Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific services. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icons. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access symbol A note on Open Access icons: 'Green' Open Access publications are marked by the pink 'Download' icon. Click on the icon to access a pre-print PDF version of the publication. ​'Gold' Open Access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription.

 

 

Title / Authors / Details Open Access Download

The tyrosine kinase Syk is required for light chain isotype exclusion but dispensable for the negative selection of B cells.
Meade J, Tybulewicz VL, Turner M

In this study we set out to test whether Syk was required for negative selection of immature B cells. B cells expressing a B cell antigen receptor (BCR) transgene (3-83, anti-H-2K(k)) underwent negative selection independently of Syk in both fetal liver organ culture and radiation chimera models. Furthermore, Syk-independent negative selection was not reversed by transgenic overexpression of Bcl-2. Receptor editing was not apparent in Syk-deficient B cells, presumably as a consequence of the failure of mature edited B cells to develop in the absence of Syk. Interestingly, light chain isotype exclusion by the BCR transgene failed in the absence of Syk. We observed a dramatic reduction in the overall BCR-mediated tyrosine phosphorylation of cellular proteins in Syk-deficient immature B cells. However, the tyrosine phosphorylation of a number of substrates including phospholipase C gamma 2, although reduced, was not completely abrogated. BCR ligation triggered an increase in calcium flux in the absence of Syk. Thus signaling events that mediate negative selection can still occur in the absence of Syk. This may be due to redundancy with zeta-associated protein 70 (ZAP-70), which we demonstrate to be expressed in immature B cells.

+ View Abstract

European journal of immunology , 2004

PMID: 15048721

Divergent genetic and epigenetic post-zygotic isolation mechanisms in Mus and Peromyscus.
Zechner U, Shi W, Hemberger M, Himmelbauer H, Otto S, Orth A, Kalscheuer V, Fischer U, Elango R, Reis A, Vogel W, Ropers H, Rüschendorf F, Fundele R

Interspecific hybridization in the rodent genera Peromyscus and Mus results in abnormal placentation. In the Peromyscus interspecies hybrids, abnormal allelic interaction between an X-linked locus and the imprinted paternally expressed Peg3 locus was shown to cause the placental defects. In addition, loss-of-imprinting (LOI) of Peg3 was positively correlated with increased placental size. As in extreme cases this placental dysplasia constitutes a post-zygotic barrier against interspecies hybridization, this finding was the first direct proof that imprinted genes may be important in speciation and thus in evolution. In the Mus interspecies hybrids, a strong role of an X-linked locus in placental dysplasia has also been detected. However, here we show by backcross and allele specific expression analyses that neither LOI of Peg3 nor abnormal interactions between Peg3 and an X-linked locus are involved in generating placental dysplasia in Mus hybrids, although the placental phenotypes observed in the two genera seem to be identical. In contrast to this, another dysgenesis effect common to Peromyscus and Mus hybrids, altered foetal growth, is caused at least in part by the same X-chromosomal regions in both genera. These findings first underline the strong involvement of the X-chromosome in the genetics of speciation. Secondly, they indicate that disruption of epigenetic states, such as LOI, at specific loci may be involved in hybrid dysgenesis effects in one group, but not in another. Thus, we conclude that even in closely related groups divergent molecular mechanisms may be involved in the production of phenotypically similar post-zygotic barriers against hybridization.

+ View Abstract

Journal of evolutionary biology , 2004

PMID: 15009278

The activation of G-protein gated inwardly rectifying K+ channels by a cloned Drosophila melanogaster neuropeptide F-like receptor.
V Reale, HM Chatwin, PD Evans

A Drosophila melanogaster G-protein-coupled receptor (NPFR76F) that is activated by neuropeptide F-like peptides has been expressed in Xenopus oocytes to determine its ability to regulate heterologously expressed G-protein-coupled inwardly rectifying potassium channels. The activated receptor produced inwardly rectifying potassium currents by a pertussis toxin-sensitive G-protein-mediated pathway and the effects were reduced in the presence of proteins, such as the betaARK 1 carboxy-tail fragment and alpha-transducin, which bind G-protein betagamma-subunits. Short Drosophila NPF-like peptides were more potent than long NPF-like peptides at coupling the receptor to the activation of inwardly rectifying potassium channels. The putative endogenous short Drosophila NPF-like peptides showed agonist-specific coupling depending on whether their actions were assessed as the activation of the inwardly rectifying potassium channels or as the activation of endogenous inward chloride channels through a co-expressed promiscuous G-protein, Galpha16. As inwardly rectifying potassium channels are known to be encoded in the Drosophila genome and the NPFR76F receptor is widely expressed in the Drosophila nervous system, the receptor could function to control neuronal excitability or slow wave potential generation in the Drosophila nervous system.

