Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

J Gilley, R Adalbert, MP Coleman

Considering the many differences between mice and humans, it is perhaps surprising how well mice model late-onset human neurodegenerative disease. Models of Alzheimer's disease, frontotemporal dementia, Parkinson's disease and Huntington's disease show some striking similarities to the corresponding human pathologies in terms of axonal transport disruption, protein aggregation, synapse loss and some behavioural phenotypes. However, there are also major differences. To extrapolate from mouse models to human disease, we need to understand how these differences relate to intrinsic limitations of the mouse system and to the effects of transgene overexpression. In the present paper, we use examples from an amyloid-overexpression model and a mutant-tau-knockin model to illustrate what we learn from each type of approach and what the limitations are. Finally, we discuss the further contributions that knockin and similar approaches can make to understanding pathogenesis and how best to model disorders of aging in a short-lived mammal.

+view abstract Biochemical Society transactions, PMID: 21787326 2011

Angel A, Song J, Dean C, Howard M Epigenetics

The conserved Polycomb repressive complex 2 (PRC2) generates trimethylation of histone 3 lysine 27 (H3K27me3), a modification associated with stable epigenetic silencing. Much is known about PRC2-induced silencing but key questions remain concerning its nucleation and stability. Vernalization, the perception and memory of winter in plants, is a classic epigenetic process that, in Arabidopsis, involves PRC2-based silencing of the floral repressor FLC. The slow dynamics of vernalization, taking place over weeks in the cold, generate a level of stable silencing of FLC in the subsequent warm that depends quantitatively on the length of the prior cold. These features make vernalization an ideal experimental system to investigate both the maintenance of epigenetic states and the switching between them. Here, using mathematical modelling, chromatin immunoprecipitation and an FLC:GUS reporter assay, we show that the quantitative nature of vernalization is generated by H3K27me3-mediated FLC silencing in the warm in a subpopulation of cells whose number depends on the length of the prior cold. During the cold, H3K27me3 levels progressively increase at a tightly localized nucleation region within FLC. At the end of the cold, numerical simulations predict that such a nucleation region is capable of switching the bistable epigenetic state of an individual locus, with the probability of overall FLC coverage by silencing H3K27me3 marks depending on the length of cold exposure. Thus, the model predicts a bistable pattern of FLC gene expression in individual cells, a prediction we verify using the FLC:GUS reporter system. Our proposed switching mechanism, involving the local nucleation of an opposing histone modification, is likely to be widely relevant in epigenetic reprogramming.

+view abstract Nature, PMID: 21785438

Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, Srivastava M, Divekar DP, Beaton L, Hogan JJ, Fagarasan S, Liston A, Smith KG, Vinuesa CG Immunology

Follicular helper (T(FH)) cells provide crucial signals to germinal center B cells undergoing somatic hypermutation and selection that results in affinity maturation. Tight control of T(FH) numbers maintains self tolerance. We describe a population of Foxp3(+)Blimp-1(+)CD4(+) T cells constituting 10-25% of the CXCR5(high)PD-1(high)CD4(+) T cells found in the germinal center after immunization with protein antigens. These follicular regulatory T (T(FR)) cells share phenotypic characteristics with T(FH) and conventional Foxp3(+) regulatory T (T(reg)) cells yet are distinct from both. Similar to T(FH) cells, T(FR) cell development depends on Bcl-6, SLAM-associated protein (SAP), CD28 and B cells; however, T(FR) cells originate from thymic-derived Foxp3(+) precursors, not naive or T(FH) cells. T(FR) cells are suppressive in vitro and limit T(FH) cell and germinal center B cell numbers in vivo. In the absence of T(FR) cells, an outgrowth of non-antigen-specific B cells in germinal centers leads to fewer antigen-specific cells. Thus, the T(FH) differentiation pathway is co-opted by T(reg) cells to control the germinal center response.

+view abstract Nature medicine, PMID: 21785433 2011

Schulz M, Krause F, Le Novère N, Klipp E, Liebermeister W Signalling

The exploding number of computational models produced by Systems Biologists over the last years is an invitation to structure and exploit this new wealth of information. Researchers would like to trace models relevant to specific scientific questions, to explore their biological content, to align and combine them, and to match them with experimental data. To automate these processes, it is essential to consider semantic annotations, which describe their biological meaning. As a prerequisite for a wide range of computational methods, we propose general and flexible similarity measures for Systems Biology models computed from semantic annotations. By using these measures and a large extensible ontology, we implement a platform that can retrieve, cluster, and align Systems Biology models and experimental data sets. At present, its major application is the search for relevant models in the BioModels Database, starting from initial models, data sets, or lists of biological concepts. Beyond similarity searches, the representation of models by semantic feature vectors may pave the way for visualisation, exploration, and statistical analysis of large collections of models and corresponding data.

