Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

DJ Powner, MN Hodgkin, MJ Wakelam Signalling

Phospholipase D (PLD) activity can be detected in response to many agonists in most cell types; however, the pathway from receptor occupation to enzyme activation remains unclear. In vitro PLD1b activity is phosphatidylinositol 4,5-bisphosphate dependent via an N-terminal PH domain and is stimulated by Rho, ARF, and PKC family proteins, combinations of which cooperatively increase this activity. Here we provide the first evidence for the in vivo regulation of PLD1b at the molecular level. Antigen stimulation of RBL-2H3 cells induces the colocalization of PLD1b with Rac1, ARF6, and PKCalpha at the plasma membrane in actin-rich structures, simultaneously with cooperatively increasing PLD activity. Activation is both specific and direct because dominant negative mutants of Rac1 and ARF6 inhibit stimulated PLD activity, and surface plasmon resonance reveals that the regulatory proteins bind directly and independently to PLD1b. This also indicates that PLD1b can concurrently interact with a member from each regulator family. Our results show that in contrast to PLD1b's translocation to the plasma membrane, PLD activation is phosphatidylinositol 3-kinase dependent. Therefore, because inactive, dominant negative GTPases do not activate PLD1b, we propose that activation results from phosphatidylinositol 3-kinase-dependent stimulation of Rac1, ARF6, and PKCalpha.

+view abstract Molecular biology of the cell, PMID: 11950936 2002

Meade J, Fernandez C, Turner M Immunology

We have analyzed the effects of deficiency in the tyrosine kinase Lyn on B cell development using transgenic mice that express a B cell antigen receptor (BCR) of defined specificity (3-83,anti-H-2K(k or b)). In the absence of Lyn, immature B cells are abundant in the bone marrow and spleen up until the T1 stage (IgM(hi) IgD(-) CD21(-)CD23(-)), after which B cell development is severely impaired. The small number of mature B cells that do develop in Lyn-deficient mice express normal levels of the transgenic BCR and lack expression of CD80 and CD86, suggesting they are not activated. In Lyn-deficient animals the presence of a Bcl-2 transgene leads to a dramatic increase in B cell numbers and restores T2 stage (IgM(hi) IgD(hi) CD21(hi) CD23(int)) and mature populations. In 3-83 lyn-/- Bcl-2 Tg mice, a population of lambda-positive cells that also express the 383 idiotype is evident, suggesting that in the absence of lyn isotype exclusion by the transgenic BCR is less efficient. The results indicate that Lyn plays a positive role in the selection and survival of mature B cells in addition to its previously documented negative role in tolerance and B cell activation.

+view abstract European journal of immunology, PMID: 11920569 2002

Colucci F, Schweighoffer E, Tomasello E, Turner M, Ortaldo JR, Vivier E, Tybulewicz VL, Di Santo JP Immunology

The intracellular signals that trigger natural cytotoxicity have not been clearly determined. The Syk and ZAP-70 tyrosine kinases are essential for cellular activation initiated by B and T cell antigen receptors and may drive natural killer (NK) cell cytotoxicity via receptors bearing immunoreceptor tyrosine-based activation motifs (ITAMs). However, we found that, unlike B and T cells, NK cells developed in Syk-/-ZAP-70-/- mice and, despite their nonfunctional ITAMs, lysed various tumor targets in vitro and eliminated tumor cells in vivo, including those without NKG2D ligands. The simultaneous inhibition of phosphatidyl inositol 3 kinase and Src kinases abrogated the cytolytic activity of Syk-/-ZAP-70-/- NK cells and strongly reduced that of wild-type NK cells. This suggests that distinct and redundant signaling pathways act synergistically to trigger natural cytotoxicity.