+ View Abstract

The European journal of neuroscience , 2004

PMID: 14984407

ERK1/2 and p38 cooperate to induce a p21CIP1-dependent G1 cell cycle arrest.
DE Todd, RM Densham, SA Molton, K Balmanno, C Newson, CR Weston, AP Garner, L Scott, SJ Cook

To study the mechanisms by which mitogen- and stress-activated protein kinases regulate cell cycle re-entry, we have used a panel of conditional kinases that stimulate defined MAPK or SAPK cascades. Activation of DeltaMEKK3:ER* during serum restimulation of quiescent cells causes a strong activation of JNK1 and p38alpha but only a modest potentiation of serum-stimulated ERK1/2 activity. In CCl39 cells this promoted a sustained G1 arrest that correlated with decreased expression of cyclin D1 and Cdc25A, increased expression of p21CIP1 and inhibition of CDK2 activity. In Rat-1 cells, in which p21(CIP1) expression is silenced by methylation, DeltaMEKK3:ER* activation caused only a transient delay in the S phase entry rather than a sustained G1 arrest. Furthermore, p21CIP1-/- 3T3 cells were defective for the DeltaMEKK3:ER*-induced G1 cell cycle arrest compared to their wild-type counterparts. These results suggest that activated DeltaMEKK3:ER* inhibits the G1 --> S progression by two kinetically distinct mechanisms, with expression of p21CIP1 being required to ensure a sustained G1 cell cycle arrest. The ERK1/2 and p38alphabeta pathways cooperated to induce p21CIP1 expression and inhibition of p38alphabeta caused a partial reversal of the cell cycle arrest. In contrast, selective activation of ERK1/2 by DeltaRaf-1:ER* did not inhibit serum stimulated cell cycle re-entry. Finally, selective activation of JNK by DeltaMEKK1:ER* failed to inhibit cell cycle re-entry, even in cells that retained wild-type p53, arguing against a major role for JNK alone in antagonizing the G1 --> S transition.

+ View Abstract

Oncogene , 2004

PMID: 14981547

Activation of Syk in neutrophils by antineutrophil cytoplasm antibodies occurs via Fcgamma receptors and CD18.
Hewins P, Williams JM, Wakelam MJ, Savage CO

Antineutrophil cytoplasm antibodies (ANCA) activate TNF-alpha-primed neutrophils to undergo a respiratory burst. The intracellular signals that mediate activation have not been studied extensively but could increase the understanding of the pathogenesis small vessel vasculitis. It was demonstrated that ANCA-IgG induced phosphorylation of the tyrosine kinase Syk in TNF-alpha-primed neutrophils from healthy donors. Syk was not phosphorylated in response to ANCA F(ab')(2). Furthermore, Syk phosphorylation was attenuated by blockade of both low-affinity Fcgamma receptors and CD18. Similarly, low-affinity Fcgamma receptor blockade reduced ANCA-induced superoxide production. In patient-derived neutrophils, the high-affinity Fcgamma receptor FcgammaRI was also demonstrated to be involved in ANCA-induced superoxide production. However, Syk phosphorylation was not attenuated by blockade of the FcgammaRI, present on neutrophils from vasculitis patients. The tyrosine kinase inhibitor 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine inhibited the ANCA-induced respiratory burst and Syk phosphorylation, suggesting that Src kinases lie upstream of Syk activation but downstream of ANCA engagement of Fcgamma receptors. Piceatannol, another tyrosine kinase inhibitor, also inhibited ANCA-induced Syk phosphorylation and the ANCA-stimulated respiratory burst, supporting the proposed functional role for Syk in ANCA signaling. ANCA-induced phosphorylation of Cbl and intracellular calcium transients, potential downstream mediators of Syk activation, were also blocked by tyrosine kinase inhibitors. While it has previously been shown that pertussis toxin diminishes the ANCA-induced respiratory burst, indicating heterotrimeric G protein involvement, Syk phosphorylation and calcium transients were unaffected by pertussis toxin. Collectively, these data show that Syk phosphorylation is induced during ANCA-triggered neutrophil activation.

