Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific services.

Individual publications are linked to the website of the journal - subscriptions may be required to view the full text. The database also includes Open Access publications, which can be identified by the icons found on search results.

Open Access symbol We are working to provide Open Access to as many publications as possible. 'Green' Open Access publications are marked by the pink 'Download' icon. Click on the icon to access a pre-print PDF version of the publication. ​'Gold' Open Access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription.

Title / Authors / Details Open Access Download

Treatment-Induced BAFF Expression and B Cell Biology in Multiple Sclerosis.
Smets I, Prezzemolo T, Imbrechts M, Mallants K, Mitera T, Humblet-Baron S, Dubois B, Matthys P, Liston A, Goris A

Although fingolimod and interferon-β are two mechanistically different multiple sclerosis (MS) treatments, they both induce B cell activating factor (BAFF) and shift the B cell pool towards a regulatory phenotype. However, whether there is a shared mechanism between both treatments in how they influence the B cell compartment remains elusive. In this study, we collected a cross-sectional study population of 112 MS patients (41 untreated, 42 interferon-β, 29 fingolimod) and determined B cell subsets, cell-surface and RNA expression of BAFF-receptor (BAFF-R) and transmembrane activator and cyclophilin ligand interactor (TACI) as well as plasma and/or RNA levels of BAFF, BAFF splice forms and interleukin-10 (IL-10) and -35 (IL-35). We added an B cell culture with four stimulus conditions (Medium, CpG, BAFF and CpG+BAFF) for untreated and interferon-β treated patients including measurement of intracellular IL-10 levels. Our flow experiments showed that interferon-β and fingolimod induced BAFF protein and mRNA expression (P ≤ 3.15 x 10) without disproportional change in the antagonizing splice form. Protein BAFF correlated with an increase in transitional B cells (P = 5.70 x 10), decrease in switched B cells (P = 3.29 x 10), and reduction in B cell-surface BAFF-R expression (P = 2.70 x 10), both on TACI-positive and -negative cells. TACI and BAFF-R RNA levels remained unaltered. RNA, plasma and experiments demonstrated that BAFF was not associated with increased IL-10 and IL-35 levels. In conclusion, treatment-induced BAFF correlates with a shift towards transitional B cells which are enriched for cells with an immunoregulatory function. However, BAFF does not directly influence the expression of the immunoregulatory cytokines IL-10 and IL-35. Furthermore, the post-translational mechanism of BAFF-induced BAFF-R cell surface loss was TACI-independent. These observations put the failure of pharmaceutical anti-BAFF strategies in perspective and provide insights for targeted B cell therapies.

+ View Abstract

Frontiers in immunology , 12 , 1 ,

PMID: 34122439

Open Access

Starting Your Independent Research Laboratory.
Liston A, Lesage S

n/a

+ View Abstract

Stroke , 1 , 1 ,

PMID: 34107733

The global and promoter-centric 3D genome organization temporally resolved during a circadian cycle.
Furlan-Magaril M, Ando-Kuri M, Arzate-Mejía RG, Morf J, Cairns J, Román-Figueroa A, Tenorio-Hernández L, Poot-Hernández AC, Andrews S, Várnai C, Virk B, Wingett SW, Fraser P

Circadian gene expression is essential for organisms to adjust their physiology and anticipate daily changes in the environment. The molecular mechanisms controlling circadian gene transcription are still under investigation. In particular, how chromatin conformation at different genomic scales and regulatory elements impact rhythmic gene expression has been poorly characterized.

