Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific services.

Individual publications are linked to the website of the journal - subscriptions may be required to view the full text. The database also includes Open Access publications, which can be identified by the icons found on search results.

Open Access symbol We are working to provide Open Access to as many publications as possible. 'Green' Open Access publications are marked by the pink 'Download' icon. Click on the icon to access a pre-print PDF version of the publication. ​'Gold' Open Access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription.

Title / Authors / Details Open Access Download

The GPCR adaptor protein norbin suppresses the neutrophil-mediated immunity of mice to pneumococcal infection.
Pantarelli C, Pan D, Chetwynd S, Stark AK, Hornigold K, Machin P, Crossland L, Cleary SJ, Baker MJ, Hampson E, Mandel A, Segonds-Pichon A, Walker R, van 't Veer C, Riffo-Vasquez Y, Okkenhaug K, Pitchford S, Welch HCE

Streptococcal pneumonia is a worldwide health problem that kills ∼2 million people each year, particularly young children, the elderly, and immunosuppressed individuals. Alveolar macrophages and neutrophils provide the early innate immune response to clear pneumococcus from infected lungs. However, the level of neutrophil involvement is context dependent, both in humans and in mouse models of the disease, influenced by factors such as bacterial load, age, and coinfections. Here, we show that the G protein-coupled receptor (GPCR) adaptor protein norbin (neurochondrin, NCDN), which was hitherto known as a regulator of neuronal function, is a suppressor of neutrophil-mediated innate immunity. Myeloid norbin deficiency improved the immunity of mice to pneumococcal infection by increasing the involvement of neutrophils in clearing the bacteria, without affecting neutrophil recruitment or causing autoinflammation. It also improved immunity during Escherichia coli-induced septic peritonitis. It increased the responsiveness of neutrophils to a range of stimuli, promoting their ability to kill bacteria in a reactive oxygen species-dependent manner, enhancing degranulation, phagocytosis, and the production of reactive oxygen species and neutrophil extracellular traps, raising the cell surface levels of selected GPCRs, and increasing GPCR-dependent Rac and Erk signaling. The Rac guanine-nucleotide exchange factor Prex1, a known effector of norbin, was dispensable for most of these effects, which suggested that norbin controls additional downstream targets. We identified the Rac guanine-nucleotide exchange factor Vav as one of these effectors. In summary, our study presents the GPCR adaptor protein norbin as an immune suppressor that limits the ability of neutrophils to clear bacterial infections.

+ View Abstract

Blood advances , 5 , 16 ,

PMID: 34402884

Open Access

Detecting chromosomal interactions in Capture Hi-C data with CHiCAGO and companion tools.
Freire-Pritchett P, Ray-Jones H, Della Rosa M, Eijsbouts CQ, Orchard WR, Wingett SW, Wallace C, Cairns J, Spivakov M, Malysheva V

Capture Hi-C is widely used to obtain high-resolution profiles of chromosomal interactions involving, at least on one end, regions of interest such as gene promoters. Signal detection in Capture Hi-C data is challenging and cannot be adequately accomplished with tools developed for other chromosome conformation capture methods, including standard Hi-C. Capture Hi-C Analysis of Genomic Organization (CHiCAGO) is a computational pipeline developed specifically for Capture Hi-C analysis. It implements a statistical model accounting for biological and technical background components, as well as bespoke normalization and multiple testing procedures for this data type. Here we provide a step-by-step guide to the CHiCAGO workflow that is aimed at users with basic experience of the command line and R. We also describe more advanced strategies for tuning the key parameters for custom experiments and provide guidance on data preprocessing and downstream analysis using companion tools. In a typical experiment, CHiCAGO takes ~2-3 h to run, although pre- and postprocessing steps may take much longer.

