are key features of Alzheimer's disease and other tauopathies. To investigate the involvement of tau phosphorylation in the pathological process, we generated a pair of complementary phosphomutant tau knockin mouse lines. One exclusively expresses phosphomimetic tau with 18 glutamate substitutions at serine and/or threonine residues in the proline-rich and first microtubule-binding domains to model hyperphosphorylation, whereas its phosphodefective counterpart has matched alanine substitutions. Consistent with expected effects of genuine phosphorylation, association of the phosphomimetic tau with microtubules and neuronal membranes is severely disrupted in vivo, whereas the phosphodefective mutations have more limited or no effect. Surprisingly, however, age-related mislocalization of tau is evident in both lines, although redistribution appears more widespread and more pronounced in the phosphomimetic tau knockin. Despite these changes, we found no biochemical or immunohistological evidence of pathological tau aggregation in mice of either line up to at least 2 years of age. These findings raise important questions about the role of tau phosphorylation in driving pathology in human tauopathies.

+view abstract Neurobiology of aging, PMID: 26923397 2016