+ View Abstract

Genome biology , 22 , 1 ,

PMID: 34099014

Open Access

RNA Binding Proteins As Regulators of Oxidative Stress Identified by a Targeted CRISPR-Cas9 Single Guide RNA Library.
Turner DJ, Turner M

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 genome editing system has been broadly adopted for high-throughput genetic screens. However, the application of genome-wide single guide RNA (sgRNA) libraries can be challenging. We generated a custom sgRNA library, an order of magnitude smaller than genome-wide alternatives, to facilitate the genetic screening of RNA binding proteins (RBPs). We demonstrated the utility of our reagent in a genetic screen for RBPs that conveyed cellular resistance or sensitivity to oxidative stress induced by paraquat. This identified that CSDE1 and STRAP, proteins that interact with each other, convey sensitivity to oxidative stress and that Pumilio homologues (PUM1 and PUM2) convey resistance. Targeting eIF4-E1 and -A1 protected cells from high-dose paraquat, whereas eIF4E2 targeted cells did less well. We also found that G3BP1 promoted sensitivity to a low dose of paraquat but protected cells at a higher dose. Our study highlights the use of genetic screens to identify roles of RBPs and identifies novel genes regulating sensitivity to oxidative stress.

+ View Abstract

The CRISPR journal , 1 , 1 ,

PMID: 34096786

Open Access

Features and mechanisms of canonical and noncanonical genomic imprinting.
Hanna CW, Kelsey G

Genomic imprinting is the monoallelic expression of a gene based on parent of origin and is a consequence of differential epigenetic marking between the male and female germlines. Canonically, genomic imprinting is mediated by allelic DNA methylation. However, recently it has been shown that maternal H3K27me3 can result in DNA methylation-independent imprinting, termed "noncanonical imprinting." In this review, we compare and contrast what is currently known about the underlying mechanisms, the role of endogenous retroviral elements, and the conservation of canonical and noncanonical genomic imprinting.

+ View Abstract

Genes & development , 35 , 11-12 ,

PMID: 34074696

Open Access

Cross-species comparisons and models to study tempo in development and homeostasis.
Rayon T, Briscoe J

Time is inherent to biological processes. It determines the order of events and the speed at which they take place. However, we still need to refine approaches to measure the course of time in biological systems and understand what controls the pace of development. Here, we argue that the comparison of biological processes across species provides molecular insight into the timekeeping mechanisms in biology. We discuss recent findings and the open questions in the field and highlight the use of systems as tools to investigate cell-autonomous control as well as the coordination of temporal mechanisms within tissues. Further, we discuss the relevance of studying tempo for tissue transplantation, homeostasis and lifespan.

+ View Abstract

Interface focus , 11 , 3 ,

PMID: 34055305

Open Access

The metabolic hormone leptin promotes the function of T cells and supports vaccine responses.
Deng J, Chen Q, Chen Z, Liang K, Gao X, Wang X, Makota FV, Ong HS, Wan Y, Luo K, Gong D, Yu X, Camuglia S, Zeng Q, Zhou T, Xue F, He J, Wei Y, Xiao F, Ma J, Hill DL, Pierson W, Nguyen THO, Zhou H, Wang Y, Shen W, Sun L, Li Z, Xia Q, Qian K, Ye L, Rockman S, Linterman MA, Kedzierska K, Shen N, Lu L, Yu D

Follicular helper T (T) cells control antibody responses by supporting antibody affinity maturation and memory formation. Inadequate T function has been found in individuals with ineffective responses to vaccines, but the mechanism underlying T regulation in vaccination is not understood. Here, we report that lower serum levels of the metabolic hormone leptin associate with reduced vaccine responses to influenza or hepatitis B virus vaccines in healthy populations. Leptin promotes mouse and human T differentiation and IL-21 production via STAT3 and mTOR pathways. Leptin receptor deficiency impairs T generation and antibody responses in immunisation and infection. Similarly, leptin deficiency induced by fasting reduces influenza vaccination-mediated protection for the subsequent infection challenge, which is mostly rescued by leptin replacement. Our results identify leptin as a regulator of T cell differentiation and function and indicate low levels of leptin as a risk factor for vaccine failure.

