Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

YM Yang, TJ Barankiewicz, M He, MJ Taussig, SS Chen

Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (Ckappa) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes on either GFP (5') or Ckappa (3') were selected by anti-GFP or anti-Ckappa antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10fg of the 1kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins.

+view abstract Biochemical and biophysical research communications, PMID: 17537405 2007

DJ Bolland, AL Wood, R Afshar, K Featherstone, EM Oltz, AE Corcoran

V(D)J recombination is believed to be regulated by alterations in chromatin accessibility to the recombinase machinery, but the mechanisms responsible remain unclear. We previously proposed that antisense intergenic transcription, activated throughout the mouse Igh VH region in pro-B cells, remodels chromatin for VH-to-DJH recombination. Using RNA fluorescence in situ hybridization, we now show that antisense intergenic transcription occurs throughout the Igh DHJH region before D-to-J recombination, indicating that this is a widespread process in V(D)J recombination. Transcription initiates near the Igh intronic enhancer Emu and is abrogated in mice lacking this enhancer, indicating that Emu regulates DH antisense transcription. Emu was recently demonstrated to regulate DH-to-JH recombination of the Igh locus. Together, these data suggest that Emu controls DH-to-JH recombination by activating this form of germ line Igh transcription, thus providing a long-range, processive mechanism by which Emu can regulate chromatin accessibility throughout the DH region. In contrast, Emu deletion has no effect on VH antisense intergenic transcription, which is rarely associated with DH antisense transcription, suggesting differential regulation and separate roles for these processes at sequential stages of V(D)J recombination. These results support a directive role for antisense intergenic transcription in enabling access to the recombination machinery.

+view abstract Molecular and cellular biology, PMID: 17526723 2007

KE Ewings, K Hadfield-Moorhouse, CM Wiggins, JA Wickenden, K Balmanno, R Gilley, K Degenhardt, E White, SJ Cook Signalling

The proapoptotic protein Bim is expressed de novo following withdrawal of serum survival factors. Here, we show that Bim-/- fibroblasts and epithelial cells exhibit reduced cell death following serum withdrawal in comparison with their wild-type counterparts. In viable cells, Bax associates with Bcl-2, Bcl-x(L) and Mcl-1. Upon serum withdrawal, newly expressed Bim(EL) associates with Bcl-x(L) and Mcl-1, coinciding with the dissociation of Bax from these proteins. Survival factors can prevent association of Bim with pro-survival proteins by preventing Bim expression. However, we now show that even preformed Bim(EL)/Mcl-1 and Bim(EL)/Bcl-x(L) complexes can be rapidly dissociated following activation of ERK1/2 by survival factors. The dissociation of Bim from Mcl-1 is specific for Bim(EL) and requires ERK1/2-dependent phosphorylation of Bim(EL) at Ser(65). Finally, ERK1/2-dependent dissociation of Bim(EL) from Mcl-1 and Bcl-x(L) may play a role in regulating Bim(EL) degradation, since mutations in the Bim(EL) BH3 domain that disrupt binding to Mcl-1 cause increased turnover of Bim(EL). These results provide new insights into the role of Bim in cell death and its regulation by the ERK1/2 survival pathway.

+view abstract The EMBO journal, PMID: 17525735 2007

W Reik Epigenetics

During development, cells start in a pluripotent state, from which they can differentiate into many cell types, and progressively develop a narrower potential. Their gene-expression programmes become more defined, restricted and, potentially, 'locked in'. Pluripotent stem cells express genes that encode a set of core transcription factors, while genes that are required later in development are repressed by histone marks, which confer short-term, and therefore flexible, epigenetic silencing. By contrast, the methylation of DNA confers long-term epigenetic silencing of particular sequences--transposons, imprinted genes and pluripotency-associated genes--in somatic cells. Long-term silencing can be reprogrammed by demethylation of DNA, and this process might involve DNA repair. It is not known whether any of the epigenetic marks has a primary role in determining cell and lineage commitment during development.