+ View Abstract

Journal of the American Society of Nephrology : JASN , 2004

PMID: 14978183

Open Access

Rational understanding of nicotinic receptors drug binding.
Grutter T, Le Novère N, Changeux JP

The atomic determination of the acetylcholine binding protein (AChBP), a molluscan cholinergic protein, homologous to the amino-terminal extracellular domain of nicotinic receptors (nAChRs), offers opportunities for the modeling of the acetylcholine binding site and its ligands. Recently, we constructed three-dimensional models of the N-terminal part of nAChR and docked in the putative ligand-binding pocket, different agonists (acetylcholine, nicotine and epibatidine) and antagonist (snake alpha-bungarotoxin). These hypothetical docking models offer a structural basis for rational design of drugs differentially binding to resting and active (or desensitized) conformations of the receptor site. These models thus pave the way to investigate, at the molecular level, the exciting challenge of the fast ion channel gating mechanisms by nicotinic agonists.

+ View Abstract

Current topics in medicinal chemistry , 2004

PMID: 14965300

An extracellular protein microdomain controls up-regulation of neuronal nicotinic acetylcholine receptors by nicotine.
Sallette J, Bohler S, Benoit P, Soudant M, Pons S, Le Novère N, Changeux JP, Corringer PJ

In smoker's brain, rodent brain, and in cultured cells expressing nicotinic receptors, chronic nicotine treatment induces an increase in the total number of high affinity receptors for acetylcholine and nicotine, a process referred to as up-regulation. Up-regulation induced by 1 mm nicotine reaches 6-fold for alpha3beta2 nicotinic receptors transiently expressed in HEK 293 cells, whereas it is much smaller for alpha3beta4 receptors, offering a rationale to investigate the molecular mechanism underlying up-regulation. In this expression system binding sites are mainly intracellular, as shown by [(3)H]epibatidine binding experiments and competition with the impermeant ligand carbamylcholine. Systematic analysis of beta2/beta4 chimeras demonstrates the following. (i) The extracellular domain critically contributes to up-regulation. (ii) Only residues belonging to two beta2 segments, 74-89 and 106-115, confer up-regulation to beta4, mainly by decreasing the amount of binding sites in the absence of nicotine; on an atomic three-dimensional model of the alpha3beta2 receptor these amino acids form a compact microdomain that mainly contributes to the subunit interface and also faces the acetylcholine binding site. (iii) The beta4 microdomain is sufficient to confer to beta2 a beta4-like up-regulation. (iv) This microdomain makes an equivalent contribution to the up-regulation differences between alpha4beta2 and alpha4beta4. We propose that nicotine, by binding to immature oligomers, elicits a conformational reorganization of the microdomain, strengthening the interaction between adjacent subunits and, thus, facilitating maturation processes toward high affinity receptors. This mechanism may be central to nicotine addiction, since alpha4beta2 is the subtype exhibiting the highest degree of up-regulation in the brain.

+ View Abstract

The Journal of biological chemistry , 2004

PMID: 14764595

Open Access

Competition for access to the rat major histocompatibility complex class I peptide-loading complex reveals optimization of peptide cargo in the absence of transporter associated with antigen processing (TAP) association.
Ford S, Antoniou A, Butcher GW, Powis SJ

Major histocompatibility complex (MHC) class I molecules load peptides in the endoplasmic reticulum in a process during which the peptide cargo is normally optimized in favor of stable MHC-peptide interactions. A dynamic multimolecular assembly termed the peptide-loading complex (PLC) participates in this process and is composed of MHC class I molecules, calreticulin, ERp57, and tapasin bound to the transporter associated with antigen processing (TAP) peptide transporter. We have exploited the observation that the rat MHC class I allele RT1-Aa, when expressed in the rat C58 thymoma cell line, effectively competes and prevents the endogenous RT1-Au molecule from associating with TAP. However, stable RT1-Au molecules are assembled efficiently in competition with RT1-Aa, demonstrating that cargo optimization can occur in the absence of TAP association. Defined mutants of RT1-Aa, which do not allow formation of the PLC, fail to become thermostable in C58 cells. Wild-type RT1-Aa, which does allow PLC formation, also fails to become thermostable in this cell line, which carries the rat TAPB transporter that supplies peptides incompatible for RT1-Aa binding. Full optimization of RT1-Aa requires the presence of the TAP2A allele, which is capable of supplying suitable peptides. Thus, formation of the PLC alone is not sufficient for optimization of the MHC class I peptide cargo.