+ View Abstract

Nature communications , 12 , 1 ,

PMID: 34031386

Avidin-Biotin ELISA-Based Detection of 5hmC.
Olova NN

The enzyme-linked immunosorbent assay (ELISA) technique has been developed half a century ago, and yet its role in molecular biology remains significant. Among the most sensitive of immunoassays, it offers high throughput, combined with affordability and ease of use. This chapter provides the procedure of a highly reproducible indirect sandwich ELISA protocol, which can be applied to a variety of semi-quantitative assays for the investigation of the molecular biology of 5-hydroxymethylcytosine (5hmC) or TET enzymes. Three variations of this protocol are described: assessment and validation of 5hmC-binding proteins, screening and validation of anti-5hmC antibodies, or a readout of TET catalytic activity in in vitro experiments. The assay principle is based on the use of a high affinity avidin-biotin system for efficient immobilization of DNA fragments for further detection by high specificity antibodies. A colorimetric enzymatic reaction is ultimately developed with intensity correlating with the amount of attached antigen.

+ View Abstract

Methods in molecular biology (Clifton, N.J.) , 2272 , 1 ,

PMID: 34009609

ELISA-Based Quantitation of Global 5hmC Levels.
Olova NN

5-Hydroxymethylcytosine (5hmC) is an abundant DNA modification in human and mouse brain, as well as in embryonic stem cells, while severely depleted in multiple types of cancer. Assays for 5hmC detection and quantification, both on a locus-specific and global level, are limited in number and often resource-intensive. Immunodetection of 5hmC through antibodies remains a cost-effective and widely accessible approach. This chapter describes an ELISA-based protocol for 5hmC detection and quantification in genomic or in vitro modified DNA. It is based on the passive adsorption of DNA onto a solid polystyrene surface and the specific detection of 5hmC, which generates a measurable chemiluminescent signal, proportional to the amount of immobilized 5hmC. The assay utilizes a standard curve for interpolation of 5hmC percentage and a loading standard for monitoring loading precision.

+ View Abstract

Methods in molecular biology (Clifton, N.J.) , 2272 , 1 ,

PMID: 34009608

Accelerating cryoprotectant diffusion kinetics improves cryopreservation of pancreatic islets.
Dolezalova N, Gruszczyk A, Barkan K, Gamble JA, Galvin S, Moreth T, O'Holleran K, Mahbubani KT, Higgins JA, Gribble FM, Reimann F, Surmacki J, Andrews S, Casey JJ, Pampaloni F, Murphy MP, Ladds G, Slater NKH, Saeb-Parsy K

Cryopreservation offers the potential to increase the availability of pancreatic islets for treatment of diabetic patients. However, current protocols, which use dimethyl sulfoxide (DMSO), lead to poor cryosurvival of islets. We demonstrate that equilibration of mouse islets with small molecules in aqueous solutions can be accelerated from > 24 to 6 h by increasing incubation temperature to 37 °C. We utilize this finding to demonstrate that current viability staining protocols are inaccurate and to develop a novel cryopreservation method combining DMSO with trehalose pre-incubation to achieve improved cryosurvival. This protocol resulted in improved ATP/ADP ratios and peptide secretion from β-cells, preserved cAMP response, and a gene expression profile consistent with improved cryoprotection. Our findings have potential to increase the availability of islets for transplantation and to inform the design of cryopreservation protocols for other multicellular aggregates, including organoids and bioengineered tissues.

+ View Abstract

Scientific reports , 11 , 1 ,

PMID: 34001961

Open Access

AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data.
Roca CP, Burton OT, Gergelits V, Prezzemolo T, Whyte CE, Halpert R, Kreft Ł, Collier J, Botzki A, Spidlen J, Humblet-Baron S, Liston A

Compensating in flow cytometry is an unavoidable challenge in the data analysis of fluorescence-based flow cytometry. Even the advent of spectral cytometry cannot circumvent the spillover problem, with spectral unmixing an intrinsic part of such systems. The calculation of spillover coefficients from single-color controls has remained essentially unchanged since its inception, and is increasingly limited in its ability to deal with high-parameter flow cytometry. Here, we present AutoSpill, an alternative method for calculating spillover coefficients. The approach combines automated gating of cells, calculation of an initial spillover matrix based on robust linear regression, and iterative refinement to reduce error. Moreover, autofluorescence can be compensated out, by processing it as an endogenous dye in an unstained control. AutoSpill uses single-color controls and is compatible with common flow cytometry software. AutoSpill allows simpler and more robust workflows, while reducing the magnitude of compensation errors in high-parameter flow cytometry.