+view abstract Nature, PMID: 17522676 2007

P Fraser, W Bickmore

Much work has been published on the cis-regulatory elements that affect gene function locally, as well as on the biochemistry of the transcription factors and chromatin- and histone-modifying complexes that influence gene expression. However, surprisingly little information is available about how these components are organized within the three-dimensional space of the nucleus. Technological advances are now helping to identify the spatial relationships and interactions of genes and regulatory elements in the nucleus and are revealing an unexpectedly extensive network of communication within and between chromosomes. A crucial unresolved issue is the extent to which this organization affects gene function, rather than just reflecting it.

+view abstract Nature, PMID: 17522674 2007

Foley DA, Sharpe HJ, Otte S Signalling

Secretory proteins are transported from the endoplasmic reticulum to the Golgi apparatus via COPII-coated intermediates. Yeast Erv29p is a transmembrane protein cycling between these compartments. It is conserved across species, with one ortholog found in each genome studied, including the surf-4 protein in mammals. Yeast Erv29p acts as a receptor, loading a specific subset of soluble cargo, including glycosylated alpha factor pheromone precursor and carboxypeptidase Y, into vesicles. As the eukaryotic secretory pathway is highly conserved, mammalian surf-4 may perform a similar role in the transport of unknown substrates. Here we report the membrane topology of yeast Erv29p, which we solved by minimally invasive cysteine accessibility scanning using thiol-specific biotinylation and fluorescent labeling methods. Erv29p contains four transmembrane domains with both termini exposed to the cytosol. Two luminal loops may contain a recognition site for hydrophobic export signals on soluble cargo.

+view abstract Molecular membrane biology, PMID: 17520482 0

SL Lambourne, T Humby, AR Isles, PC Emson, MG Spillantini, LS Wilkinson

Abnormalities in microtubule-associated tau protein are a key neuropathological feature of both Alzheimer's disease and many frontotemporal dementias (FTDs), including hereditary FTD with Parkinsonism linked to chromosome 17 (FTDP-17). In these disorders, tau becomes aberrantly phosphorylated, leading to the development of filamentous neurofibrillary tangles in the brain. Here we report, in a longitudinal ageing study, the sensorimotor and cognitive assessment of transgenic mice expressing the human tau(V337M) ('Seattle Family A') FTDP-17 mutation, which we have previously shown to demonstrate abnormalities in brain tau phosphorylation. The data indicated highly specific effects of transgene expression on the ability to withhold responding in a murine version of the 5-choice serial reaction time task, behaviour consistent with deficits in impulse control. Ageing exacerbated these effects. In young tau(V337M) mice, increased impulsivity was present under task conditions making inhibition of premature responding more difficult (longer inter-trial intervals) but not under baseline conditions. However, when older, the tau(V337M) mice showed further increases in premature responding, including under baseline conditions. These impulse control deficits were fully dissociable from sensorimotor or motivation effects on performance. The findings recapitulate core abnormalities in impulsive responding observed in both frontal variant FTD and FTDP-17 linked to the tau(V337M) mutation in humans.

+view abstract Human molecular genetics, PMID: 17517691 2007

S Higashi, S Biskup, AB West, D Trinkaus, VL Dawson, RL Faull, HJ Waldvogel, H Arai, TM Dawson, DJ Moore, PC Emson

Mutations in the LRRK2 gene cause autosomal dominant, late-onset parkinsonism, which presents with pleomorphic pathology including alpha-synucleopathy. To promote our understanding of the biological role of LRRK2 in the brain we examined the distribution of LRRK2 mRNA and protein in postmortem human brain tissue from normal and neuropathological subjects. In situ hybridization and immunohistochemical analysis demonstrate the expression and localization of LRRK2 to various neuronal populations in brain regions implicated in Parkinson's disease (PD) including the cerebral cortex, caudate-putamen and substantia nigra pars compacta. Immunofluorescent double labeling studies additionally reveal the prominent localization of LRRK2 to cholinergic-, calretinin- and GABA(B) receptor 1-positive, dopamine-innervated, neuronal subtypes in the caudate-putamen. The distribution of LRRK2 in brain tissue from sporadic PD and dementia with Lewy bodies (DLB) subjects was also examined. In PD brains, LRRK2 immunoreactivity localized to nigral neuronal processes is dramatically reduced which reflects the disease-associated loss of dopaminergic neurons in this region. However, surviving nigral neurons occasionally exhibit LRRK2 immunostaining of the halo structure of Lewy bodies. Moreover, LRRK2 immunoreactivity is not associated with Lewy neurites or with cortical Lewy bodies in sporadic PD and DLB brains. These observations indicate that LRRK2 is not a primary component of Lewy bodies and does not co-localize with mature fibrillar alpha-synuclein to a significant extent. The localization of LRRK2 to key neuronal populations throughout the nigrostriatal dopaminergic pathway is consistent with the involvement of LRRK2 in the molecular pathogenesis of familial and sporadic parkinsonism.