+ View Abstract

The Journal of biological chemistry , 2004

PMID: 14764587

Open Access

Differential regulation of TCR-mediated gene transcription by Vav family members.
Zakaria S, Gomez TS, Savoy DN, McAdam S, Turner M, Abraham RT, Billadeau DD

Although all three Vav family members are expressed in T lymphocytes, the role that Vav3 plays in T cell activation is poorly defined. Here we show that, like Vav1, Vav3 undergoes rapid tyrosine phosphorylation after T cell receptor (TCR) cross-linkage and interacts with the adaptor molecules SLP76 and 3BP2 in a SH2-dependent manner. However, depletion of Vav1 but not Vav3 protein by RNA interference affects TCR-mediated IL-2 promoter activity. In contrast, Vav3 function is specifically required for coupling TCR stimulation to serum response element-mediated gene transcription. These data indicate that, although both Vav proteins are biochemically coupled to the TCR, they regulate distinct molecular pathways leading to defined gene transcriptional events.

+ View Abstract

The Journal of experimental medicine , 2004

PMID: 14757747

Open Access

Mechanisms and implications of phosphoinositide 3-kinase delta in promoting neutrophil trafficking into inflamed tissue.
Puri KD, Doggett TA, Douangpanya J, Hou Y, Tino WT, Wilson T, Graf T, Clayton E, Turner M, Hayflick JS, Diacovo TG

The phosphoinositide 3-kinase (PI3K) catalytic subunit p110 delta is expressed in neutrophils and is thought to play a role in their accumulation at sites of inflammation by contributing to chemoattractant-directed migration. We report here that p110 delta is present in endothelial cells and participates in neutrophil trafficking by modulating the proadhesive state of these cells in response to tumor necrosis factor alpha (TNF alpha). Specifically, administration of the selective inhibitor of PI3K delta, IC87114, to animals reduced neutrophil tethering to and increased rolling velocities on cytokine-activated microvessels in a manner similar to that observed in mice deficient in p110 delta. These results were confirmed in vitro as inhibition of this isoform in endothelium, but not neutrophils, diminished cell attachment in flow. A role for PI3K delta in TNF alpha-induced signaling is demonstrated by a reduction in Akt-phosphorylation and phosphatidylinositol-dependent kinase 1 (PDK1) enzyme activity upon treatment of this cell type with IC87114. p110 delta expressed in neutrophils also contributes to trafficking as demonstrated by the impaired movement of these cells across inflamed venules in animals in which this catalytic subunit was blocked or genetically deleted, results corroborated in transwell migration assays. Thus, PI3K delta may be a reasonable therapeutic target in specific inflammatory conditions as blockade of its activity reduces neutrophil influx into tissues by diminishing their attachment to and migration across vascular endothelium.

+ View Abstract

Blood , 2004

PMID: 14751923

Open Access

Immunological function in mice lacking the Rac-related GTPase RhoG.
Vigorito E, Bell S, Hebeis BJ, Reynolds H, McAdam S, Emson PC, McKenzie A, Turner M

RhoG is a low-molecular-weight GTPase highly expressed in lymphocytes that activates gene transcription and promotes cytoskeletal reorganization in vitro. To study the in vivo function of RhoG, we generated mice homozygous for a targeted disruption of the RhoG gene. Despite the absence of RhoG, the development of B and T lymphocytes was unaffected. However, there was an increase in the level of serum immunoglobulin G1 (IgG1) and IgG2b as well as a mild increase of the humoral immune response to thymus-dependent antigens. In addition, B- and T-cell proliferation in response to antigen receptor cross-linking was slightly increased. Although RhoG deficiency produces a mild phenotype, our experiments suggest that RhoG may contribute to the negative regulation of immune responses. The lack of a strong phenotype could indicate a functional redundancy of RhoG with other Rac proteins in lymphocytes.