+view abstract Nature immunology, PMID: 11836527 2002

TG Mack, M Reiner, B Beirowski, W Mi, M Emanuelli, D Wagner, D Thomson, T Gillingwater, F Court, L Conforti, FS Fernando, A Tarlton, C Andressen, K Addicks, G Magni, RR Ribchester, VH Perry, MP Coleman Signalling

Axons and their synapses distal to an injury undergo rapid Wallerian degeneration, but axons in the C57BL/WldS mouse are protected. The degenerative and protective mechanisms are unknown. We identified the protective gene, which encodes an N-terminal fragment of ubiquitination factor E4B (Ube4b) fused to nicotinamide mononucleotide adenylyltransferase (Nmnat), and showed that it confers a dose-dependent block of Wallerian degeneration. Transected distal axons survived for two weeks, and neuromuscular junctions were also protected. Surprisingly, the Wld protein was located predominantly in the nucleus, indicating an indirect protective mechanism. Nmnat enzyme activity, but not NAD+ content, was increased fourfold in WldS tissues. Thus, axon protection is likely to be mediated by altered ubiquitination or pyridine nucleotide metabolism.

+view abstract Nature neuroscience, PMID: 11770485 2001

Gilson P, Gaspar YM, Oxley D, Youl JJ, Bacic A Mass Spectrometry

Arabinogalactan proteins (AGPs) are proteoglycans secreted by plant cells that have been implicated in plant growth and development. Most AGPs cloned to date possess highly labile glycosylphosphatidylinositol (GPI) lipid anchors. These anchors transiently attach AGPs to the plasma membrane before they are released into the cell wall following GPI anchor hydrolysis. We have isolated and partially sequenced the protein core of an AGP purified from styles of Nicotiana alata. The protein sequence data were utilised to clone the AGP's gene, NaAGP4. This AGP shares about 78% sequence identity with the tomato AGP LeAGP-1. RNA gel blot analyses of different plant organs indicate that NaAGP4 is expressed in the same tissues and at similar levels as LeAGP-1. Furthermore, NaAGP4 like LeAGP-1 is rapidly suppressed by tissue wounding and by pathogen infection. We believe NaAGP4 and LeAGP-1 are the first described examples of orthologous AGPs from different plant species. In contrast, another AGP from N. alata, NaAGP1, is comparatively unaffected by wounding and pathogen infection, although this AGP is expressed in similar tissues and at similar levels as NaAGP4.

+view abstract Protoplasma, PMID: 11732052 2001

Kendrick KM, da Costa AP, Leigh AE, Hinton MR, Peirce JW

The human brain has evolved specialized neural mechanisms for visual recognition of faces, which afford us a remarkable ability to discriminate between, remember and think about many hundreds of different individuals. Sheep also recognize and are attracted to individual sheep and humans by their faces, as they possess similar specialized neural systems in the temporal and frontal lobes for assisting in this important social task, including a greater involvement of the right brain hemisphere. Here we show that individual sheep can remember 50 other different sheep faces for over 2 years, and that the specialized neural circuits involved maintain selective encoding of individual sheep and human faces even after long periods of separation.

+view abstract Nature, PMID: 11700543

Glassford J, Holman M, Banerji L, Clayton E, Klaus GG, Turner M, Lam EW Immunology

B lymphocytes from mice null for the Rho-family guanine-nucleotide exchange factor, Vav, are defective in their ability to proliferate in response to BCR cross-linking, but are able to proliferate normally in response to LPS. In addition, they have a depletion of CD5(+) (B1) lymphocytes and defective IgG class switching. This phenotype is reminiscent of that observed in mice null for the cell cycle regulatory protein, cyclin D2. We demonstrate here that the inability of vav(-/-) B cells to proliferate in response to BCR ligation is due to an inability to induce cyclin D2. In addition, we show that the proliferative defect of these cells occurs after the cells have entered early G1 phase. Analyses of potential down-stream signaling intermediates revealed differential activation of the stress-activated MAP kinases in the absence of Vav, normal activation of the ERK, MAPK, and phosphatidylinositol 3-kinase pathways, and defective intracellular calcium mobilization. We further demonstrate that intracellular calcium homeostasis is required for cyclin D2 induction, implicating a possible link with the defective calcium response of vav(-/-) B cells and their inability to induce cyclin D2.