+view abstract Brain research, PMID: 17512502 2007

CR Quilter, SC Blott, AE Wilson, MR Bagga, CA Sargent, GL Oliver, OI Southwood, CL Gilbert, A Mileham, NA Affara

Childbirth is a period of substantial rapid biological and psychological change and a wide range of psychotic disorders can occur ranging from mild 'baby blues' to severe episodes of psychotic illnesses. Puerperal psychosis is the most extreme form of postnatal psychosis, occurring in 1 in 1,000 births. In this study, we have used the pig as an animal model for human postnatal psychiatric illness. Our aim was to identify quantitative trait loci (QTL) associated with maternal (infanticide) sow aggression. This is defined by sows attacking and killing their own newborn offspring, within 24 hr of birth. An affected sib pair whole genome linkage analysis was carried out with 80 microsatellite markers covering the 18 porcine autosomes and the X chromosome, with the aim of identifying chromosomal regions responsible for this abnormal behavior. Analysis was carried out using the non-parametric linkage test of Whittemore and Halpern, as implemented in the Merlin software. The results identified 4 QTL mapping on Sus scrofa chromosomes 2 (SSC2), 10 (SSC10), and X (SSCX). The peak regions of these QTL are syntenic to HSA 5q14.3-15, 1q32, Xpter-Xp2.1, and Xq2.4-Xqter, respectively. Several potential candidate genes lie in these regions in addition to relevant abnormal behavioral QTL, found in humans and rodents.

+view abstract American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics, PMID: 17503476 2007

A Saudemont, A Hamrouni, P Marchetti, J Liu, N Jouy, D Hetuin, F Colucci, B Quesnel

In the BCR/ABL DA1-3b mouse model of acute myelogenous leukemia, dormant tumor cells may persist in the host in a state of equilibrium with the CD8(+) CTL-mediated immune response by actively inhibiting T cells. Dormant tumor cells also show a progressive decrease of suppressor of cytokine signaling 1 (SOCS1) gene expression and a deregulation of the Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) pathway due to methylation of the SOCS1 gene. Dormant tumor cells were more resistant to apoptosis induced by specific CTLs, but resistance decreased when SOCS1 expression was restored via demethylation or gene transfer. AG490 JAK2 inhibitor decreased the resistance of dormant tumor cells to CTLs, but MG132 proteasome inhibitor was effective only in SOCS1-transfected cells. Thus, SOCS1 regulation of the JAK/STAT pathways contributes to the resistance of tumor cells to CTL-mediated killing. Resistance of dormant tumor cells to apoptosis was also observed when induced by irradiation, cytarabine, or imatinib mesylate, but was reduced by SOCS1 gene transfer. This cross-resistance to apoptosis was induced by interleukin 3 (IL-3) overproduction by dormant tumor cells and was reversed with an anti-IL-3 antibody. Thus, tumor cells that remain dormant for long periods in the host in spite of a specific CTL immune response may deregulate their JAK/STAT pathways and develop cross-resistance to various treatments through an IL-3 autocrine loop. These data suggest possible new therapeutic targets to eradicate dormant tumor cells.

