The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific services.

Individual publications are linked to the website of the journal - subscriptions may be required to view the full text. The database also includes Open Access publications, which can be identified by the icons found on search results.

Open Access symbol We are working to provide Open Access to as many publications as possible. 'Green' Open Access publications are marked by the pink 'Download' icon. Click on the icon to access a pre-print PDF version of the publication. ​'Gold' Open Access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription.

Title / Authors / Details Open Access Download

Transitions in cell potency during early mouse development are driven by Notch.
Menchero S, Rollan I, Lopez-Izquierdo A, Andreu MJ, Sainz de Aja J, Kang M, Adan J, Benedito R, Rayon T, Hadjantonakis AK, Manzanares M

The Notch signalling pathway plays fundamental roles in diverse developmental processes in metazoans, where it is important in driving cell fate and directing differentiation of various cell types. However, we still have limited knowledge about the role of Notch in early preimplantation stages of mammalian development, or how it interacts with other signalling pathways active at these stages such as Hippo. By using genetic and pharmacological tools in vivo, together with image analysis of single embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell stage. Transcriptomic analysis in single morula identified novel Notch targets, such as early naïve pluripotency markers or transcriptional repressors such as TLE4. Our results reveal a previously undescribed role for Notch in driving transitions during the gradual loss of potency that takes place in the early mouse embryo prior to the first lineage decisions.

+ View Abstract

eLife ,

PMID: 30958266

Open Access

A scoping review of ontologies related to human behaviour change.
Norris E, Finnerty AN, Hastings J, Stokes G, Michie S

Ontologies are classification systems specifying entities, definitions and inter-relationships for a given domain, with the potential to advance knowledge about human behaviour change. A scoping review was conducted to: (1) identify what ontologies exist related to human behaviour change, (2) describe the methods used to develop these ontologies and (3) assess the quality of identified ontologies. Using a systematic search, 2,303 papers were identified. Fifteen ontologies met the eligibility criteria for inclusion, developed in areas such as cognition, mental disease and emotions. Methods used for developing the ontologies were expert consultation, data-driven techniques and reuse of terms from existing taxonomies, terminologies and ontologies. Best practices used in ontology development and maintenance were documented. The review did not identify any ontologies representing the breadth and detail of human behaviour change. This suggests that advancing behavioural science would benefit from the development of a behaviour change intervention ontology.

+ View Abstract

Nature human behaviour , 2019

PMID: 30944444

Phospholipid membranes drive abdominal aortic aneurysm development through stimulating coagulation factor activity.
Allen-Redpath K, Aldrovandi M, Lauder SN, Gketsopoulou A, Tyrrell VJ, Slatter DA, Andrews R, Watkins WJ, Atkinson G, McNeill E, Gilfedder A, Protty M, Burston J, Johnson SRC, Rodrigues PRS, Jones DO, Lee R, Handa A, Channon K, Obaji S, Alvarez-Jarreta J, Krönke G, Ackermann J, Jenkins PV, Collins PW, O'Donnell VB

Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high mortality and limited treatment options. How blood lipids regulate AAA development is unknown. Here lipidomics and genetic models demonstrate a central role for procoagulant enzymatically oxidized phospholipids (eoxPL) in regulating AAA. Specifically, through activating coagulation, eoxPL either promoted or inhibited AAA depending on tissue localization. Ang II administration to mice increased intravascular coagulation during AAA development. Lipidomics revealed large numbers of eoxPL formed within mouse and human AAA lesions. Deletion of eoxPL-generating enzymes ( or ) or administration of the factor Xa inhibitor rivaroxaban significantly reduced AAA. -deficient mice displayed constitutively dysregulated hemostasis, including a consumptive coagulopathy, characterized by compensatory increase in prothrombotic aminophospholipids (aPL) in circulating cell membranes. Intravenously administered procoagulant PL caused clotting factor activation and depletion, induced a bleeding defect, and significantly reduced AAA development. These data suggest that deletion reduces AAA through diverting coagulation away from the vessel wall due to eoxPL deficiency, instead activating clotting factor consumption and depletion in the circulation. In mouse whole blood, ∼44 eoxPL molecular species formed within minutes of clot initiation. These were significantly elevated with deletion, and many were absent in mice, identifying specific eoxPL that modulate AAA. Correlation networks demonstrated eoxPL belonged to subfamilies defined by oxylipin composition. Thus, procoagulant PL regulate AAA development through complex interactions with clotting factors. Modulation of the delicate balance between bleeding and thrombosis within either the vessel wall or circulation was revealed that can either drive or prevent disease development.