+ View Abstract

Nature protocols , 1 , 1 ,

PMID: 34373652

Quality control requirements for the correct annotation of lipidomics data.
Köfeler HC, Eichmann TO, Ahrends R, Bowden JA, Danne-Rasche N, Dennis EA, Fedorova M, Griffiths WJ, Han X, Hartler J, Holčapek M, Jirásko R, Koelmel JP, Ejsing CS, Liebisch G, Ni Z, O'Donnell VB, Quehenberger O, Schwudke D, Shevchenko A, Wakelam MJO, Wenk MR, Wolrab D, Ekroos K

n/a

+ View Abstract

Nature communications , 12 , 1 ,

PMID: 34362906

Community-wide hackathons to identify central themes in single-cell multi-omics.
Lê Cao KA, Abadi AJ, Davis-Marcisak EF, Hsu L, Arora A, Coullomb A, Deshpande A, Feng Y, Jeganathan P, Loth M, Meng C, Mu W, Pancaldi V, Sankaran K, Singh A, Sodicoff JS, Stein-O'Brien GL, Subramanian A, Welch JD, You Y, Argelaguet R, Carey VJ, Dries R, Greene CS, Holmes S, Love MI, Ritchie ME, Yuan GC, Culhane AC, Fertig E

n/a

+ View Abstract

Genome biology , 22 , 1 ,

PMID: 34353350

Single-cell transcriptome profiling of the human developing spinal cord reveals a conserved genetic programme with human-specific features.
Rayon T, Maizels RJ, Barrington C, Briscoe J

The spinal cord receives input from peripheral sensory neurons and controls motor output by regulating muscle innervating motor neurons. These functions are carried out by neural circuits comprising molecularly distinct neuronal subtypes generated in a characteristic spatiotemporal arrangement from progenitors in the embryonic neural tube. To gain insight into the diversity and complexity of cells in the developing human neural tube, we used single-cell mRNA sequencing to profile cervical and thoracic regions in four human embryos of Carnegie stages (CS) CS12, CS14, CS17 and CS19 from gestational weeks 4-7. Analysis of progenitor and neuronal populations from the neural tube and dorsal root ganglia identified dozens of distinct cell types and facilitated the reconstruction of the differentiation pathways of specific neuronal subtypes. Comparison with mouse revealed overall similarity of mammalian neural tube development while highlighting some human-specific features. These data provide a catalogue of gene expression and cell type identity in the human neural tube that will support future studies of sensory and motor control systems. The data can be explored at https://shiny.crick.ac.uk/scviewer/neuraltube/.

+ View Abstract

Development (Cambridge, England) , 148 , 15 ,

PMID: 34351410

Open Access

Monitoring selective autophagy of mitochondria using super-resolution microscopy.
Li Z, Ktistakis NT

Selective elimination of damaged mitochondria via macroautophagy (mitophagy) is a conserved cellular process that plays an important role in organismal health. In recent years mitophagy has been studied in parallel to the more general, non-selective autophagy pathway induced in response to amino acid starvation with important similarities and differences noted between the two. The elaborate sequence of membrane rearrangements that give rise to autophagosomes in the non-selective pathway have their counterpart in mitophagy, but with the addition of other factors, such as a ubiquitin mark and mitophagy receptors, which mediate cargo recognition. In some types of mitophagy such as the one induced by ivermectin, the forming autophagosomal structure contains six different elements: the targeted mitochondrial fragment, a section of endoplasmic reticulum that provides a cradle, a ubiquitin layer, the mitophagy receptors and the early and late autophagosomal proteins/membranes. Super-resolution microscopy is ideally suited to investigate the spatial relationships between these elements that converge together but retain some distinctive localization, and we provide here a general protocol that can be used for mammalian cells.