+view abstract The Journal of biological chemistry, PMID: 11546804 2001

Kendrick KM, Haupt MA, Hinton MR, Broad KD, Skinner JD

The extent to which "nurture" as opposed to "nature" determines behavior and sociosexual preferences in mammalian species is controversial although most recent interest has focused on genetic determinants. We report here that if sheep and goats are cross-fostered at birth, but raised in mixed-species groups, their play and grooming behavior resembles that of their foster rather than genetic species. There are no sex differences in effects on these behaviors, and other species-specific behavior patterns such as aggression, browsing, climbing, and vocalizations are unaffected. In adulthood, cross-fostered males strongly prefer to socialize and mate with females of their foster mother's species, even if raised with a conspecific of their own species. Castration within 2 days of birth slightly reduces the level of this altered social preference but mating preference following short-term testosterone treatment is the same as for gonadally intact animals. Cross-fostered females also show significant preference for socializing with females and mating with males of their foster mother's species, although this effect is weaker than that in both gonadally intact and castrated males. When cross-fostered animals are placed in flocks containing members of only their genetic species for 3 years, male social and mating preferences for females of their mother's species remain virtually unaffected. Females change to display an exclusive mating preference for members of their genetic species in 1-2 years although they still retain some social interest in female members of their foster species. Thus, there are clear sex differences in the impact of the emotional bond between a mother and her offspring in these mammals. Effects on males are strongest and irreversibly maintained even after altering their social environment, whereas those on females are weaker and mating preferences are clearly adaptable in the face of altered social priorities. These sex differences are presumably caused by pre-, or early postnatal, organizational effects of sex hormones on the brain.

+view abstract Hormones and behavior, PMID: 11534995

Rolstad B, Naper C, Løvik G, Vaage JT, Ryan JC, Bäckman-Petersson E, Kirsch RD, Butcher GW Immunology

Rat natural killer (NK) cells recognize MHC-I molecules encoded by both the classical (RT1-A) and non-classical (RT1-C/E/M) MHC class I (MHC-I) regions. We have identified a receptor, the STOK2 antigen, which belongs to the Ly-49 family of killer cell lectin-like receptors, and we have localized the gene encoding it to the rat natural killer cell gene complex. We have also shown that it inhibits NK cytotoxicity when recognizing its cognate MHC-I ligand RT1-A1c on a target cell. This is the first inhibitory Ly-49-MHC-I interaction identified in the rat and highlights the great similarity between rat and mouse Ly-49 receptors and their MHC ligands. However, the mode of rat NK-cell recognition of target cells indicates that positive recognition of allo-MHC determinants, especially those encoded by the RT1-C/E/M region, is a prevalent feature. NK cells recruited to the peritoneum as a consequence of alloimmunization display positive recognition of allodeterminants. In one case, NK cells activated in this way have been shown to be specific for the immunizing, non-classical class I molecule RT1-Eu. These findings show that allospecific NK cells sometimes show features reminiscent of the adaptive immune response.

+view abstract Immunological reviews, PMID: 11513136 2001

He M, Taussig MJ

We describe a format for production of protein arrays termed 'protein in situ array' (PISA). A PISA is rapidly generated in one step directly from PCR-generated DNA fragments by cell-free protein expression and in situ immobilisation at a surface. The template for expression is DNA encoding individual proteins or domains, which is produced by PCR using primers designed from information in DNA databases. Coupled transcription and translation is carried out on a surface to which the tagged protein adheres as soon as it is synthesised. Because proteins generated by cell-free synthesis are usually soluble and functional, this method can overcome problems of insolubility or degradation associated with bacterial expression of recombinant proteins. Moreover, the use of PCR-generated DNA enables rapid production of proteins or domains based on genome information alone and will be particularly useful where cloned material is not available. Here we show that human single-chain antibody fragments (three domain, V(H)/K form) and an enzyme (luciferase) can be functionally arrayed by the PISA method.