+view abstract Molecular systems biology, PMID: 21772260 2011

J Houseley, D Tollervey

Major eukaryotic genomic elements, including the ribosomal DNA (rDNA), are composed of repeated sequences with well-defined copy numbers that must be maintained by regulated recombination. Although mechanisms that instigate rDNA recombination have been identified, none are directional and they therefore cannot explain precise repeat number control. Here, we show that yeast lacking histone chaperone Asf1 undergo reproducible rDNA repeat expansions. These expansions do not require the replication fork blocking protein Fob1 and are therefore independent of known rDNA expansion mechanisms. We propose the existence of a regulated rDNA repeat gain pathway that becomes constitutively active in asf1Δ mutants. Cells lacking ASF1 accumulate rDNA repeats with high fidelity in a processive manner across multiple cell divisions. The mechanism of repeat gain is dependent on highly repetitive sequence but, surprisingly, is independent of the homologous recombination proteins Rad52, Rad51 and Rad59. The expansion mechanism is compromised by mutations that decrease the processivity of DNA replication, which leads to progressive loss of rDNA repeats. Our data suggest that a novel mode of break-induced replication occurs in repetitive DNA that is dependent on high homology but does not require the canonical homologous recombination machinery.

+view abstract Nucleic acids research, PMID: 21768125 2011

L Hook, J Vives, N Fulton, M Leveridge, S Lingard, MD Bootman, A Falk, SM Pollard, TE Allsopp, D Dalma-Weiszhausz, A Tsukamoto, N Uchida, T Gorba

The utilization of neural stem cells and their progeny in applications such as disease modelling, drug screening or safety assessment will require the development of robust methods for consistent, high quality uniform cell production. Previously, we described the generation of adherent, homogeneous, non-immortalized mouse and human neural stem cells derived from both brain tissue and pluripotent embryonic stem cells (Conti et al., 2005; Sun et al., 2008). In this study, we report the isolation or derivation of stable neurogenic human NS (hNS) lines from different regions of the 8-9 gestational week fetal human central nervous system (CNS) using new serum-free media formulations including animal component-free conditions. We generated more than 20 adherent hNS lines from whole brain, cortex, lobe, midbrain, hindbrain and spinal cord. We also compared the adherent hNS to some aspects of the human CNS-stem cells grown as neurospheres (hCNS-SCns), which were derived from prospectively isolated CD133(+)CD24(-/lo) cells from 16 to 20 gestational week fetal brain. We found, by RT-PCR and Taqman low-density array, that some of the regionally isolated lines maintained their regional identity along the anteroposterior axis. These NS cells exhibit the signature marker profile of neurogenic radial glia and maintain neurogenic and multipotential differentiation ability after extensive long-term expansion. Similarly, hCNS-SC can be expanded either as neurospheres or in extended adherent monolayer with a morphology and marker expression profile consistent with radial glia NS cells. We demonstrate that these lines can be efficiently genetically modified with standard nucleofection protocols for both protein overexpression and siRNA knockdown of exogenously expressed and endogenous genes exemplified with GFP and Nestin. To investigate the functional maturation of neuronal progeny derived from hNS we (a) performed Agilent whole genome microarray gene expression analysis from cultures undergoing neuronal differentiation for up to 32 days and found increased expression over time for a number of drugable target genes including neurotransmitter receptors and ion channels and (b) conducted a neuropharmacology study utilizing Fura-2 Ca(2+) imaging which revealed a clear shift from an initial glial reaction to carbachol to mature neuron-specific responses to glutamate and potassium after prolonged neuronal differentiation. Fully automated culture and scale-up of select hNS was achieved; cells supplied by the robot maintained the molecular profile of multipotent NS cells and performed faithfully in neuronal differentiation experiments. Here, we present validation and utility of a human neural lineage-restricted stem cell-based assay platform, including scale-up and automation, genetic engineering and functional characterization of differentiated progeny.