+ View Abstract

Nature communications , 12 , 1 ,

PMID: 34001872

Open Access

ORFLine: a bioinformatic pipeline to prioritise small open reading frames identifies candidate secreted small proteins from lymphocytes.
Turner M, Hu F, Lu J, Matheson LS, Díaz-Muñoz MD, Saveliev A

The annotation of small open reading frames (smORFs) of less than 100 codons (<300 nucleotides) is challenging due to the large number of such sequences in the genome.

+ View Abstract

Bioinformatics (Oxford, England) , 1 , 1 ,

PMID: 33970232

The 5-Phosphatase SHIP2 Promotes Neutrophil Chemotaxis and Recruitment.
Michael M, McCormick B, Anderson KE, Karmakar U, Vermeren M, Schurmans S, Amour A, Vermeren S

Neutrophils, the most abundant circulating leukocytes in humans have key roles in host defense and in the inflammatory response. Agonist-activated phosphoinositide 3-kinases (PI3Ks) are important regulators of many facets of neutrophil biology. PIP3 is subject to dephosphorylation by several 5' phosphatases, including SHIP family phosphatases, which convert the PI3K product and lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) into PI(3,4)P2, a lipid second messenger in its own right. In addition to the leukocyte restricted SHIP1, neutrophils express the ubiquitous SHIP2. This study analyzed mice and isolated neutrophils carrying a catalytically inactive SHIP2, identifying an important regulatory function in neutrophil chemotaxis and directionality and in neutrophil recruitment to sites of sterile inflammation , in the absence of major defects of any other neutrophil functions analyzed, including, phagocytosis and the formation of reactive oxygen species. Mechanistically, this is explained by a subtle effect on global 3-phosphorylated phosphoinositide species. This work identifies a non-redundant role for the hitherto overlooked SHIP2 in the regulation of neutrophils, and specifically, neutrophil chemotaxis/trafficking. It completes an emerging wider understanding of the complexity of PI3K signaling in the neutrophil, and the roles played by individual kinases and phosphatases within.

+ View Abstract

Frontiers in immunology , 12 , 1 ,

PMID: 33953730

Open Access

The deacylase SIRT5 supports melanoma viability by influencing chromatin dynamics.
Giblin W, Bringman-Rodenbarger L, Guo AH, Kumar S, Monovich AC, Mostafa AM, Skinner ME, Azar M, Mady AS, Chung CH, Kadambi N, Melong KA, Lee HJ, Zhang L, Sajjakulnukit P, Trefely S, Varner EL, Iyer S, Wang M, Wilmott JS, Soyer HP, Sturm RA, Pritchard AL, Andea AA, Scolyer RA, Stark MS, Scott DA, Fullen DR, Bosenberg MW, Chandrasekaran S, Nikolovska-Coleska Z, Verhaegen ME, Snyder NW, Rivera MN, Osterman AL, Lyssiotis CA, Lombard DB

Cutaneous melanoma remains the most lethal skin cancer, and ranks third among all malignancies in terms of years of life lost. Despite the advent of immune checkpoint and targeted therapies, only roughly half of patients with advanced melanoma achieve a durable remission. Sirtuin 5 (SIRT5) is a member of the sirtuin family of protein deacylases that regulates metabolism and other biological processes. Germline Sirt5 deficiency is associated with mild phenotypes in mice. Here we showed that SIRT5 was required for proliferation and survival across all cutaneous melanoma genotypes tested, as well as uveal melanoma, a genetically distinct melanoma subtype that arises in the eye and is incurable once metastatic. Likewise, SIRT5 was required for efficient tumor formation by melanoma xenografts and in an autochthonous mouse Braf Pten-driven melanoma model. Via metabolite and transcriptomic analyses, we found that SIRT5 was required to maintain histone acetylation and methylation levels in melanoma cells, thereby promoting proper gene expression. SIRT5-dependent genes notably included MITF, a key lineage-specific survival oncogene in melanoma, and the c-MYC proto-oncogene. SIRT5 may represent a druggable genotype-independent addiction in melanoma.