+ View Abstract

Proceedings of the National Academy of Sciences of the United States of America ,

PMID: 30944221

Open Access

Inborn errors of immunity: single mutations unravel mechanisms of immune disease.
Liston A, Humblet-Baron S

Immunology and cell biology , 2019

PMID: 30942931

Translation of inhaled drug optimization strategies into clinical pharmacokinetics and pharmacodynamics using GSK2292767A, a novel inhaled PI3Kδ inhibitor.
Begg M, Edwards CD, Hamblin JN, Pifani E, Wilson R, Gilbert J, Vitulli G, Mallett D, Morrell J, Hingle MI, Uddin S, Ehtesham F, Marotti M, Harell A, Newman C, Fernando D, Clark J, Cahn A, Hessel EM

This study describes the pharmacokinetic (PK) and pharmacodynamic (PD) profile of GSK2292767A, a novel low solubility inhaled PI3Kδ inhibitor developed as an alternative to nemiralisib, which is a highly soluble inhaled inhibitor of PI3Kδ with a lung profile consistent with once-daily dosing. GSK2292767A has a similar in vitro cellular profile to nemiralisib and reduces eosinophilia in a murine PD model by 63% (n=5, p<0.05). To explore whether a low soluble compound results in effective PI3Kδ inhibition in humans, a first time in human study was conducted with GSK2292767A in healthy volunteers who smoke. GSK2292767A was generally well tolerated with headache being the most common reported adverse event. PD changes in induced sputum were measured in combination with drug concentrations in plasma from single (0.05-2 mg, n=37), and 14-day repeat (2 mg, n=12) doses of GSK2292767A. Trough bronchoalveolar lavage (BAL) for PK was taken after 14 days repeat dosing. GSK2292767A displayed a linear increase in plasma exposure with dose, with marginal accumulation after 14 days. Induced sputum showed a 27% (90% CI 15, 37) reduction in phosphatidylinositol-trisphosphate (PIP3, the product of PI3K activation) 3 h after a single dose. Reduction was not maintained 24 h after single or repeat dosing. BAL analysis confirmed presence of GSK2292767A in lung at 24 h, consistent with the preclinical lung retention profile. Despite good lung retention, target engagement was only present at 3 h. This exposure-response disconnect is an important observation for future inhaled drug design strategies considering low solubility to drive lung retention.

+ View Abstract

The Journal of pharmacology and experimental therapeutics , 2019

PMID: 30940692

Citrullination of HP1γ chromodomain affects association with chromatin.
Wiese M, Bannister AJ, Basu S, Boucher W, Wohlfahrt K, Christophorou MA, Nielsen ML, Klenerman D, Laue ED, Kouzarides T

Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance.

+ View Abstract

Epigenetics & chromatin ,

PMID: 30940194

Open Access

Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage Reprogramming and Tumor Progression.
Goossens P, Rodriguez-Vita J, Etzerodt A, Masse M, Rastoin O, Gouirand V, Ulas T, Papantonopoulou O, Van Eck M, Auphan-Anezin N, Bebien M, Verthuy C, Vu Manh TP, Turner M, Dalod M, Schultze JL, Lawrence T