+ View Abstract

Methods in cell biology , 165 , 1 ,

PMID: 34311864

A Novel NAD Signaling Mechanism in Axon Degeneration and its Relationship to Innate Immunity.
Hopkins EL, Gu W, Kobe B, Coleman MP

Axon degeneration represents a pathological feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease where axons die before the neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a central signaling pathway forms the basis of this process in many circumstances. This is an axonal NAD-related signaling mechanism mainly regulated by the two key proteins with opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with NADase and related activities. The crosstalk between the axon survival factor NMNAT2 and pro-degenerative factor SARM1 has been extensively characterized and plays an essential role in maintaining the axon integrity. This pathway can be activated in necroptosis and in genetic, toxic or metabolic disorders, physical injury and neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved in regulating innate immunity, potentially linking axon degeneration to the response to pathogens and intercellular signaling. Understanding this NAD-related signaling mechanism enhances our understanding of the process of axon degeneration and enables a path to the development of drugs for a wide range of neurodegenerative diseases.

+ View Abstract

Frontiers in molecular biosciences , 8 , 1 ,

PMID: 34307460

A Novel NAD Signaling Mechanism in Axon Degeneration and its Relationship to Innate Immunity.
Hopkins EL, Gu W, Kobe B, Coleman MP

Axon degeneration represents a pathological feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease where axons die before the neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a central signaling pathway forms the basis of this process in many circumstances. This is an axonal NAD-related signaling mechanism mainly regulated by the two key proteins with opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with NADase and related activities. The crosstalk between the axon survival factor NMNAT2 and pro-degenerative factor SARM1 has been extensively characterized and plays an essential role in maintaining the axon integrity. This pathway can be activated in necroptosis and in genetic, toxic or metabolic disorders, physical injury and neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved in regulating innate immunity, potentially linking axon degeneration to the response to pathogens and intercellular signaling. Understanding this NAD-related signaling mechanism enhances our understanding of the process of axon degeneration and enables a path to the development of drugs for a wide range of neurodegenerative diseases.

+ View Abstract

Frontiers in molecular biosciences , 8 , 1 ,

PMID: 34307460

Open Access

Pax5 regulates B cell immunity by promoting PI3K signaling via PTEN down-regulation.
Calderón L, Schindler K, Malin SG, Schebesta A, Sun Q, Schwickert T, Alberti C, Fischer M, Jaritz M, Tagoh H, Ebert A, Minnich M, Liston A, Cochella L, Busslinger M

The transcription factor Pax5 controls B cell development, but its role in mature B cells is largely enigmatic. Here, we demonstrated that the loss of Pax5 by conditional mutagenesis in peripheral B lymphocytes led to the strong reduction of B-1a, marginal zone (MZ), and germinal center (GC) B cells as well as plasma cells. Follicular (FO) B cells tolerated the loss of Pax5 but had a shortened half-life. The Pax5-deficient FO B cells failed to proliferate upon B cell receptor or Toll-like receptor stimulation due to impaired PI3K-AKT signaling, which was caused by increased expression of PTEN, a negative regulator of the PI3K pathway. Pax5 restrained PTEN protein expression at the posttranscriptional level, likely involving -targeting microRNAs. Additional PTEN loss in double-mutant mice rescued FO B cell numbers and the development of MZ B cells but did not restore GC B cell formation. Hence, the posttranscriptional down-regulation of PTEN expression is an important function of Pax5 that facilitates the differentiation and survival of mature B cells, thereby promoting humoral immunity.

+ View Abstract

Science immunology , 6 , 61 ,

PMID: 34301800

Unstable regulatory T cells, enriched for naïve and Nrp1 cells, are purged after fate challenge.
Junius S, Mavrogiannis AV, Lemaitre P, Gerbaux M, Staels F, Malviya V, Burton O, Gergelits V, Singh K, Tito Tadeo RY, Raes J, Humblet-Baron S, Liston A, Schlenner SM

Regulatory T cells (T) are indispensable for the control of immune homeostasis and have clinical potential as a cell therapy for treating autoimmunity. T can lose expression of the lineage-defining Foxp3 transcription factor and acquire effector T cell (T) characteristics, a process referred to as T plasticity. The extent and reversibility of such plasticity during immune responses remain unknown. Here, using a murine genetic fate-mapping system, we show that T stability is maintained even during exposure to a complex microbial/antigenic environment. Furthermore, we demonstrate that the observed plasticity of T after adoptive transfer into a lymphopenic environment is a property limited to only a subset of the T population, with the nonconverting majority of T being resistant to plasticity upon secondary stability challenge. The unstable T fraction is a complex mixture of phenotypically distinct T, enriched for naïve and neuropilin-1-negative T, and includes peripherally induced T and recent thymic emigrant T These results suggest that a "purging" process can be used to purify stable T that are capable of robust fate retention, with potential implications for improving cell transfer therapy.