+view abstract Neurochemistry international, PMID: 21762743 2011

J Kang, B Xu, Y Yao, W Lin, C Hennessy, P Fraser, J Feng

Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency- or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes.

+view abstract PLoS computational biology, PMID: 21760760 2011

G Kelsey

+view abstract Cell research, PMID: 21727909 2011

Tian L, Altin JA, Makaroff LE, Franckaert D, Cook MC, Goodnow CC, Dooley J, Liston A Immunology

Foxp3(+) regulatory T cells play a pivotal role in maintaining self-tolerance and immune homeostasis. In the absence of regulatory T cells, generalized immune activation and multiorgan T cell-driven pathology occurs. Although the phenomenon of immunologic control by Foxp3(+) regulatory T cells is well recognized, the comparative effect over different arms of the immune system has not been thoroughly investigated. Here, we generated a cohort of mice with a continuum of regulatory T-cell frequencies ranging from physiologic levels to complete deficiency. This titration of regulatory T-cell depletion was used to determine how different effector subsets are controlled. We found that in vivo Foxp3(+) regulatory T-cell frequency had a proportionate relationship with generalized T-cell activation and Th1 magnitude, but it had a surprising disproportionate relationship with Th2 magnitude. The asymmetric regulation was associated with efficient suppression of Th2 cells through additional regulations on the apoptosis rate in Th2 cells and not Th1 cells and could be replicated by CTLA4-Ig or anti-IL-2 Ab. These results indicate that the Th2 arm of the immune system is under tighter control by regulatory T cells than the Th1 arm, suggesting that Th2-driven diseases may be more responsive to regulatory T-cell manipulation.

+view abstract Blood, PMID: 21715314 2011

SA Smallwood, S Tomizawa, F Krueger, N Ruf, N Carli, A Segonds-Pichon, S Sato, K Hata, SR Andrews, G Kelsey

Elucidating how and to what extent CpG islands (CGIs) are methylated in germ cells is essential to understand genomic imprinting and epigenetic reprogramming. Here we present, to our knowledge, the first integrated epigenomic analysis of mammalian oocytes, identifying over a thousand CGIs methylated in mature oocytes. We show that these CGIs depend on DNMT3A and DNMT3L but are not distinct at the sequence level, including in CpG periodicity. They are preferentially located within active transcription units and are relatively depleted in H3K4me3, supporting a general transcription-dependent mechanism of methylation. Very few methylated CGIs are fully protected from post-fertilization reprogramming but, notably, the majority show incomplete demethylation in embryonic day (E) 3.5 blastocysts. Our study shows that CGI methylation in gametes is not entirely related to genomic imprinting but is a strong factor in determining methylation status in preimplantation embryos, suggesting a need to reassess mechanisms of post-fertilization demethylation.

+view abstract Nature genetics, PMID: 21706000 2011

MA Vinolo, GJ Ferguson, S Kulkarni, G Damoulakis, K Anderson, M Bohlooly-Y, L Stephens, PT Hawkins, R Curi

Short chain fatty acids (SCFAs) have recently attracted attention as potential mediators of the effects of gut microbiota on intestinal inflammation. Some of these effects have been suggested to occur through the direct actions of SCFAs on the GPR43 receptor in neutrophils, though the precise role of this receptor in neutrophil activation is still unclear. We show that mouse bone marrow derived neutrophils (BMNs) can chemotax effectively through polycarbonate filters towards a source of acetate, propionate or butyrate. Moreover, we show that BMNs move with good speed and directionality towards a source of propionate in an EZ-Taxiscan chamber coated with fibrinogen. These effects of SCFAs were mimicked by low concentrations of the synthetic GPR43 agonist phenylacetamide-1 and were abolished in GPR43(-/-) BMNs. SCFAs and phenylacetamide-1 also elicited GPR43-dependent activation of PKB, p38 and ERK and these responses were sensitive to pertussis toxin, indicating a role for Gi proteins. Phenylacetamide-1 also elicited rapid and transient activation of Rac1/2 GTPases and phosphorylation of ribosomal protein S6. Genetic and pharmacological intervention identified important roles for PI3Kγ, Rac2, p38 and ERK, but not mTOR, in GPR43-dependent chemotaxis. These results identify GPR43 as a bona fide chemotactic receptor for neutrophils in vitro and start to define important elements in its signal transduction pathways.