Macrophages possess intrinsic tumoricidal activity, yet tumor-associated macrophages (TAMs) rapidly adopt an alternative phenotype within the tumor microenvironment that is marked by tumor-promoting immunosuppressive and trophic functions. The mechanisms that promote such TAM polarization remain poorly understood, but once identified, they may represent important therapeutic targets to block the tumor-promoting functions of TAMs and restore their anti-tumor potential. Here, we have characterized TAMs in a mouse model of metastatic ovarian cancer. We show that ovarian cancer cells promote membrane-cholesterol efflux and depletion of lipid rafts from macrophages. Increased cholesterol efflux promoted IL-4-mediated reprogramming, including inhibition of IFNγ-induced gene expression. Genetic deletion of ABC transporters, which mediate cholesterol efflux, reverts the tumor-promoting functions of TAMs and reduces tumor progression. These studies reveal an unexpected role for membrane-cholesterol efflux in driving TAM-mediated tumor progression while pointing to a potentially novel anti-tumor therapeutic strategy.

+ View Abstract

Cell metabolism , 2019

PMID: 30930171

The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion.
Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang WC, Martinez-Martin N, Lin W, Deane JE, Sharpe HJ

Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.

+ View Abstract

eLife , 2019

PMID: 30924770

Open Access

T cell stemness and dysfunction in tumors are triggered by a common mechanism.
Vodnala SK, Eil R, Kishton RJ, Sukumar M, Yamamoto TN, Ha NH, Lee PH, Shin M, Patel SJ, Yu Z, Palmer DC, Kruhlak MJ, Liu X, Locasale JW, Huang J, Roychoudhuri R, Finkel T, Klebanoff CA, Restifo NP

A paradox of tumor immunology is that tumor-infiltrating lymphocytes are dysfunctional in situ, yet are capable of stem cell-like behavior including self-renewal, expansion, and multipotency, resulting in the eradication of large metastatic tumors. We find that the overabundance of potassium in the tumor microenvironment underlies this dichotomy, triggering suppression of T cell effector function while preserving stemness. High levels of extracellular potassium constrain T cell effector programs by limiting nutrient uptake, thereby inducing autophagy and reduction of histone acetylation at effector and exhaustion loci, which in turn produces CD8 T cells with improved in vivo persistence, multipotency, and tumor clearance. This mechanistic knowledge advances our understanding of T cell dysfunction and may lead to novel approaches that enable the development of enhanced T cell strategies for cancer immunotherapy.

+ View Abstract

Science (New York, N.Y.) , 2019

PMID: 30923193

The Aire family expands.
Liston A, Dooley J

T cell tolerance depends upon Aire-expressing cells to purge the T cell repertoire of autoreactive clones. Once thought to be the exclusive domain of thymic epithelial cells, a new study by Yamano et al. ( in this issue of identifies ILC3-like cells in the lymph nodes with similar properties.

+ View Abstract

The Journal of experimental medicine , 2019

PMID: 30923044

Open Access

15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection.
Evans RJ, Pline K, Loynes CA, Needs S, Aldrovandi M, Tiefenbach J, Bielska E, Rubino RE, Nicol CJ, May RC, Krause HM, O'Donnell VB, Renshaw SA, Johnston SA

Cryptococcus neoformans is one of the leading causes of invasive fungal infection in humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase infective burden and avoid immune surveillance. However, the specific mechanisms by which C. neoformans manipulates host immunity to promote its growth during infection remain ill-defined. Here we demonstrate that eicosanoid lipid mediators manipulated and/or produced by C. neoformans play a key role in regulating pathogenesis. C. neoformans is known to secrete several eicosanoids that are highly similar to those found in vertebrate hosts. Using eicosanoid deficient cryptococcal mutants Δplb1 and Δlac1, we demonstrate that prostaglandin E2 is required by C. neoformans for proliferation within macrophages and in vivo during infection. Genetic and pharmacological disruption of host PGE2 synthesis is not required for promotion of cryptococcal growth by eicosanoid production. We find that PGE2 must be dehydrogenated into 15-keto-PGE2 to promote fungal growth, a finding that implicated the host nuclear receptor PPAR-γ. C. neoformans infection of macrophages activates host PPAR-γ and its inhibition is sufficient to abrogate the effect of 15-keto-PGE2 in promoting fungal growth during infection. Thus, we describe the first mechanism of reliance on pathogen-derived eicosanoids in fungal pathogenesis and the specific role of 15-keto-PGE2 and host PPAR-γ in cryptococcosis.