+ View Abstract

Science immunology , 6 , 61 ,

PMID: 34301799

Inhibitory feedback control of NF-κB signalling in health and disease.
Prescott JA, Mitchell JP, Cook SJ

Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and 're-set' inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical 'inhibitor of κB kinases' (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.

+ View Abstract

The Biochemical journal , 478 , 13 ,

PMID: 34269817

Open Access

Excessive endoplasmic reticulum stress drives aberrant mouse trophoblast differentiation and placental development leading to pregnancy loss.
Capatina N, Hemberger M, Burton GJ, Watson ED, Yung HW

Endoplasmic reticulum (ER) stress promotes placental dysmorphogenesis and is associated with poor pregnancy outcomes. We show that unfolded protein response signalling pathways located in the ER drive differentiation of mouse trophoblast stem cells into trophoblast subtypes involved in development of the placental labyrinth zone and trophoblast invasion. In a mouse model of chronic ER stress (Eif2s1 ), higher ER stress in homozygous blastocysts is accompanied by reduced trophectoderm cell number, developmental delay, and is associated with an increased incidence of early pregnancy loss. Administration of the chemical chaperone, tauroursodeoxycholic acid, to Eif2s1 heterozygous females during pregnancy alleviated ER stress in the mutant placenta, restored normal trophoblast populations and reduced the frequency of early pregnancy loss. Our results suggest that alleviation of intrauterine ER stress could provide a potential therapeutic target to improve pregnancy outcome in women with pre-gestational metabolic or gynaecologic conditions. ABSTRACT: Women with pre-gestational health conditions (e.g., obesity, diabetes) or gynaecological problems (e.g., endometriosis) are at increased risk of adverse pregnancy outcomes including miscarriage, preeclampsia and fetal growth restriction. Increasing evidence suggests that unfavourable intrauterine conditions leading to poor implantation and/or defective placentation are a possible causative factor. The endoplasmic reticulum (ER) unfolded protein response (UPR ) signalling pathways are a convergence point of various physiological stress stimuli that can be triggered by an unfavourable intrauterine environment. Therefore, we explored the impact of ER stress on mouse trophoblast differentiation in vitro, mouse blastocyst formation and early placenta development in the Eif2s1 mutant mouse model of chronic ER stress. Chemically-manipulated ER stress or activation of UPR pathways in a mouse trophoblast stem cell line promoted lineage-specific differentiation. Co-treatment with specific UPR pathway inhibitors rescued this effect. While the inner cell mass was unaffected, the trophectoderm of homozygous Eif2s1 blastocysts exhibited ER stress associated with a reduced cell number. Furthermore, one-third of Eif2s1 homozygous blastocysts exhibited severe developmental defects. We have previously reported a reduced trophoblast population and premature trophoblast differentiation in Eif2s1 homozygous placentas at mid-gestation. Here, we demonstrate that treatment of Eif2s1 heterozygous pregnant females with the chemical chaperone tauroursodeoxycholic acid alleviated ER stress, restored the trophoblast population, and reduced the frequency of embryonic lethality. Our data suggest that therapeutic targeting of ER stress may improve pregnancy outcome in women with pre-gestational metabolic or gynaecologic conditions. This article is protected by copyright. All rights reserved.