+ View Abstract

The Journal of clinical investigation , 131 , 12 ,

PMID: 33945506

Open Access

Computational principles and challenges in single-cell data integration.
Argelaguet R, Cuomo ASE, Stegle O, Marioni JC

The development of single-cell multimodal assays provides a powerful tool for investigating multiple dimensions of cellular heterogeneity, enabling new insights into development, tissue homeostasis and disease. A key challenge in the analysis of single-cell multimodal data is to devise appropriate strategies for tying together data across different modalities. The term 'data integration' has been used to describe this task, encompassing a broad collection of approaches ranging from batch correction of individual omics datasets to association of chromatin accessibility and genetic variation with transcription. Although existing integration strategies exploit similar mathematical ideas, they typically have distinct goals and rely on different principles and assumptions. Consequently, new definitions and concepts are needed to contextualize existing methods and to enable development of new methods.

+ View Abstract

Nature biotechnology , 1 , 1 ,

PMID: 33941931

TFG binds LC3C to regulate ULK1 localization and autophagosome formation.
Carinci M, Testa B, Bordi M, Milletti G, Bonora M, Antonucci L, Ferraina C, Carro M, Kumar M, Ceglie D, Eck F, Nardacci R, le Guerroué F, Petrini S, Soriano ME, Caruana I, Doria V, Manifava M, Peron C, Lambrughi M, Tiranti V, Behrends C, Papaleo E, Pinton P, Giorgi C, Ktistakis NT, Locatelli F, Nazio F, Cecconi F

The early secretory pathway and autophagy are two essential and evolutionarily conserved endomembrane processes that are finely interlinked. Although growing evidence suggests that intracellular trafficking is important for autophagosome biogenesis, the molecular regulatory network involved is still not fully defined. In this study, we demonstrate a crucial effect of the COPII vesicle-related protein TFG (Trk-fused gene) on ULK1 puncta number and localization during autophagy induction. This, in turn, affects formation of the isolation membrane, as well as the correct dynamics of association between LC3B and early ATG proteins, leading to the proper formation of both omegasomes and autophagosomes. Consistently, fibroblasts derived from a hereditary spastic paraparesis (HSP) patient carrying mutated TFG (R106C) show defects in both autophagy and ULK1 puncta accumulation. In addition, we demonstrate that TFG activity in autophagy depends on its interaction with the ATG8 protein LC3C through a canonical LIR motif, thereby favouring LC3C-ULK1 binding. Altogether, our results uncover a link between TFG and autophagy and identify TFG as a molecular scaffold linking the early secretion pathway to autophagy.

+ View Abstract

The EMBO journal , 1 , 1 ,

PMID: 33932238

Revisiting the Impact of Local Leptin Signaling in Folliculogenesis and Oocyte Maturation in Obese Mothers.
Wołodko K, Castillo-Fernandez J, Kelsey G, Galvão A

The complex nature of folliculogenesis regulation accounts for its susceptibility to maternal physiological fitness. In obese mothers, progressive expansion of adipose tissue culminates with severe hyperestrogenism and hyperleptinemia with detrimental effects for ovarian performance. Indeed, maternal obesity is associated with the establishment of ovarian leptin resistance. This review summarizes current knowledge on potential effects of impaired leptin signaling throughout folliculogenesis and oocyte developmental competence in mice and women.