+view abstract Nucleic acids research, PMID: 11470888

CD Ellson, S Gobert-Gosse, KE Anderson, K Davidson, H Erdjument-Bromage, P Tempst, JW Thuring, MA Cooper, ZY Lim, AB Holmes, PR Gaffney, J Coadwell, ER Chilvers, PT Hawkins, LR Stephens Signalling

The production of reactive oxygen species (ROS) by neutrophils has a vital role in defence against a range of infectious agents, and is driven by the assembly of a multi-protein complex containing a minimal core of five proteins: the two membrane-bound subunits of cytochrome b(558) (gp91(phox) and p22(phox)) and three soluble factors (GTP-Rac, p47(phox) and p67(phox) (refs 1, 2). This minimal complex can reconstitute ROS formation in vitro in the presence of non-physiological amphiphiles such as SDS. p40(phox) has subsequently been discovered as a binding partner for p67(phox) (ref. 3), but its role in ROS formation is unclear. Phosphoinositide-3-OH kinases (PI(3)Ks) have been implicated in the intracellular signalling pathways coordinating ROS formation but through an unknown mechanism. We show that the addition of p40(phox) to the minimal core complex allows a lipid product of PI(3)Ks, phosphatidylinositol 3-phosphate (PtdIns(3)P), to stimulate specifically the formation of ROS. This effect was mediated by binding of PtdIns(3)P to the PX domain of p40(phox). These results offer new insights into the roles for PI(3)Ks and p40(phox) in ROS formation and define a cellular ligand for the orphan PX domain.

+view abstract Nature cell biology, PMID: 11433301 2001

Stevens J, Joly E, Trowsdale J, Butcher GW Immunology

Increasing evidence suggests that the effect of HLA-E on Natural Killer (NK) cell activity can be affected by the nature of the peptides bound to this non-classical, MHC class Ib molecule. However, its reduced cell surface expression, and until recently, the lack of specific monoclonal antibodies hinder studying the peptide-binding specificity HLA-E.

+view abstract BMC immunology, PMID: 11432755 2001

Colucci F, Rosmaraki E, Bregenholt S, Samson SI, Di Bartolo V, Turner M, Vanes L, Tybulewicz V, Di Santo JP Immunology

The product of the protooncogene Vav1 participates in multiple signaling pathways and is a critical regulator of antigen-receptor signaling in B and T lymphocytes, but its role during in vivo natural killer (NK) cell differentiation is not known. Here we have studied NK cell development in Vav1-/- mice and found that, in contrast to T and NK-T cells, the absolute numbers of phenotypically mature NK cells were not reduced. Vav1-/- mice produced normal amounts of interferon (IFN)-gamma in response to Listeria monocytogenes and controlled early infection but showed reduced tumor clearance in vivo. In vitro stimulation of surface receptors in Vav1-/- NK cells resulted in normal IFN-gamma production but reduced tumor cell lysis. Vav1 was found to control activation of extracellular signal-regulated kinases and exocytosis of cytotoxic granules. In contrast, conjugate formation appeared to be only mildly affected, and calcium mobilization was normal in Vav1-/- NK cells. These results highlight fundamental differences between proximal signaling events in T and NK cells and suggest a functional dichotomy for Vav1 in NK cells: a role in cytotoxicity but not for IFN-gamma production.

+view abstract The Journal of experimental medicine, PMID: 11413196 2001

Doody GM, Bell SE, Vigorito E, Clayton E, McAdam S, Tooze R, Fernandez C, Lee IJ, Turner M Immunology

B and T lymphocytes develop normally in mice lacking the guanine nucleotide exchange factor Vav-2. However, the immune responses to type II thymus-independent antigen as well as the primary response to thymus-dependent (TD) antigen are defective. Vav-2-deficient mice are also defective in their ability to switch immunoglobulin class, form germinal centers and generate secondary immune responses to TD antigens. Mice lacking both Vav-1 and Vav-2 contain reduced numbers of B lymphocytes and display a maturational block in the development of mature B cells. B cells from Vav-1(-/-)Vav-2(-/-) mice respond poorly to antigen receptor triggering, both in terms of proliferation and calcium release. These studies show the importance of Vav-2 in humoral immune responses and B cell maturation.