+ View Abstract

The Journal of physiology , 1 , 1 ,

PMID: 34269420

MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development.
Kumari R, Roy U, Desai S, Nilavar NM, Van Nieuwenhuijze A, Paranjape A, Radha G, Bawa P, Srivastava M, Nambiar M, Balaji KN, Liston A, Choudhary B, Raghavan SC

Recombination activating genes (RAGs), consisting of RAG1 and RAG2, are stringently regulated lymphoid-specific genes, which initiate V(D)J recombination in developing lymphocytes. We report the regulation of RAG1 through a microRNA (miRNA), miR-29c, in a B cell stage-specific manner in mice and humans. Various lines of experimentation, including CRISPR-Cas9 genome editing, demonstrate the target specificity and direct interaction of miR-29c to RAG1. Modulation of miR-29c levels leads to change in V(D)J recombination efficiency in pre-B cells. The miR-29c expression is inversely proportional to RAG1 in a B cell developmental stage-specific manner, and miR-29c null mice exhibit a reduction in mature B cells. A negative correlation of miR-29c and RAG1 levels is also observed in leukemia patients, suggesting the potential use of miR-29c as a biomarker and a therapeutic target. Thus, our results reveal the role of miRNA in the regulation of RAG1 and its relevance in cancer.

+ View Abstract

Cell reports , 36 , 2 ,

PMID: 34260911

IL-7R signaling activates widespread V and D gene usage to drive antibody diversity in bone marrow B cells.
Baizan-Edge A, Stubbs BA, Stubbington MJT, Bolland DJ, Tabbada K, Andrews S, Corcoran AE

Generation of the primary antibody repertoire requires V(D)J recombination of hundreds of gene segments in the immunoglobulin heavy chain (Igh) locus. The role of interleukin-7 receptor (IL-7R) signaling in Igh recombination has been difficult to partition from its role in B cell survival and proliferation. With a detailed description of the Igh repertoire in murine IL-7Rα bone marrow B cells, we demonstrate that IL-7R signaling profoundly influences V gene selection during V-to-DJ recombination. We find skewing toward 3' V genes during de novo V-to-DJ recombination more severe than the fetal liver (FL) repertoire and uncover a role for IL-7R signaling in D-to-J recombination. Transcriptome and accessibility analyses suggest reduced expression of B lineage transcription factors (TFs) and targets and loss of D and V antisense transcription in IL-7Rα B cells. Thus, in addition to its roles in survival and proliferation, IL-7R signaling shapes the Igh repertoire by activating underpinning mechanisms.

+ View Abstract

Cell reports , 36 , 2 ,

PMID: 34260907

Open Access

A new flavor of cellular Atg8-family protein lipidation - alternative conjugation to phosphatidylserine during CASM.
Durgan J, Florey O

Atg8-family protein lipidation is the most commonly used marker for monitoring autophagy. During macroautophagy, Atg8-family proteins are specifically conjugated to phosphatidylethanolamine (PE) in forming, double-membrane autophagosomes. A distinct, non-canonical autophagy pathway also operates, characterized by the Conjugation of ATG8s to endolysosomal Single Membranes (CASM). In our new study, we show that CASM is associated with the alternative conjugation of Atg8-family proteins to phosphatidylserine (PS), and PE, in response to various cellular stimuli. We also discover differences in the regulation of conjugation to PE and PS by ATG4s, and altered dynamics between the two species. The identification of alternative Atg8-family protein PS lipidation opens up exciting new questions on the roles, regulation and biology of Atg8-family proteins during non-canonical autophagy.

+ View Abstract

Autophagy , 1 , 1 ,

PMID: 34251968

CD4 T cells that help B cells - a proposal for uniform nomenclature.
Eisenbarth SC, Baumjohann D, Craft J, Fazilleau N, Ma CS, Tangye SG, Vinuesa CG, Linterman MA

T follicular helper (Tfh) cells cognately guide differentiation of antigen-primed B cells in secondary lymphoid tissues. 'Tfh-like' populations not expressing the canonical Tfh cell transcription factor BCL6 have also been described, which can aid particular aspects of B cell differentiation. Tfh and Tfh-like cells are essential for protective and pathological humoral immunity. These CD4 T cells that help B cells are polarized to produce diverse combinations of cytokines and chemokine receptors and can be grouped into distinct subsets that promote antibodies of different isotype, affinity, and duration, according to the nature of immune challenge. However, unified nomenclature to describe the distinct functional Tfh and Tfh-like cells does not exist. While explicitly acknowledging cellular plasticity, we propose categorizing these cell states into three groups based on phenotype and function, paired with their anatomical site of action.