+ View Abstract

International journal of molecular sciences , 22 , 8 ,

PMID: 33924072

Open Access

Rho Family GTPases and Rho GEFs in Glucose Homeostasis.
Machin PA, Tsonou E, Hornigold DC, Welch HCE

Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4 were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX were found to control the glucose-stimulated release of insulin by pancreatic β cells. In vivo studies demonstrated the involvement of the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs either contributing to the development of metabolic syndrome or protecting from it. This research is in its infancy. Considering that over 80 Rho GEFs exist, it is likely that future research will identify more roles for Rho GEFs in glucose homeostasis.

+ View Abstract

Cells , 10 , 4 ,

PMID: 33923452

Open Access

Deletion of the Imprinted Gene Increases Placental Passive Permeability in the Mouse.
Angiolini E, Sandovici I, Coan PM, Burton GJ, Sibley CP, Fowden AL, Constância M

Genomic imprinting, an epigenetic phenomenon that causes the expression of a small set of genes in a parent-of-origin-specific manner, is thought to have co-evolved with placentation. Many imprinted genes are expressed in the placenta, where they play diverse roles related to development and nutrient supply function. However, only a small number of imprinted genes have been functionally tested for a role in nutrient transfer capacity in relation to the structural characteristics of the exchange labyrinthine zone. Here, we examine the transfer capacity in a mouse model deficient for the maternally expressed gene, which results in placental overgrowth and a transient reduction in fetal growth. Using stereology, we show that the morphology of the labyrinthine zone in mutants is normal at E16 and E19. In vivo placental transfer of radiolabeled solutes C-methyl-D-glucose and C-MeAIB remains unaffected at both gestational time points. However, placental passive permeability, as measured using two inert hydrophilic solutes (C-mannitol; C-inulin), is significantly higher in mutants. Importantly, this increase in passive permeability is associated with fetal catch-up growth. Our findings uncover a key role played by the imprinted gene in modifying placental passive permeability that may be important for determining fetal growth.

+ View Abstract

Genes , 12 , 5 ,

PMID: 33922969

Non-canonical autophagy drives alternative ATG8 conjugation to phosphatidylserine.
Durgan J, Lystad AH, Sloan K, Carlsson SR, Wilson MI, Marcassa E, Ulferts R, Webster J, Lopez-Clavijo AF, Wakelam MJ, Beale R, Simonsen A, Oxley D, Florey O

Autophagy is a fundamental catabolic process that uses a unique post-translational modification, the conjugation of ATG8 protein to phosphatidylethanolamine (PE). ATG8 lipidation also occurs during non-canonical autophagy, a parallel pathway involving conjugation of ATG8 to single membranes (CASM) at endolysosomal compartments, with key functions in immunity, vision, and neurobiology. It is widely assumed that CASM involves the same conjugation of ATG8 to PE, but this has not been formally tested. Here, we discover that all ATG8s can also undergo alternative lipidation to phosphatidylserine (PS) during CASM, induced pharmacologically, by LC3-associated phagocytosis or influenza A virus infection, in mammalian cells. Importantly, ATG8-PS and ATG8-PE adducts are differentially delipidated by the ATG4 family and bear different cellular dynamics, indicating significant molecular distinctions. These results provide important insights into autophagy signaling, revealing an alternative form of the hallmark ATG8 lipidation event. Furthermore, ATG8-PS provides a specific "molecular signature" for the non-canonical autophagy pathway.

+ View Abstract

Molecular cell , 1 , 1 ,

PMID: 33909989

Conserved and unique transcriptional features of pharyngeal arches in the skate (Leucoraja erinacea) and evolution of the jaw.
Hirschberger C, Sleight VA, Criswell KE, Clark SJ, Gillis JA