+view abstract Nature immunology, PMID: 11376342 2001

Deverson EV, Powis SJ, Morrice NA, Herberg JA, Trowsdale J, Butcher GW Immunology

During the assembly of major histocompatibility complex (MHC) class I molecules transient associations are formed with the endoplasmic reticulum resident chaperones calnexin and calreticulin, ERp57 oxidoreductase, and also with tapasin, the latter mediating binding of the class I molecules to the transporter associated with antigen processing (TAP). We report here the isolation of a cDNA encoding rat tapasin from a DA (RT1av1) library. The cDNA encodes a proline-rich (11.3%) polypeptide of 464 residues with a potential ER-retention KK motif at its COOH-terminus, and a predicted molecular mass of 48 kDa. Matrix-assisted laser-desorption ionisation (MALDI) mass spectrometry of peptides derived from in-gel tryptic digestion of a TAP-associated protein match regions of the predicted translation product. A species of the correct molecular mass and predicted pl was also identified in association with radiolabelled immunoprecipitates of the rat TAP complex analysed by two-dimensional gel electrophoresis. This confirms rat tapasin as a component of the rat MHC class I assembly complex.

+view abstract Genes and immunity, PMID: 11294569 2001

Speir JA, Stevens J, Joly E, Butcher GW, Wilson IA Immunology

The rat MHC class Ia molecule RT1-Aa has the unusual capacity to bind long peptides ending in arginine, such as MTF-E, a thirteen-residue, maternally transmitted minor histocompatibility antigen. The antigenic structure of MTF-E was unpredictable due to its extraordinary length and two arginines that could serve as potential anchor residues. The crystal structure of RT1-Aa-MTF-E at 2.55 A shows that both peptide termini are anchored, as in other class I molecules, but the central residues in two independent pMHC complexes adopt completely different bulged conformations based on local environment. The MTF-E epitope is fully exposed within the putative T cell receptor (TCR) footprint. The flexibility demonstrated by the MTF-E structures illustrates how different TCRs may be raised against chemically identical, but structurally dissimilar, pMHC complexes.

+view abstract Immunity, PMID: 11163232 2001

Clayton E, McAdam S, Coadwell J, Chantry D, Turner M Immunology

Phosphatidylinositol 3-kinases are a family of dual specificity lipid/protein kinases. The products of PI3K's, phosphatidylinositol(3,4,5) triphosphate and phosphatidylinositol(3,4) bisphosphate, act as second messengers connecting activated transmembrane receptors to signaling pathways that control gene transcription, proliferation, transformation, programmed cell death, adhesion, migration and vesicular transport. There is evidence that different isoforms of PI3K's activate specific signaling pathways and are thus responsible for integrating cellular responses. The elucidation of the genomic structure of the catalytic subunits is a necessary step for the investigation of the function of PI3K isoforms by inactivation of the gene in vivo. The structural organization of p110alpha, beta, and gamma genes has been previously reported. Here we report the cloning, sequencing, and structural organization of the mouse p110delta gene from a murine 129/Sv genomic library. The p110delta gene consists of 22 exons and spans over 13 kb. Comparison of the genomic structure with that of p110alpha, beta, and gamma demonstrates that the p110delta gene shares its exon structure with p110beta, the most closely related PI3K at the amino acid level.

+view abstract Biochemical and biophysical research communications, PMID: 11162674 2001

F Hannan, PD Evans

The cDNA of a type 1 ADP-ribosylation factor (ARF) from the desert locust, Locusta migratoria was cloned, sequenced and compared to ARF1 genes of other species. The locust ARF1 protein is 100% identical with the ARF1 protein of the fruit fly Drosophila melanogaster even though the DNA sequences are only 79% identical. The significance of this finding in relation to the considerable evolutionary distance between hemimetabolous and holometabolous insects is discussed.