+ View Abstract

PLoS pathogens ,

PMID: 30921435

Open Access

Methods for measuring misfolded protein clearance in the budding yeast Saccharomyces cerevisiae.
Samant RS, Frydman J

Protein misfolding in the cell is linked to an array of diseases, including cancers, cardiovascular disease, type II diabetes, and numerous neurodegenerative disorders. Therefore, investigating cellular pathways by which misfolded proteins are trafficked and cleared ("protein quality control") is of both mechanistic and therapeutic importance. The clearance of most misfolded proteins involves the covalent attachment of one or more ubiquitin molecules; however, the precise fate of the ubiquitinated protein varies greatly, depending on the linkages present in the ubiquitin chain. Here, we discuss approaches for quantifying linkage-specific ubiquitination and clearance of misfolded proteins in the budding yeast Saccharomyces cerevisiae-a model organism used extensively for interrogation of protein quality control pathways, but which presents its own unique challenges for cell and molecular biology experiments. We present a fluorescence microscopy-based assay for monitoring the clearance of misfolded protein puncta, a cycloheximide-chase assay for calculating misfolded protein half-life, and two antibody-based methods for quantifying specific ubiquitin linkages on tagged misfolded proteins, including a 96-well plate-based ELISA. We hope these methods will be of use to the protein quality control, protein degradation, and ubiquitin biology communities.

+ View Abstract

Methods in enzymology , 2019

PMID: 30910025

Entosis Controls a Developmental Cell Clearance in C. elegans.
Lee Y, Hamann JC, Pellegrino M, Durgan J, Domart MC, Collinson LM, Haynes CM, Florey O, Overholtzer M

Metazoan cell death mechanisms are diverse and include numerous non-apoptotic programs. One program called entosis involves the invasion of live cells into their neighbors and is known to occur in cancers. Here, we identify a developmental function for entosis: to clear the male-specific linker cell in C. elegans. The linker cell leads migration to shape the gonad and is removed to facilitate fusion of the gonad to the cloaca. We find that the linker cell is cleared in a manner involving cell-cell adhesions and cell-autonomous control of uptake through linker cell actin. Linker cell entosis generates a lobe structure that is deposited at the site of gonad-to-cloaca fusion and is removed during mating. Inhibition of lobe scission inhibits linker cell death, demonstrating that the linker cell invades its host while alive. Our findings demonstrate a developmental function for entosis: to eliminate a migrating cell and facilitate gonad-to-cloaca fusion, which is required for fertility.

+ View Abstract

Cell reports , 2019

PMID: 30893595

Open Access

ER platforms mediating autophagosome generation.
Ktistakis NT

The origin of the autophagosomal membrane started to be debated by scientists working in the field within one year of the modern definition of autophagy in 1963. There is now converging evidence from older and newer studies that the endoplasmic reticulum is involved in formation of autophagosomes. Thus, it is possible to trace from early morphological work - done without the benefit of molecular descriptions - to recent studies - dissecting how specific proteins nucleate autophagosome biogenesis - a long series of experimental findings that are beginning to answer the 55-year old question with some confidence. The view that has emerged is that specialised regions of the endoplasmic reticulum, in dynamic cross talk with most intracellular organelles via membrane contact sites, provide a platform for autophagosome biogenesis.