The origin of the jaw is a long-standing problem in vertebrate evolutionary biology. Classical hypotheses of serial homology propose that the upper and lower jaw evolved through modifications of dorsal and ventral gill arch skeletal elements, respectively. If the jaw and gill arches are derived members of a primitive branchial series, we predict that they would share common developmental patterning mechanisms. Using candidate and RNAseq/differential gene expression analyses, we find broad conservation of dorsoventral patterning mechanisms within the developing mandibular, hyoid and gill arches of a cartilaginous fish, the skate (Leucoraja erinacea). Shared features include expression of genes encoding members of the ventralising BMP and endothelin signalling pathways and their effectors, the joint markers nkx3.2 and gdf5 and pro-chondrogenic transcription factor barx1, and the dorsal territory marker pou3f3. Additionally, we find that mesenchymal expression of eya1/six1 is an ancestral feature of the mandibular arch of jawed vertebrates, while differences in notch signalling distinguish the mandibular and gill arches in skate. Comparative transcriptomic analyses of mandibular and gill arch tissues reveal additional genes differentially expressed along the dorsoventral axis of the pharyngeal arches, including scamp5 as a novel marker of the dorsal mandibular arch, as well as distinct transcriptional features of mandibular and gill arch muscle progenitors and developing gill buds. Taken together, our findings reveal conserved patterning mechanisms in the pharyngeal arches of jawed vertebrates, consistent with serial homology of their skeletal derivatives, as well as unique transcriptional features that may underpin distinct jaw and gill arch morphologies.

+ View Abstract

Molecular biology and evolution , 1 , 1 ,

PMID: 33905525

Pooled CRISPR-activation screening coupled with single-cell RNA-seq in mouse embryonic stem cells.
Alda-Catalinas C, Eckersley-Maslin MA, Reik W

CRISPR/Cas9 screens are a powerful approach to identify key regulators of biological processes. By combining pooled CRISPR/Cas9 screening with single-cell RNA-sequencing readout, individual perturbations can be assessed in parallel both comprehensively and at scale. Importantly, this allows gene function and regulation to be interrogated at a cellular level in an unbiased manner. Here, we present a protocol to perform pooled CRISPR-activation screens in mouse embryonic stem cells using 10× Genomics scRNA-seq as a readout. For complete information on the generation and use of this protocol, please refer to Alda-Catalinas et al. (2020).

+ View Abstract

STAR protocols , 2 , 2 ,

PMID: 33899013

Open Access

Mapping the expression of transient receptor potential channels across murine placental development.
De Clercq K, Pérez-García V, Van Bree R, Pollastro F, Peeraer K, Voets T, Vriens J

Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal-fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5-E18.5) was assessed. Prominent expression was observed for Trpv2, Trpm6, and Trpm7. Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.

+ View Abstract

Cellular and molecular life sciences : CMLS , 1 , 1 ,

PMID: 33884443

Genetic perturbation of PU.1 binding and chromatin looping at neutrophil enhancers associates with autoimmune disease.
Watt S, Vasquez L, Walter K, Mann AL, Kundu K, Chen L, Sims Y, Ecker S, Burden F, Farrow S, Farr B, Iotchkova V, Elding H, Mead D, Tardaguila M, Ponstingl H, Richardson D, Datta A, Flicek P, Clarke L, Downes K, Pastinen T, Fraser P, Frontini M, Javierre BM, Spivakov M, Soranzo N

Neutrophils play fundamental roles in innate immune response, shape adaptive immunity, and are a potentially causal cell type underpinning genetic associations with immune system traits and diseases. Here, we profile the binding of myeloid master regulator PU.1 in primary neutrophils across nearly a hundred volunteers. We show that variants associated with differential PU.1 binding underlie genetically-driven differences in cell count and susceptibility to autoimmune and inflammatory diseases. We integrate these results with other multi-individual genomic readouts, revealing coordinated effects of PU.1 binding variants on the local chromatin state, enhancer-promoter contacts and downstream gene expression, and providing a functional interpretation for 27 genes underlying immune traits. Collectively, these results demonstrate the functional role of PU.1 and its target enhancers in neutrophil transcriptional control and immune disease susceptibility.

+ View Abstract

Nature communications , 12 , 1 ,

PMID: 33863903