+view abstract Cancer research, PMID: 17483365 2007

D Gaboriau, EA Howes, J Clark, R Jones

Specific binding of spermatozoa to the zona pellucida that surrounds mammalian eggs is a key step in the fertilization process. However, the sperm proteins that recognise zona pellucida receptors remain contentious despite longstanding research efforts to identify them. Here we present evidence that proacrosin, a tissue-specific protein found within the acrosomal vesicle of all mammalian spermatozoa, is a multifunctional protein that mediates binding of acrosome-reacted spermatozoa to zona glycoproteins via a stereospecific polysulfate recognition mechanism. Using sulfated versus non-sulfated forms of chemically defined compounds in binding assays employing native proteins in their normal cellular location or conjugated to FluoSpheres, we have attempted to identify the sulfation "code" required for recognition. Results show that protein conformation is important for specificity and that at least 2 sulfate groups are required to cross-link spatially separated docking sites on proacrosin. The consistently most effective inhibitory compounds were suramin and quercetin-3beta-d-glucoside sulfate. The results support our hypothesis that proacrosin is one of several proteins in the acrosomal matrix that retain acrosome reacted spermatozoa on the zona surface prior to penetration. They also establish, as a proof-of-principle, the feasibility of synthesising sulfated compounds of high specificity as antifertility agents for human or animal use.

+view abstract Developmental biology, PMID: 17482590 2007

FM Marelli-Berg, K Okkenhaug, V Mirenda Immunology

T-cell-receptor triggering and the delivery of co-stimulation are essential events leading to T cell expansion, differentiation and effector function. The influence that such signals exert on T cell migration during and following priming has been highlighted by recent reports. Moreover, induction of peripheral tolerance might act in part by affecting T cell migration. Here, we propose that the integration of co-stimulatory signals, which regulate the ability of primed T cells to access nonlymphoid tissue, and cognate recognition of the endothelium, which determines the selective recruitment of specific T cells, contribute to the anatomy of T cell-mediated immunity and tolerance. The implications for therapeutic strategies manipulating these signals are discussed.

+view abstract Trends in immunology, PMID: 17481953 2007

A Rodriguez, E Vigorito, S Clare, MV Warren, P Couttet, DR Soond, S van Dongen, RJ Grocock, PP Das, EA Miska, D Vetrie, K Okkenhaug, AJ Enright, G Dougan, M Turner, A Bradley Immunology

MicroRNAs are a class of small RNAs that are increasingly being recognized as important regulators of gene expression. Although hundreds of microRNAs are present in the mammalian genome, genetic studies addressing their physiological roles are at an early stage. We have shown that mice deficient for bic/microRNA-155 are immunodeficient and display increased lung airway remodeling. We demonstrate a requirement of bic/microRNA-155 for the function of B and T lymphocytes and dendritic cells. Transcriptome analysis of bic/microRNA-155-deficient CD4+ T cells identified a wide spectrum of microRNA-155-regulated genes, including cytokines, chemokines, and transcription factors. Our work suggests that bic/microRNA-155 plays a key role in the homeostasis and function of the immune system.

+view abstract Science (New York, N.Y.), PMID: 17463290 2007

AV Probst, F Santos, W Reik, G Almouzni, W Dean Epigenetics

In mammals, paternal and maternal pronuclei undergo profound chromatin reorganisation upon fertilisation. How these events are orchestrated within centromeric regions to ensure proper chromosome segregation in the following cellular divisions is unknown. In this study, we followed the dynamic unfolding of the centromeric regions, i.e. the centric and pericentric satellite repeats, by DNA fluorescent in situ hybridization (FISH) during the first cell cycle up to the two-cell stage. The distinct chromatin from female and male gametes both undergo rapid remodelling and reach a zygotic organisation in which the satellites occupy restricted spatial domains surrounding the nucleolar precursor body. A transition from this zygotic to a somatic cell-like organisation takes place during the two-cell stage. Using 3D immuno-FISH, we find that, whereas maternal pericentric regions are marked with H3K9me3, H4K20me3 and HP1beta, paternal ones only showed HP1beta marking. Thus, despite different chromatin features, male and female pronuclei organise their centromeric regions in the same way within the nuclei to align chromosomes on the metaphase plate and segregate them appropriately. Our findings highlight the importance of ensuring a proper centromere function while preserving the distinction of parental genome origin during the return to totipotency in the zygote.