+ View Abstract

Trends in immunology , 1 , 1 ,

PMID: 34244056

Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity.
Vanderbeke L, Van Mol P, Van Herck Y, De Smet F, Humblet-Baron S, Martinod K, Antoranz A, Arijs I, Boeckx B, Bosisio FM, Casaer M, Dauwe D, De Wever W, Dooms C, Dreesen E, Emmaneel A, Filtjens J, Gouwy M, Gunst J, Hermans G, Jansen S, Lagrou K, Liston A, Lorent N, Meersseman P, Mercier T, Neyts J, Odent J, Panovska D, Penttila PA, Pollet E, Proost P, Qian J, Quintelier K, Raes J, Rex S, Saeys Y, Sprooten J, Tejpar S, Testelmans D, Thevissen K, Van Buyten T, Vandenhaute J, Van Gassen S, Velásquez Pereira LC, Vos R, Weynand B, Wilmer A, Yserbyt J, Garg AD, Matthys P, Wouters C, Lambrechts D, Wauters E, Wauters J

Epidemiological and clinical reports indicate that SARS-CoV-2 virulence hinges upon the triggering of an aberrant host immune response, more so than on direct virus-induced cellular damage. To elucidate the immunopathology underlying COVID-19 severity, we perform cytokine and multiplex immune profiling in COVID-19 patients. We show that hypercytokinemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels paired with deep-immune profiling shows that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Antigen presenting machinery expression is also reduced in critical disease. Furthermore, we report that neutrophils contribute to disease severity and local tissue damage by amplification of hypercytokinemia and the formation of neutrophil extracellular traps. Together our findings suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity.

+ View Abstract

Nature communications , 12 , 1 ,

PMID: 34226537

Open Access

Essential requirement for polypyrimidine tract binding proteins 1 and 3 in the maturation and maintenance of mature B cells in mice.
Monzón-Casanova E, Bates KJ, Smith CWJ, Turner M

The maturation of immature B cells and the survival of mature B cells is stringently controlled to maintain a diverse repertoire of antibody specificities while avoiding self-reactivity. At the molecular level this is regulated by signalling from membrane immunoglobulin and the BAFF-receptor which sustain a pro-survival programme of gene expression. Whether and how posttranscriptional mechanisms contribute to B cell maturation and survival remains poorly understood. Here we show that the polypyrimidine tract binding proteins (PTBP) PTBP1 and PTBP3 bind to a large and overlapping set of transcripts in B cells. Both PTBP1 and PTBP3 bind to introns and exons where they are predicted to regulate alternative splicing. Moreover, they also show high-density of binding to 3' untranslated regions suggesting they influence the transcriptome in diverse ways. We show that PTBP1 and PTBP3 are required in B cells beyond the immature cell stage to sustain transitional B cells and the B1, marginal zone and follicular B cell lineages. Therefore, PTBP1 and PTBP3 promote the maturation of quiescent B cells by regulating gene expression at the post-transcriptional level. This article is protected by copyright. All rights reserved.