+ View Abstract

Molecular and cellular biology , 2004

PMID: 14701744

Open Access

Enhancing and diminishing gene function in human embryonic stem cells.
Vallier L, Rugg-Gunn PJ, Bouhon IA, Andersson FK, Sadler AJ, Pedersen RA

It is widely recognized that gain- and loss-of-function approaches are essential for understanding the functions of specific genes, and such approaches would be particularly valuable in studies involving human embryonic stem (hES) cells. We describe a simple and efficient approach using lipofection to transfect hES cells, which enabled us to generate hES cell lines expressing naturally fluorescent green or red proteins without affecting cell pluripotency. We used these cell lines to establish a means of diminishing gene function using small interfering (si)RNAs, which were effective at knocking down gene expression in hES cells. We then demonstrated that stable expression of siRNA could knock down the expression of endogenous genes. Application of these gain- and loss-of-function approaches should have widespread use, not only in revealing the developmental roles of specific human genes, but also for their utility in modulating differentiation.

+ View Abstract

Stem cells (Dayton, Ohio) , 2004

PMID: 14688386

Open Access

Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins.
NN Kasri, AM Holmes, G Bultynck, JB Parys, MD Bootman, K Rietdorf, L Missiaen, F McDonald, H De Smedt, SJ Conway, AB Holmes, MJ Berridge, HL Roderick

Inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) were recently demonstrated to be activated independently of InsP(3) by a family of calmodulin (CaM)-like neuronal Ca(2+)-binding proteins (CaBPs). We investigated the interaction of both naturally occurring long and short CaBP1 isoforms with InsP(3)Rs, and their functional effects on InsP(3)R-evoked Ca(2+) signals. Using several experimental paradigms, including transient expression in COS cells, acute injection of recombinant protein into Xenopus oocytes and (45)Ca(2+) flux from permeabilised COS cells, we demonstrated that CaBPs decrease the sensitivity of InsP(3)-induced Ca(2+) release (IICR). In addition, we found a Ca(2+)-independent interaction between CaBP1 and the NH(2)-terminal 159 amino acids of the type 1 InsP(3)R. This interaction resulted in decreased InsP(3) binding to the receptor reminiscent of that observed for CaM. Unlike CaM, however, CaBPs do not inhibit ryanodine receptors, have a higher affinity for InsP(3)Rs and more potently inhibited IICR. We also show that phosphorylation of CaBP1 at a casein kinase 2 consensus site regulates its inhibition of IICR. Our data suggest that CaBPs are endogenous regulators of InsP(3)Rs tuning the sensitivity of cells to InsP(3).

+ View Abstract

The EMBO journal , 2004

PMID: 14685260

Formation of HLA-B27 homodimers and their relationship to assembly kinetics.
Antoniou AN, Ford S, Taurog JD, Butcher GW, Powis SJ

The human HLA-B27 class I molecule exhibits a strong association with the inflammatory arthritic disorder ankylosing spondylitis and other related arthropathies. Major histocompatibility complex class I heavy chains normally associate with beta(2)-microglobulin and peptide in the endoplasmic reticulum before transit to the cell surface. However, an unusual characteristic of HLA-B27 is its ability to form heavy chain homodimers through an unpaired cysteine at position 67 in the peptide groove. Homodimers have previously been detected within the ER and at the cell surface, but their mechanism of formation and role in disease remain undefined. Here we demonstrate, in the rat C58 thymoma cell line and in human HeLa cells transfected with HLA-B27, that homodimer formation involves not only cysteine at position 67 but also the conserved structural cysteine at position 164. We also show that homodimer formation can be induced in the non-disease-associated HLA class I allele HLA-A2 by slowing its assembly rate by incubation of cells at 26 degrees C, suggesting that homodimer formation in the endoplasmic reticulum may occur as a result of the slower folding kinetics of HLA-B27. Finally, we report an association between unfolded HLA-B27 molecules and immunoglobulin-binding protein at the cell surface.

+ View Abstract

The Journal of biological chemistry , 2004

PMID: 14684742

Open Access

Extracellular signal-regulated kinases 1/2 are serum-stimulated "Bim(EL) kinases" that bind to the BH3-only protein Bim(EL) causing its phosphorylation and turnover.
R Ley, KE Ewings, K Hadfield, E Howes, K Balmanno, SJ Cook