+view abstract PloS one, PMID: 21698257 2011

Dräger A, Rodriguez N, Dumousseau M, Dörr A, Wrzodek C, Le Novère N, Zell A, Hucka M Signalling

The specifications of the Systems Biology Markup Language (SBML) define standards for storing and exchanging computer models of biological processes in text files. In order to perform model simulations, graphical visualizations and other software manipulations, an in-memory representation of SBML is required. We developed JSBML for this purpose. In contrast to prior implementations of SBML APIs, JSBML has been designed from the ground up for the Java programming language, and can therefore be used on all platforms supported by a Java Runtime Environment. This offers important benefits for Java users, including the ability to distribute software as Java Web Start applications. JSBML supports all SBML Levels and Versions through Level 3 Version 1, and we have strived to maintain the highest possible degree of compatibility with the popular library libSBML. JSBML also supports modules that can facilitate the development of plugins for end user applications, as well as ease migration from a libSBML-based backend.

+view abstract Bioinformatics (Oxford, England), PMID: 21697129 2011

LS Matheson, AE Corcoran

Despite using the same Rag recombinase machinery expressed in both lymphocyte lineages, V(D)J recombination of immunoglobulins only occurs in B cells and T cell receptor recombination is confined to T cells. This vital segregation of recombination targets is governed by the coordinated efforts of several epigenetic mechanisms that control both the general chromatin accessibility of these loci to the Rag recombinase, and the movement and synapsis of distal gene segments in these enormous multigene AgR loci, in a lineage and developmental stage-specific manner. These mechanisms operate both locally at individual gene segments and AgR domains, and globally over large distances in the nucleus. Here we will discuss the roles of several epigenetic components that regulate V(D)J recombination of the immunoglobulin heavy chain locus in B cells, both in the context of the locus itself, and of its 3D nuclear organization, focusing in particular on non-coding RNA transcription. We will also speculate about how several newly described epigenetic mechanisms might impact on AgR regulation.

+view abstract Current topics in microbiology and immunology, PMID: 21695632 2012

KM Kendrick, Y Zhan, H Fischer, AU Nicol, X Zhang, J Feng

How oscillatory brain rhythms alone, or in combination, influence cortical information processing to support learning has yet to be fully established. Local field potential and multi-unit neuronal activity recordings were made from 64-electrode arrays in the inferotemporal cortex of conscious sheep during and after visual discrimination learning of face or object pairs. A neural network model has been developed to simulate and aid functional interpretation of learning-evoked changes.

+view abstract BMC neuroscience, PMID: 21658251 2011

TJ Pullen, G da Silva Xavier, G Kelsey, GA Rutter

In pancreatic β cells, elevated glucose concentrations stimulate mitochondrial oxidative metabolism to raise intracellular ATP/ADP levels, prompting insulin secretion. Unusually low levels of expression of genes encoding the plasma membrane monocarboxylate transporter, MCT1 (SLC16A1), as well as lactate dehydrogenase A (LDHA) ensure that glucose-derived pyruvate is efficiently metabolized by mitochondria, while exogenous lactate or pyruvate is unable to stimulate metabolism and hence insulin secretion inappropriately. We show here that whereas DNA methylation at the Mct1 promoter is unlikely to be involved in cell-type-specific transcriptional repression, three microRNAs (miRNAs), miR-29a, miR-29b, and miR-124, selectively target both human and mouse MCT1 3' untranslated regions. Mutation of the cognate miR-29 or miR-124 binding sites abolishes the effects of the corresponding miRNAs, demonstrating a direct action of these miRNAs on the MCT1 message. However, despite reports of its expression in the mouse β-cell line MIN6, miR-124 was not detectably expressed in mature mouse islets. In contrast, the three isoforms of miR-29 are highly expressed and enriched in mouse islets. We show that inhibition of miR-29a in primary mouse islets increases Mct1 mRNA levels, demonstrating that miR-29 isoforms contribute to the β-cell-specific silencing of the MCT1 transporter and may thus affect insulin release.