+ View Abstract

Biochimica et biophysica acta. Molecular and cell biology of lipids , 2019

PMID: 30890442

Relationship between pharmacokinetics and pharmacodynamic responses in healthy smokers informs a once daily dosing regimen for nemiralisib.
Begg M, Wilson R, Hamblin JN, Montembault M, Green J, Deans A, Amour A, Worsley S, Fantom K, Cui Y, Dear G, Ahmad S, Kielkowska A, Clark J, Boyce M, Cahn A, Hessel EM

Nemiralisib (GSK2269557) is a potent inhaled inhibitor of phosphoinositide 3-kinase delta (PI3Kδ) which is being developed for the treatment of respiratory disorders including COPD (Chronic Obstructive Pulmonary Disease). Determining the pharmacokinetic (PK) and pharmacodynamic (PD) responses of inhaled drugs early during drug development is key to informing the appropriate dose and preferred dose regimen in patients. We set out to measure PD changes in induced sputum in combination with drug concentrations in plasma and bronchoalveolar lavage (BAL) taken from healthy smokers (n=56) treated for up to 14 days with increasing doses of inhaled nemiralisib (0.1 mg to 6.4 mg). Induced sputum analysis demonstrated a dose-dependent reduction in phosphatidylinositol-trisphosphate (PIP3, the product of PI3K activation), with a maximum placebo-corrected reduction of 23% (90% CI 11-34%) and 36% (90% CI 11-64%) following single dose or 14 days of treatment with nemiralisib respectively (2 mg, once daily). Plasma analysis suggested a linear PK relationship with an observed accumulation of ~3-4.5-fold (peak vs. trough) in plasma exposure following 14 days of nemiralisib treatment. BAL analysis at trough confirmed higher levels of drug in lung vs. plasma (32-fold in the BAL fluid component, and 214-fold in the BAL cellular fraction). Comparison of drug levels in plasma and reductions in sputum PIP3 show a direct relationship between exposure and PIP3 reduction. In conclusion, these results demonstrate target engagement upon treatment with inhaled nemiralisib and provide confidence for a once-daily dosing regimen.

+ View Abstract

The Journal of pharmacology and experimental therapeutics , 2019

PMID: 30886125

Machine learning identifies an immunological pattern associated with multiple juvenile idiopathic arthritis subtypes.
Van Nieuwenhove E, Lagou V, Van Eyck L, Dooley J, Bodenhofer U, Roca C, Vandebergh M, Goris A, Humblet-Baron S, Wouters C, Liston A

Juvenile idiopathic arthritis (JIA) is the most common class of childhood rheumatic diseases, with distinct disease subsets that may have diverging pathophysiological origins. Both adaptive and innate immune processes have been proposed as primary drivers, which may account for the observed clinical heterogeneity, but few high-depth studies have been performed.

+ View Abstract

Annals of the rheumatic diseases , 2019

PMID: 30862608

Signalling circuits that direct early B-cell development.
Petkau G, Turner M

In mammals, the B-cell lineage arises from pluripotent progenitors in the bone marrow. During their development, B-cells undergo lineage specification and commitment, followed by expansion and selection. These processes are mediated by regulated changes in gene expression programmes, rearrangements of immunoglobulin (Ig) genes, and well-timed rounds of proliferation and apoptosis. Many of these processes are initiated by environmental factors including cytokines, chemokines, and cell-cell contacts. Developing B-cells process these environmental cues into stage-specific functions via signalling pathways including the PI3K, MAPK, or JAK-STAT pathway. The cytokines FLT3-Ligand and c-Kit-Ligand are important for the early expansion of the B-cell precursors at different developmental stages and conditions. Interleukin 7 is essential for commitment to the B-cell lineage and for orchestrating the Ig recombination machinery. After rearrangement of the immunoglobulin heavy chain, proliferation and apoptosis, and thus selection, are mediated by the clonal pre-B-cell receptor, and, following light chain rearrangement, by the B-cell receptor.