Bim, a "BH3-only" protein, is expressed de novo following withdrawal of serum survival factors and promotes cell death. We have shown previously that activation of the ERK1/2 pathway promotes phosphorylation of Bim(EL), targeting it for degradation via the proteasome. However, the nature of the kinase responsible for Bim(EL) phosphorylation remained unclear. We now show that Bim(EL) is phosphorylated on at least three sites in response to activation of the ERK1/2 pathway. By using the peptidylprolyl isomerase, Pin1, as a probe for proline-directed phosphorylation, we show that ERK1/2-dependent phosphorylation of Bim(EL) occurs at (S/T)P motifs. ERK1/2 phosphorylates Bim(EL), but not Bim(S) or Bim(L), in vitro, and mutation of Ser(65) to alanine blocks the phosphorylation of Bim(EL) by ERK1/2 in vitro and in vivo and prevents the degradation of the protein following activation of the ERK1/2 pathway. We also find that ERK1/2, but not JNK, can physically associate with GST-Bim(EL), but not GST-Bim(L) or GST-Bim(S), in vitro. ERK1/2 also binds to full-length Bim(EL) in vivo, and we have localized a potential ERK1/2 "docking domain" lying within a 27-amino acid stretch of the Bim(EL) protein. Our findings provide new insights into the post-translational regulation of Bim(EL) and the role of the ERK1/2 pathway in cell survival signaling.

+ View Abstract

The Journal of biological chemistry , 2004

PMID: 14681225

Open Access

An association between variants in the IGF2 gene and Beckwith-Wiedemann syndrome: interaction between genotype and epigenotype.
Murrell A, Heeson S, Cooper WN, Douglas E, Apostolidou S, Moore GE, Maher ER, Reik W

Beckwith-Wiedemann syndrome (BWS) is a fetal overgrowth disorder involving the deregulation of a number of genes, including IGF2 and CDKN1C, in the imprinted gene cluster on chromosome 11p15.5. In sporadic BWS cases the majority of patients have epimutations in this region. Loss of imprinting of the IGF2 gene is frequently observed in BWS, as is reduced CDKN1C expression related to loss of maternal allele-specific methylation (LOM) of the differentially methylated region KvDMR1. The causes of epimutations are unknown, although recently an association with assisted reproductive technologies has been described. To date the only genetic mutations described in BWS are in the CDKN1C gene. In order to screen for other genetic predispositions to BWS, the conserved sequences between human and mouse differentially methylated regions (DMRs) of the IGF2 gene were analyzed for variants. Four single nucleotide polymorphisms (SNPs) were found in DMR0 (T123C, G358A, T382G and A402G) which occurred in three out of 16 possible haplotypes: TGTA, CATG and CAGA. DNA samples from a cohort of sporadic BWS patients and healthy controls were genotyped for the DMR0 SNPs. There was a significant increase in the frequency of the CAGA haplotype and a significant decrease in the frequency of the CATG haplotype in the patient cohort compared to controls. These associations were still significant in a BWS subgroup with KvDMR1 LOM, suggesting that the G allele at T382G SNP (CAGA haplotype) is associated with LOM at KvDMR1. This indicates either a genetic predisposition to LOM or interactions between genotype and epigenotype that impinge on the disease phenotype.

+ View Abstract

Human molecular genetics , 2004

PMID: 14645199

Open Access

Inhibition of phosphatidylinositol 3-kinase- and ERK MAPK-regulated protein synthesis reveals the pro-apoptotic properties of CD40 ligation in carcinoma cells.
Davies CC, Mason J, Wakelam MJ, Young LS, Eliopoulos AG

CD40, a member of the tumor necrosis factor receptor superfamily, is frequently expressed in carcinomas where its stimulation results in induction of apoptosis when de novo protein synthesis is inhibited. The requirement of protein synthesis inhibition for efficient killing suggests that CD40 transduces potent survival signals capable of suppressing its pro-apoptotic effects. We have found that inhibition of CD40 signaling on the phosphatidylinositol 3-kinase (PI3K) and ERK MAPK but not on the p38 MAPK axis disrupts this balance and sensitizes carcinoma cells to CD40-mediated cell death. The CD40-mediated PI3K and ERK activities were found to converge on the regulation of protein synthesis in carcinoma cells via a pathway involving the activation of p90 ribosomal S6 kinase (p90Rsk) and p70S6 kinases, upstream of the translation elongation factor eEF2. In addition, CD40 ligation was found to mediate a PI3K- and mammalian target of rapamycin (mTOR)-dependent phosphorylation of 4E-BP1 and its subsequent dissociation from the mRNA cap-binding protein eIF4E as well as an ERK-dependent phosphorylation of eIF4E, thus promoting translation initiation. Concomitantly, the antiapoptotic protein cFLIP was found to be induced in CD40 ligand-stimulated carcinoma cells in a PI3K-, ERK-, and mammalian target of rapamycin (mTOR)-dependent manner and down-regulation of cFLIPS expression sensitized to CD40-mediated carcinoma cell death. These data underline the significance of the PI3K and ERK pathways in controlling the balance between CD40-mediated survival and death signals through the regulation of the protein synthesis machinery. Pharmacological agents that target this machinery or its upstream kinases could, therefore, be exploited for CD40-based tumor therapy.