+ View Abstract

European journal of immunology , 1 , 1 ,

PMID: 34214192

Culture Medium and Sex Drive Epigenetic Reprogramming in Preimplantation Bovine Embryos.
Canovas S, Ivanova E, Hamdi M, Perez-Sanz F, Rizos D, Kelsey G, Coy P

Assisted reproductive technologies impact transcriptome and epigenome of embryos and can result in long-term phenotypic consequences. Whole-genome DNA methylation profiles from individual bovine blastocysts in vivo- and in vitro-derived (using three sources of protein: reproductive fluids, blood serum and bovine serum albumin) were generated. The impact of in vitro culture on DNA methylation was analyzed, and sex-specific methylation differences at blastocyst stage were uncovered. In vivo embryos showed the highest levels of methylation (29.5%), close to those produced in vitro with serum, whilst embryos produced in vitro with reproductive fluids or albumin showed less global methylation (25-25.4%). During repetitive element analysis, the serum group was the most affected. DNA methylation differences between in vivo and in vitro groups were more frequent in the first intron than in CpGi in promoters. Moreover, hierarchical cluster analysis showed that sex produced a stronger bias in the results than embryo origin. For each group, distance between male and female embryos varied, with in vivo blastocyst showing a lesser distance. Between the sexually dimorphic methylated tiles, which were biased to X-chromosome, critical factors for reproduction, developmental process, cell proliferation and DNA methylation machinery were included. These results support the idea that blastocysts show sexually-dimorphic DNA methylation patterns, and the known picture about the blastocyst methylome should be reconsidered.

+ View Abstract

International journal of molecular sciences , 22 , 12 ,

PMID: 34204008

Open Access

Optimized immunofluorescence staining protocol for imaging germinal centers in secondary lymphoid tissues of vaccinated mice.
Fra-Bido S, Walker SA, Innocentin S, Linterman MA

Location of immune cells that form the germinal center reaction within secondary lymphoid tissues can be characterized using confocal microscopy. Here, we present an optimized immunofluorescence staining protocol to image germinal center structures in fixed/frozen spleen sections from ChAdOx1 nCoV-19 immunized mice. This protocol can be adapted to identify other cell types within secondary lymphoid tissues. For complete information on the generation and use of this protocol to examine immune responses to the COVID vaccine ChAdOx1 nCoV-19, please refer to Silva-Cayetano et al. (2020).

+ View Abstract

STAR protocols , 2 , 3 ,

PMID: 34195671

Open Access

Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2.
Collier DA, Ferreira IATM, Kotagiri P, Datir R, Lim E, Touizer E, Meng B, Abdullahi A, , Elmer A, Kingston N, Graves B, Le Gresley E, Caputo D, Bergamaschi L, Smith KGC, Bradley JR, Ceron-Gutierrez L, Cortes-Acevedo P, Barcenas-Morales G, Linterman MA, McCoy L, Davis C, Thomson E, Lyons PA, McKinney E, Doffinger R, Wills M, Gupta RK

Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, data are scarce on vaccine efficacy against variants of concern (VOC) in individuals above 80 years of age. Here we analysed immune responses following vaccination with mRNA vaccine BNT162b2 in elderly participants and younger health care workers. Serum neutralisation and binding IgG/IgA after the first vaccine dose diminished with increasing age, with a marked drop in participants over 80 years old. Sera from participants above 80 showed significantly lower neutralisation potency against B.1.1.7, B.1.351 and P.1. variants of concern as compared to wild type and were more likely to lack any neutralisation against VOC following the first dose. However, following the second dose, neutralisation against VOC was detectable regardless of age. Frequency of SARS-CoV-2 Spike specific B-memory cells was higher in elderly responders versus non-responders after first dose. Elderly participants demonstrated clear reduction in somatic hypermutation of class switched cells. SARS-CoV-2 Spike specific T- cell IFNγ and IL-2 responses decreased with increasing age, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high risk population that warrant specific measures to boost vaccine responses, particularly where variants of concern are circulating.