+view abstract Insect molecular biology, PMID: 11122465 2000

Doody GM, Billadeau DD, Clayton E, Hutchings A, Berland R, McAdam S, Leibson PJ, Turner M Immunology

We show here that Vav-2 is tyrosine phosphorylated following antigen receptor engagement in both B- and T-cells, but potentiates nuclear factor of activated T cells (NFAT)-dependent transcription only in B cells. Vav-2 function requires the N-terminus, as well as functional Dbl homology and SH2 domains. More over, the enhancement of NFAT-dependent transcription by Vav-2 can be inhibited by a number of dominant-negative GTPases. The ability of Vav-2 to potentiate NFAT-dependent transcription correlates with its ability to promote a sustained calcium flux. Thus, Vav-2 augments the calcium signal in B cells but not T cells, and a truncated form of Vav-2 can neither activate NFAT nor augment calcium signaling. The CD19 co-receptor physically interacts with Vav-2 and synergistically enhances Vav-2 phosphorylation induced by the B-cell receptor (BCR). In addition, we found that Vav-2 augments CD19-stimulated NFAT- dependent transcription, as well as transcription from the CD5 enhancer. These data suggest a role for Vav-2 in transducing BCR signals to the transcription factor NFAT and implicate Vav-2 in the integration of BCR and CD19 signaling.

+view abstract The EMBO journal, PMID: 11080163 2000

JE Rudling, J Richardson, PD Evans

The agonist-specific coupling properties of the three cloned human alpha(2)-adrenoceptor subtypes have been compared, when expressed at similar levels in Chinese hamster ovary (CHO) cell lines, using noradrenaline and (+/-)-meta-octopamine as agonists. Noradrenaline can couple the receptor to both the inhibition and stimulation of forskolin-stimulated cyclic AMP production in all three receptor subtypes, with the relative strength of the coupling to the pathways varying for each of the receptor subtypes. meta-Octopamine selectively couples the alpha(2A)-adrenoceptor only to the inhibition of forskolin-stimulated cyclic AMP production. However, meta-octopamine couples the alpha(2B)- and alpha(2C)-adrenoceptors to both the inhibition and stimulation of forskolin-stimulated cyclic AMP production. The relative potency of meta-octopamine to noradrenaline varies between the different alpha(2)-adrenoceptor subtypes. The effects of meta-octopamine are around two orders of magnitude less potent than those of noradrenaline on both the alpha(2A)- and alpha(2B)-adrenoceptor subtypes. In contrast, in the case of the alpha(2C)-adrenoceptor, meta-octopamine is only one order of magnitude less potent than noradrenaline in the stimulation of forskolin-stimulated cyclic AMP production and, in addition, is equipotent with noradrenaline in the inhibition of forskolin-stimulated cyclic AMP production and has an increased maximal response. This raises the possibility that meta-octopamine may have physiologically important actions via alpha(2C)-adrenoceptors in vivo. The results show that the modulation of cyclic AMP production occurs in both a subtype- and agonist-specific manner for alpha(2A)-adrenoceptors and in a subtype specific manner for alpha(2B)- and alpha(2C)-adrenoceptors.

+view abstract British journal of pharmacology, PMID: 11053214 2000

Baker M, Gamble J, Tooze R, Higgins D, Yang FT, O'Brien PC, Coleman N, Pingel S, Turner M, Alexander DR Immunology

The CD45 tyrosine phosphatase lowers T-cell antigen receptor signalling thresholds by its positive actions on p56(lck) tyrosine kinase function. We now show that mice expressing active lck(F505) at non-oncogenic levels develop aggressive thymic lymphomas on a CD45(-/-) background. CD45 suppresses the tumorigenic potential of the kinase by dephosphorylation of the Tyr394 autophosphorylation site. In CD45(-/-) thymocytes the kinase is switched to a hyperactive oncogenic state, resulting in increased resistance to apoptosis. Transformation occurs in early CD4(-)CD8(-) thymocytes during the process of TCR-beta chain rearrangement by a recombinase-independent mechanism. Our findings represent the first example in which a tyrosine phosphatase in situ prevents the oncogenic actions of a SRC: family tyrosine kinase.