+ View Abstract

The Journal of biological chemistry , 2004

PMID: 14581487

Open Access

LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1.
S Hacein-Bey-Abina, C Von Kalle, M Schmidt, MP McCormack, N Wulffraat, P Leboulch, A Lim, CS Osborne, R Pawliuk, E Morillon, R Sorensen, A Forster, P Fraser, JI Cohen, G de Saint Basile, I Alexander, U Wintergerst, T Frebourg, A Aurias, D Stoppa-Lyonnet, S Romana, I Radford-Weiss, F Gross, F Valensi, E Delabesse, E Macintyre, F Sigaux, J Soulier, LE Leiva, M Wissler, C Prinz, TH Rabbitts, F Le Deist, A Fischer, M Cavazzana-Calvo

We have previously shown correction of X-linked severe combined immunodeficiency [SCID-X1, also known as gamma chain (gamma(c)) deficiency] in 9 out of 10 patients by retrovirus-mediated gamma(c) gene transfer into autologous CD34 bone marrow cells. However, almost 3 years after gene therapy, uncontrolled exponential clonal proliferation of mature T cells (with gammadelta+ or alphabeta+ T cell receptors) has occurred in the two youngest patients. Both patients' clones showed retrovirus vector integration in proximity to the LMO2 proto-oncogene promoter, leading to aberrant transcription and expression of LMO2. Thus, retrovirus vector insertion can trigger deregulated premalignant cell proliferation with unexpected frequency, most likely driven by retrovirus enhancer activity on the LMO2 gene promoter.

+ View Abstract

Science (New York, N.Y.) , 2003

PMID: 14564000

Tuning heme redox potentials in the cytochrome C subunit of photosynthetic reaction centers.
Voigt P, Knapp EW

The photosynthetic reaction center (RC) from Rhodopseudomonas viridis contains four cytochrome c hemes. They establish the initial part of the electron transfer (ET) chain through the RC. Despite their chemical identity, their midpoint potentials cover an interval of 440 mV. The individual heme midpoint potentials determine the ET kinetics and are therefore tuned by specific interactions with the protein environment. Here, we use an electrostatic approach based on the solution of the linearized Poisson-Boltzmann equation to evaluate the determinants of individual heme redox potentials. Our calculated redox potentials agree within 25 meV with the experimentally measured values. The heme redox potentials are mainly governed by solvent accessibility of the hemes and propionic acids, by neutralization of the negative charges at the propionates through either protonation or formation of salt bridges, by interactions with other hemes, and to a lesser extent, with other titratable protein side chains. In contrast to earlier computations on this system, we used quantum chemically derived atomic charges, considered an equilibrium-distributed protonation pattern, and accounted for interdependencies of site-site interactions. We provide values for the working potentials of all hemes as a function of the solution redox potential, which are crucial for calculations of ET rates. We identify residues whose site-directed mutation might significantly influence ET processes in the cytochrome c part of the RC. Redox potentials measured on a previously generated mutant could be reproduced by calculations based on a model structure of the mutant generated from the wild type RC.

+ View Abstract

The Journal of biological chemistry ,

PMID: 12975370

Functional characterization of a neuropeptide F-like receptor from Drosophila melanogaster.
G Feng, V Reale, H Chatwin, K Kennedy, R Venard, C Ericsson, K Yu, PD Evans, LM Hall

A cDNA clone encoding a seven-transmembrane domain, G-protein-coupled receptor (NPFR76F, also called GPCR60), has been isolated from Drosophila melanogaster. Deletion mapping showed that the gene encoding this receptor is located on the left arm of the third chromosome at position 76F. Northern blotting and whole mount in situ hybridization have shown that this receptor is expressed in a limited number of neurons in the central and peripheral nervous systems of embryos and adults. Analysis of the deduced amino acid sequence suggests that this receptor is related to vertebrate neuropeptide Y receptors. This Drosophila receptor shows 62-66% similarity and 32-34% identity to type 2 neuropeptide Y receptors cloned from a variety of vertebrate sources. Coexpression in Xenopus oocytes of NPFR76F with the promiscuous G-protein Galpha16 showed that this receptor is activated by the vertebrate neuropeptide Y family to produce inward currents due to the activation of an endogenous oocyte calcium-dependent chloride current. Maximum receptor activation was achieved with short, putative Drosophila neuropeptide F peptides (Drm-sNPF-1, 2 and 2s). Neuropeptide F-like peptides in Drosophila have been implicated in a signalling system that modulates food response and social behaviour. The identification of this neuropeptide F-like receptor and its endogenous ligand by reverse pharmacology will facilitate genetic and behavioural studies of neuropeptide functions in Drosophila.