+ View Abstract

The Biochemical journal , 2019

PMID: 30842310

Phosphorylation of Syntaxin 17 by TBK1 Controls Autophagy Initiation.
Kumar S, Gu Y, Abudu YP, Bruun JA, Jain A, Farzam F, Mudd M, Anonsen JH, Rusten TE, Kasof G, Ktistakis N, Lidke KA, Johansen T, Deretic V

Syntaxin 17 (Stx17) has been implicated in autophagosome-lysosome fusion. Here, we report that Stx17 functions in assembly of protein complexes during autophagy initiation. Stx17 is phosphorylated by TBK1 whereby phospho-Stx17 controls the formation of the ATG13FIP200 mammalian pre-autophagosomal structure (mPAS) in response to induction of autophagy. TBK1 phosphorylates Stx17 at S202. During autophagy induction, Stx17 transfers from the Golgi, where its steady-state pools localize, to the ATG13FIP200 mPAS. Stx17 was in complexes with ATG13 and FIP200, whereas its non-phosphorylatable mutant Stx17 was not. Stx17 or TBK1 knockouts blocked ATG13 and FIP200 puncta formation. Stx17 or TBK1 knockouts reduced the formation of ATG13 protein complexes with FIP200 and ULK1. Endogenous Stx17 colocalized with LC3B following induction of autophagy. Stx17 knockout diminished LC3 response and reduced sequestration of the prototypical bulk autophagy cargo lactate dehydrogenase. We conclude that Stx17 is a TBK1 substrate and that together they orchestrate assembly of mPAS.

+ View Abstract

Developmental cell , 2019

PMID: 30827897

Correction to: Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data.
Olova N, Krueger F, Andrews S, Oxley D, Berrens RV, Branco MR, Reik W

Following publication of the original article [1], it was reported that the incorrect "Additional file 3" was published. The correct additional file is given below.

+ View Abstract

Genome biology , 2019

PMID: 30795792

Open Access

Genomic Imprinting and Physiological Processes in Mammals.
Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC,

Complex multicellular organisms, such as mammals, express two complete sets of chromosomes per nucleus, combining the genetic material of both parents. However, epigenetic studies have demonstrated violations to this rule that are necessary for mammalian physiology; the most notable parental allele expression phenomenon is genomic imprinting. With the identification of endogenous imprinted genes, genomic imprinting became well-established as an epigenetic mechanism in which the expression pattern of a parental allele influences phenotypic expression. The expanding study of genomic imprinting is revealing a significant impact on brain functions and associated diseases. Here, we review key milestones in the field of imprinting and discuss mechanisms and systems in which imprinted genes exert a significant role.

+ View Abstract

Cell , 2019

PMID: 30794780

Multi-Omics and Genome-Scale Modeling Reveal a Metabolic Shift During C. Elegans Ageing.
Hastings J, Mains A, Virk B, Rodriguez N, Murdoch S, Pearce J, Bergmann S, Le Novère N, Casanueva O

In this contribution, we describe a multi-omics systems biology study of the metabolic changes that occur during aging in . Sampling several time points from young adulthood until early old age, our study covers the full duration of aging and include transcriptomics, and targeted MS-based metabolomics. In order to focus on the metabolic changes due to age we used two strains that are metabolically close to wild-type, yet are conditionally non-reproductive. Using these data in combination with a whole-genome model of the metabolism of and mathematical modeling, we predicted metabolic fluxes during early aging. We find that standard Flux Balance Analysis does not accurately predict measured fluxes nor age-related changes associated with the Citric Acid cycle. We present a novel Flux Balance Analysis method where we combined biomass production and targeted metabolomics information to generate an objective function that is more suitable for aging studies. We validated this approach with a detailed case study of the age-associated changes in the Citric Acid cycle. Our approach provides a comprehensive time-resolved multi-omics and modeling resource for studying the metabolic changes during normal aging in .

+ View Abstract

Frontiers in molecular biosciences , 2019

PMID: 30788345

Open Access

A single-cell molecular map of mouse gastrulation and early organogenesis.
Pijuan-Sala B, Griffiths JA, Guibentif C, Hiscock TW, Jawaid W, Calero-Nieto FJ, Mulas C, Ibarra-Soria X, Tyser RCV, Ho DLL, Reik W, Srinivas S, Simons BD, Nichols J, Marioni JC, Göttgens B