+view abstract The EMBO journal, PMID: 10970857 2000

Stevens J, Jones RC, Bordoli RS, Trowsdale J, Gaskell SJ, Butcher GW, Joly E Immunology

The rat major histocompatibility complex class Ia allelomorph RT1-A1(c) is a potent ligand for the recently identified inhibitory rLy-49 receptor, STOK-2. With the ultimate objective of studying the interactions of these molecules using structural and functional methods, we undertook a detailed study of its peptide specificity. The study revealed that designing an "ideal peptide" by choosing the most abundant residues in the "binding motif" obtained by pool sequencing does not necessarily yield an optimal binding peptide. For RT1-A1(c), as many as four positions, P2, P4, P5, and P9, were detected as putative anchors. Since this molecule displays a preference for highly hydrophobic peptides, we tested binding of peptides derived from the known leader peptide sequences of other rat histocompatibility complex class I molecules. One such peptide, found to bind well, requiring 1.6 microm peptide to achieve 50% stabilization, was searched for in vivo. Natural RT1-A1(c) binding peptides were purified from rat splenocytes and characterized by mass spectrometry using a combined matrix-assisted laser desorption ionization/time-of-flight and quadrupole time-of-flight approach. Results showed that the signal sequence-derived peptide was not detectable in the purified peptide pool, which was composed of a complex spectrum of peptides. Seven of these self-peptides were successfully sequenced.

+view abstract The Journal of biological chemistry, PMID: 10856297 2000

Bäckman-Petersson E, Butcher GW, Hedlund G Immunology

We have previously shown activation of NK cells via recognition of an allogeneic, non-classical MHC class I molecule, RT1-E(u). In this study we investigated whether a self-MHC class I molecule could protect the allogeneic targets from being recognized and killed by the alloreactive NK (allo NK) cells. NK cells from BN (RT1 n) rats, primed in vivo by immunization with RT1(u)-expressing cells, manifested cytolytic activity against RT1(u)- as well as RT1(u/lv1)-expressing targets, but not against RT1(u/n)-expressing targets. The absence of cytolytic activity against semiallogeneic targets, i.e. targets expressing self-allotypes, was also valid for allo NK cells from alloimmunized F344 (RT1 (lv1)) rats. To analyze the ability of a distinct MHC class I molecule to protect target cells from NK lysis, Rat2 cells transfected with the activating allogeneic MHC class Ib, RT1-E(u) molecule were also transfected with the self-MHC class Ia, RT1-A1(n) molecule. The allo NK cells from BN rats immunized with RT1(u)-expressing cells were cytolytic against Rat2 transfected with the RT1-E(u) molecule. However, the allo NK cells manifested no cytolytic activity against double-transfected Rat2 cells, expressing the RT1-E(u) as well as the RT1-A1(n) molecule. We conclude that expression of a self-MHC class Ia (RT1-A) molecule protects targets from allo NK killing. Furthermore, the NK inhibition via recognition of the self-MHC class Ia molecule dominates over the activation via recognition of the allogeneic MHC class Ib molecule, RT1-E.

+view abstract International immunology, PMID: 10837412 2000

Forsyth IA, Hutchings A, Butcher GW Immunology

A panel of 11 rat monoclonal antibodies (mAbs) has been raised to ovine placental lactogen (PL). By competitive enzyme-linked immunoabsorbent assay (ELISA), confirmed by two-site ELISA, the antibodies were shown to recognize six antigenic determinants on the ovine PL molecule, two of which overlap. One antigenic determinant (designated 1) was shared by other members of the prolactin/growth hormone (GH)/PL family in ruminants, humans and rodents. The binding of (125)I-labelled ovine PL to crude receptor preparations from sheep liver (somatotrophic) or rabbit mammary gland (lactogenic) was inhibited by mAbs recognizing antigenic determinants 2-6. Both types of receptor preparation were affected similarly. In the local in vivo pigeon crop sac assay, mAbs directed against determinants 3 and 6 enhanced the biological activity of ovine PL.

+view abstract The Journal of endocrinology, PMID: 10810307 2000