+ View Abstract

The European journal of neuroscience , 2003

PMID: 12887405

Calcium signalling: dynamics, homeostasis and remodelling.
MJ Berridge, MD Bootman, HL Roderick

Ca2+ is a highly versatile intracellular signal that operates over a wide temporal range to regulate many different cellular processes. An extensive Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics. Rapid highly localized Ca2+ spikes regulate fast responses, whereas slower responses are controlled by repetitive global Ca2+ transients or intracellular Ca2+ waves. Ca2+ has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease.

+ View Abstract

Nature reviews. Molecular cell biology , 2003

PMID: 12838335

Characterisation of RT1-E2, a multigenic family of highly conserved rat non-classical MHC class I molecules initially identified in cells from immunoprivileged sites.
Lau P, Amadou C, Brun H, Rouillon V, McLaren F, Le Rolle AF, Graham M, Butcher GW, Joly E

So-called "immunoprivileged sites" are tissues or organs where slow allograft rejection correlates with low levels of expression of MHC class I molecules. Whilst classical class I molecules are recognised by cytotoxic T lymphocytes (CTL), some MHC class I molecules are called "non-classical" because they exhibit low polymorphism and are not widely expressed. These last years, several studies have shown that these can play different, more specialised roles than their classical counterparts. In the course of efforts to characterise MHC class I expression in rat cells obtained from immunoprivileged sites such as the central nervous system or the placenta, a new family of non-classical MHC class I molecules, which we have named RT1-E2, has been uncovered.

+ View Abstract

BMC immunology , 2003

PMID: 12837137

Open Access

Beta-elimination: an unexpected artefact in proteome analysis.
Herbert B, Hopwood F, Oxley D, McCarthy J, Laver M, Grinyer J, Goodall A, Williams K, Castagna A, Righetti PG

Two persistent myths, ingrained in the electrophoretic literature of the last thirty years, namely carbamylation and deamidation, have been recently dispelled (Herbert et al., J. Proteome Res. 2002, in press). We report here, for the first time, a noxious and unexpected artefact in proteome analysis: beta-elimination (or desulfuration), which results on the loss of an H(2)S group (34 Da) from cysteine (Cys) residues for protein focusing in the alkaline pH region. With such an elimination event, a dehydro alanine residue is generated at the Cys site. In turn, the presence of a double bond in this position elicits lysis of the peptide bond, generating a number of peptides of fairly large size from an intact protein. The first process seems to be favored by the electric field, probably due to the continuous harvesting of the SH(-) anion produced. The only remedy found to this noxious degradation pathway is the reduction and alkylation of all Cys residues prior to their exposure to the electric field. Alkylation appears to substantially reduce both beta-elimination and the subsequent amido bond lysis.

+ View Abstract

Proteomics , 2003

PMID: 12833505

Regulation of Vav localization in membrane rafts by adaptor molecules Grb2 and BLNK.
Johmura S, Oh-hora M, Inabe K, Nishikawa Y, Hayashi K, Vigorito E, Kitamura D, Turner M, Shingu K, Hikida M, Kurosaki T

Despite the importance of the Vav family proteins for B cell receptor (BCR) signaling, their activation mechanisms remain poorly understood. We demonstrate here that adaptor molecules Grb2 and BLNK, in addition to Vav, are required for efficient Rac1 activation in response to BCR stimulation. Loss of either Grb2 or BLNK results in decreased translocation of Vav3 to membrane rafts. By expression of Vav3 as a raft-targeted construct, the defective Rac1 activation in Grb2- or BLNK-deficient B cells is restored. Hence, our findings suggest that Grb2 and BLNK cooperate to localize Vav into membrane rafts, thereby contributing to optimal activation of Vav in B cells.

+ View Abstract

Immunity , 2003

PMID: 12818159