+view abstract Molecular and cellular biology, PMID: 21646425 2011

L van der Weyden, G Giotopoulos, AG Rust, LS Matheson, FW van Delft, J Kong, AE Corcoran, MF Greaves, CG Mullighan, BJ Huntly, DJ Adams

The t(12;21) translocation that generates the ETV6-RUNX1 (TEL-AML1) fusion gene, is the most common chromosomal rearrangement in childhood cancer and is exclusively associated with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The translocation arises in utero and is necessary but insufficient for the development of leukemia. Single-nucleotide polymorphism array analysis of ETV6-RUNX1 patient samples has identified multiple additional genetic alterations; however, the role of these lesions in leukemogenesis remains undetermined. Moreover, murine models of ETV6-RUNX1 ALL that faithfully recapitulate the human disease are lacking. To identify novel genes that cooperate with ETV6-RUNX1 in leukemogenesis, we generated a mouse model that uses the endogenous Etv6 locus to coexpress the Etv6-RUNX1 fusion and Sleeping Beauty transposase. An insertional mutagenesis screen was performed by intercrossing these mice with those carrying a Sleeping Beauty transposon array. In contrast to previous models, a substantial proportion (20%) of the offspring developed BCP-ALL. Isolation of the transposon insertion sites identified genes known to be associated with BCP-ALL, including Ebf1 and Epor, in addition to other novel candidates. This is the first mouse model of ETV6-RUNX1 to develop BCP-ALL and provides important insight into the cooperating genetic alterations in ETV6-RUNX1 leukemia.

+view abstract Blood, PMID: 21628403 2011

CW Distelhorst, MD Bootman

The Bcl-2 protein, best known for its ability to inhibit apoptosis, interacts with the inositol 1,4,5-trisphosphate receptor (IP(3)R) Ca(2+) channel to regulate IP(3)-mediated Ca(2+) release from the endoplasmic reticulum. This review summarizes the current state of knowledge regarding the interaction of Bcl-2, and also its homologue Bcl-xl, with the IP(3)R and how these interactions regulate Ca(2+) signaling. The dual role of these interactions in promoting prosurvival Ca(2+) signals, while at the same time inhibiting proapoptotic Ca(2+) signals, is discussed. Moreover, this review will elucidate the recently recognized importance of the Bcl-2-IP(3)R interaction in human disease.

+view abstract Cell calcium, PMID: 21628070 2011

L Conforti, L Janeckova, D Wagner, F Mazzola, L Cialabrini, M Di Stefano, G Orsomando, G Magni, C Bendotti, N Smyth, M Coleman

NAD(+) synthesizing enzyme NMNAT1 constitutes most of the sequence of neuroprotective protein Wld(S), which delays axon degeneration by 10-fold. NMNAT1 activity is necessary but not sufficient for Wld(S) neuroprotection in mice and 70 amino acids at the N-terminus of Wld(S), derived from polyubiquitination factor Ube4b, enhance axon protection by NMNAT1. NMNAT1 activity can confer neuroprotection when redistributed outside the nucleus or when highly overexpressed in vitro and partially in Drosophila. However, the role of endogenous NMNAT1 in normal axon maintenance and in Wallerian degeneration has not been elucidated yet. To address this question we disrupted the Nmnat1 locus by gene targeting. Homozygous Nmnat1 knockout mice do not survive to birth, indicating that extranuclear NMNAT isoforms cannot compensate for its loss. Heterozygous Nmnat1 knockout mice develop normally and do not show spontaneous neurodegeneration or axon pathology. Wallerian degeneration after sciatic nerve lesion is neither accelerated nor delayed in these mice, consistent with the proposal that other endogenous NMNAT isoforms play a principal role in Wallerian degeneration.

+view abstract The FEBS journal, PMID: 21615689 2011

Ng K,Daigle N,Bancaud A,Ohhata T,Humphreys P,Walker R,Ellenberg J,Wutz A Flow Cytometry

In mammals, silencing of one of the two X chromosomes in female cells compensates for the different number of X chromosomes between the sexes. The noncoding Xist RNA initiates X chromosome inactivation. Xist spreads from its transcription site over the X chromosome territory and triggers the formation of a repressive chromatin domain. To understand localization of Xist over one X chromosome we aimed to develop a system for investigating Xist in living cells. Here we report successful visualization of transgenically expressed MS2-tagged Xist in mouse embryonic stem cells. Imaging of Xist during an entire cell cycle shows that Xist spreads from a single point to a steady state when the chromosome is covered with a constant amount of Xist. Photobleaching experiments of the established Xist cluster indicate that chromosome-bound Xist is dynamic and turns over on the fully Xist covered chromosome. It appears that in interphase the loss of bound Xist and newly produced Xist are in equilibrium. We also show that the turnover of bound Xist requires transcription, and Xist binding becomes stable when transcription is inhibited. Our data reveal a strategy for visualizing Xist and indicate that spreading over the chromosome might involve dynamic binding and displacement.