+ View Abstract

Nature , 1 , 1 ,

PMID: 34192737

Oxygen concentration affects de novo DNA methylation and transcription in in vitro cultured oocytes.
Naillat F, Saadeh H, Nowacka-Woszuk J, Gahurova L, Santos F, Tomizawa SI, Kelsey G

Reproductive biology methods rely on in vitro follicle cultures from mature follicles obtained by hormonal stimulation for generating metaphase II oocytes to be fertilised and developed into a healthy embryo. Such techniques are used routinely in both rodent and human species. DNA methylation is a dynamic process that plays a role in epigenetic regulation of gametogenesis and development. In mammalian oocytes, DNA methylation establishment regulates gene expression in the embryos. This regulation is particularly important for a class of genes, imprinted genes, whose expression patterns are crucial for the next generation. The aim of this work was to establish an in vitro culture system for immature mouse oocytes that will allow manipulation of specific factors for a deeper analysis of regulatory mechanisms for establishing transcription regulation-associated methylation patterns.

+ View Abstract

Clinical epigenetics , 13 , 1 ,

PMID: 34183052

Open Access

BAP1/ASXL complex modulation regulates epithelial-mesenchymal transition during trophoblast differentiation and invasion.
Perez-Garcia V, Lea G, Lopez-Jimenez P, Okkenhaug H, Burton GJ, Moffett A, Turco MY, Hemberger M

Normal function of the placenta depends on the earliest developmental stages when trophoblast cells differentiate and invade into the endometrium to establish the definitive maternal-fetal interface. Previously, we identified the ubiquitously expressed tumour suppressor BRCA1-associated protein 1 (BAP1) as a central factor of a novel molecular node controlling early mouse placentation. However, functional insights into how BAP1 regulates trophoblast biology are still missing. Using CRISPR/Cas9 knockout and overexpression technology in mouse trophoblast stem cells, here we demonstrate that the downregulation of BAP1 protein is essential to trigger epithelial-mesenchymal transition (EMT) during trophoblast differentiation associated with a gain of invasiveness. Moreover, we show that the function of BAP1 in suppressing EMT progression is dependent on the binding of BAP1 to additional sex comb-like (ASXL1/2) proteins to form the polycomb repressive deubiquitinase (PR-DUB) complex. Finally, both endogenous expression patterns and BAP1 overexpression experiments in human trophoblast stem cells suggest that the molecular function of BAP1 in regulating trophoblast differentiation and EMT progression is conserved in mice and humans. Our results reveal that the physiological modulation of BAP1 determines the invasive properties of the trophoblast, delineating a new role of the BAP1 PR-DUB complex in regulating early placentation.

+ View Abstract

eLife , 10 , 1 ,

PMID: 34170818

Open Access

Native mass spectrometry analyses of chaperonin complex TRiC/CCT reveal subunit N-terminal processing and re-association patterns.
Collier MP, Moreira KB, Li KH, Chen YC, Itzhak D, Samant R, Leitner A, Burlingame A, Frydman J

The eukaryotic chaperonin TRiC/CCT is a large ATP-dependent complex essential for cellular protein folding. Its subunit arrangement into two stacked eight-membered hetero-oligomeric rings is conserved from yeast to man. A recent breakthrough enables production of functional human TRiC (hTRiC) from insect cells. Here, we apply a suite of mass spectrometry techniques to characterize recombinant hTRiC. We find all subunits CCT1-8 are N-terminally processed by combinations of methionine excision and acetylation observed in native human TRiC. Dissociation by organic solvents yields primarily monomeric subunits with a small population of CCT dimers. Notably, some dimers feature non-canonical inter-subunit contacts absent in the initial hTRiC. This indicates individual CCT monomers can promiscuously re-assemble into dimers, and lack the information to assume the specific interface pairings in the holocomplex. CCT5 is consistently the most stable subunit and engages in the greatest number of non-canonical dimer pairings. These findings confirm physiologically relevant post-translational processing and function of recombinant hTRiC and offer quantitative insight into the relative stabilities of TRiC subunits and interfaces, a key step toward reconstructing its assembly mechanism. Our results also highlight the importance of assigning contacts identified by native mass spectrometry after solution dissociation as canonical or non-canonical when investigating multimeric assemblies.

+ View Abstract

Scientific reports , 11 , 1 ,

PMID: 34158536

Open Access