Across the animal kingdom, gastrulation represents a key developmental event during which embryonic pluripotent cells diversify into lineage-specific precursors that will generate the adult organism. Here we report the transcriptional profiles of 116,312 single cells from mouse embryos collected at nine sequential time points ranging from 6.5 to 8.5 days post-fertilization. We construct a molecular map of cellular differentiation from pluripotency towards all major embryonic lineages, and explore the complex events involved in the convergence of visceral and primitive streak-derived endoderm. Furthermore, we use single-cell profiling to show that Tal1 chimeric embryos display defects in early mesoderm diversification, and we thus demonstrate how combining temporal and transcriptional information can illuminate gene function. Together, this comprehensive delineation of mammalian cell differentiation trajectories in vivo represents a baseline for understanding the effects of gene mutations during development, as well as a roadmap for the optimization of in vitro differentiation protocols for regenerative medicine.

+ View Abstract

Nature , 2019

PMID: 30787436

Open Access

The transcription factor c-Myb regulates CD8 T cell stemness and antitumor immunity.
Gautam S, Fioravanti J, Zhu W, Le Gall JB, Brohawn P, Lacey NE, Hu J, Hocker JD, Hawk NV, Kapoor V, Telford WG, Gurusamy D, Yu Z, Bhandoola A, Xue HH, Roychoudhuri R, Higgs BW, Restifo NP, Bender TP, Ji Y, Gattinoni L

Stem cells are maintained by transcriptional programs that promote self-renewal and repress differentiation. Here, we found that the transcription factor c-Myb was essential for generating and maintaining stem cells in the CD8 T cell memory compartment. Following viral infection, CD8 T cells lacking Myb underwent terminal differentiation and generated fewer stem cell-like central memory cells than did Myb-sufficient T cells. c-Myb acted both as a transcriptional activator of Tcf7 (which encodes the transcription factor Tcf1) to enhance memory development and as a repressor of Zeb2 (which encodes the transcription factor Zeb2) to hinder effector differentiation. Domain-mutagenesis experiments revealed that the transactivation domain of c-Myb was necessary for restraining differentiation, whereas its negative regulatory domain was critical for cell survival. Myb overexpression enhanced CD8 T cell memory formation, polyfunctionality and recall responses that promoted curative antitumor immunity after adoptive transfer. These findings identify c-Myb as a pivotal regulator of CD8 T cell stemness and highlight its therapeutic potential.

+ View Abstract

Nature immunology , 2019

PMID: 30778251

Open Access

A SUV39H1-low chromatin state characterises and promotes migratory properties of cervical cancer cells.
Rodrigues C, Pattabiraman C, Vijaykumar A, Arora R, Narayana SM, Kumar RV, Notani D, Varga-Weisz P, Krishna S

Metastatic progression is a major cause of mortality in cervical cancers, but factors regulating migratory and pre-metastatic cell populations remain poorly understood. Here, we sought to assess whether a SUV39H1-low chromatin state promotes migratory cell populations in cervical cancers, using meta-analysis of data from The Cancer Genome Atlas (TCGA), immunohistochemistry, genomics and functional assays. Cervical cancer cells sorted based on migratory ability in vitro have low levels of SUV39H1 protein, and SUV39H1 knockdown in vitro enhanced cervical cancer cell migration. Further, TCGA SUV39H1-low tumours correlated with poor clinical outcomes and showed gene expression signatures of cell migration. SUV39H1 expression was examined within biopsies, and SUV39H1 cells within tumours also demonstrated migratory features. Next, to understand genome scale transcriptional and chromatin changes in migratory populations, cell populations sorted based on migration in vitro were examined using RNA-Seq, along with ChIP-Seq for H3K9me3, the histone mark associated with SUV39H1. Migrated populations showed SUV39H1-linked migratory gene expression signatures, along with broad depletion of H3K9me3 across gene promoters. We show for the first time that a SUV39H1-low chromatin state associates with, and promotes, migratory populations in cervical cancers. Our results posit SUV39H1-low cells as key populations for prognosis estimation and as targets for novel therapies.

+ View Abstract

Experimental cell research , 2019

PMID: 30772380

Open Access