+view abstract Molecular biology of the cell, PMID: 21613549 2011

LJ Norton, Q Zhang, KM Saqib, H Schrewe, K Macura, KE Anderson, CW Lindsley, HA Brown, SA Rudge, MJ Wakelam Signalling,Lipidomics

The signalling lipid phosphatidic acid (PA) is generated by the hydrolysis of phosphatidylcholine (PC), which is catalysed by phospholipase D (PLD) enzymes. Neutrophils, important cells of the innate immune system, maintain the body's defence against infection. Previous studies have implicated PLD-generated PA in neutrophil function; these have relied heavily on the use of primary alcohols to act as inhibitors of PA production. The recent development of isoform-selective small molecule inhibitors and the generation of a knockout mouse model provide us with accurate tools to study the role of PLDs in neutrophil responses. We show that PLD1 is a regulator of phorbol-ester-, chemoattractant, adhesion-dependent and Fcγ-receptor-stimulated production of reactive oxygen species (ROS) in neutrophils. Significantly we found that this role of PLD is isoform specific: the absence of PLD2 does not negatively affect these processes. Contrary to expectation, other functions required for an efficient immune response operate effectively in Pld2-deficient neutrophils or when both isoforms are inhibited pharmacologically. We conclude that although PLD1 does have important regulatory roles in neutrophils, the field has been confused by the use of primary alcohols; now that gold standard Pld-knockout mouse models are available, previous work might need to be reassessed.

+view abstract Journal of cell science, PMID: 21610093 2011

Humblet-Baron S, Baron F, Liston A Immunology

+view abstract Immunology and cell biology, PMID: 21606944 2011

N Carey, CJ Marques, W Reik

DNA methylation is one of the most extensively studied, and one of the most stable, of all epigenetic modifications. Two drugs that target DNA methyltransferase enzymes are licensed for clinical use in oncology but relatively little attention has focused on the enzymatic pathways by which DNA methylation can be reversed. Recent breakthroughs have identified at least two classes of enzymes that can achieve functional reversal. This review discusses the significance of DNA demethylation in a range of human diseases, the candidate proteins that mediate the demethylation and the opportunities and challenges in targeting these candidates to develop new therapeutics.

+view abstract Drug discovery today, PMID: 21601651 2011

JI Loizou, R Sancho, N Kanu, DJ Bolland, F Yang, C Rada, AE Corcoran, A Behrens

Defective V(D)J rearrangement of immunoglobulin heavy or light chain (IgH or IgL) or class switch recombination (CSR) can initiate chromosomal translocations. The DNA-damage kinase ATM is required for the suppression of chromosomal translocations but ATM regulation is incompletely understood. Here, we show that mice lacking the ATM cofactor ATMIN in B cells (ATMIN(ΔB/ΔB)) have impaired ATM signaling and develop B cell lymphomas. Notably, ATMIN(ΔB/ΔB) cells exhibited defective peripheral V(D)J rearrangement and CSR, resulting in translocations involving the Igh and Igl loci, indicating that ATMIN is required for efficient repair of DNA breaks generated during somatic recombination. Thus, our results identify a role for ATMIN in regulating the maintenance of genomic stability and tumor suppression in B cells.

+view abstract Cancer cell, PMID: 21575860 2011

B Zygmunt, M Veldhoen

CD4(+) T helper (T(H)) cells play a critical role in orchestrating a pleiotropy of immune activities against a large variety of pathogens. It is generally thought that this is achieved through the acquisition of highly specialized functions after activation followed by the differentiation into various functional subsets. The differentiation process of naive precursor T(H) cells into defined effector subsets is controlled by cells of the innate immune system and their complex array of effector molecules such as secreted cytokines and membrane bound costimulatory molecules. These provide a unique quantitative or qualitative signal initiating T(H) development, which is subsequently reinforced via T cell-mediated feedback signals and selective survival and proliferative cues, ultimately resulting in the predominance of a particular T cell subset. In recent years, the number of defined T(H)cell subsets has expanded and the once rigid division of labor among them has been blurred with reports of plasticity among the subsets. In this chapter, we summarize and speculate on the current knowledge of the differentiation requirements of T(H) cell lineages, with particular focus on the T(H)17 subset.

+view abstract Advances in immunology, PMID: 21569915 2011