+view abstract Chromosoma, PMID: 17447080 2007

RE Colebrooke, PM Chan, PJ Lynch, K Mooslehner, PC Emson

The vesicular monoamine transporter type 2 (VMAT2) packages pre-synaptic monoamines into vesicles. Previously, we generated mice hypomorphic for the VMAT2 gene (Slc18a2), which results in a approximately 95% reduction in VMAT2 protein, disrupted vesicular storage, severe depletion of striatal dopamine and mice with moderate motor behaviour deficits. Dopamine released from mid-brain dopamine neurons acts on post-synaptic type 1 (D1) and 2 (D2) receptors located on striatal medium spiny neurons to initiate a signalling cascade that leads to altered transcription factor activity, gene expression and neuronal activity. We investigated striatal gene expression changes in VMAT2hypo mice by quantitative real-time PCR and in situ hybridisation. Despite unaltered expression of D1 and D2 dopamine receptors, there were dramatic alterations in striatal mRNAs encoding the neuropeptides substance P, dynorphin, enkephalin and cholecystokinin. The promoters of these genes are regulated by a combination of transcription factors that includes cAMP responsive element binding protein-1 (CREB) and c-Fos. Indeed, the changes in peptide mRNAs were associated with elevated expression of Creb1 and c-Fos. These data indicate that striatal dopamine depletion, as a consequence of deficient vesicular storage in this mouse, triggers a complex program of gene expression, consistent with this mouse being an excellent model of Parkinson's disease.

+view abstract Brain research, PMID: 17433807 2007

B Stockinger, M Veldhoen Immunology

IL-17-producing T cells have recently been classified as a new effector T-cell subset, termed Th17, which is distinct from Th1, Th2 and Treg subsets. There has been much progress in the past year, leading to identification of the molecular mechanisms that drive differentiation of Th17 T cells. This has helped to clarify many aspects of their role in host defense as well as in autoimmunity. Nevertheless, many intriguing questions remain to be answered regarding the regulation of Th17-mediated responses as well as their interactions with the other T-cell subsets. Furthermore, the role of pathogens and pathogen-derived molecules in influencing effector T-cell polarization needs to be re-evaluated in the light of the differentiation conditions that favor Th17 T-cell responses.

+view abstract Current opinion in immunology, PMID: 17433650 2007

E Galkina, O Florey, A Zarbock, BR Smith, G Preece, MB Lawrence, DO Haskard, A Ager Signalling

L-selectin mediates tethering and rolling of lymphocytes in high endothelial venules (HEV) of lymph nodes (LN) and of leukocytes at inflammatory sites. We used transgenic mice expressing varying levels of wild-type or a non-cleavable mutant form of L-selectin on T cells to determine the relationship between L-selectin density, tethering and rolling, and migration into LN. T cells expressing supraphysiological levels of either wild-type or non-cleavable L-selectin showed rolling parameters similar to C57BL/6 T cells in hydrodynamic flow assays and during rolling in Peyer's patch HEV. In contrast, PMA- or antigen-activated T cells and L-selectin(+/-) T cells expressing subphysiological levels of L-selectin showed reduced numbers of rolling cells with increased rolling velocity. Short-term homing studies showed that elevated expression of L-selectin above physiological levels had no effect on T cell migration to LN; however, low L-selectin expression resulted in reduced T cell homing to LN. Thus, T lymphocyte migration into LN is regulated by the density of cell surface L-selectin. In addition, there is a saturable density of L-selectin required for optimal homing to PLN in C57BL/6 mice, the L-selectin level on circulating naive T cells promotes optimal homing, and increased expression above saturating levels promotes no further increase in T cell recruitment.

+view abstract European journal of immunology, PMID: 17429841 2007

S Duquerroy, EA Stura, S Bressanelli, SM Fabiane, MC Vaney, D Beale, M Hamon, P Casali, FA Rey, BJ Sutton, MJ Taussig

Rheumatoid factors (RF) are autoantibodies that recognize epitopes in the Fc region of immunoglobulin (Ig) G and that correlate with the clinical severity of rheumatoid arthritis (RA). Here we report the X-ray crystallographic structure, at 3 A resolution, of a complex between the Fc region of human IgG1 and the Fab fragment of a monoclonal IgM RF (RF61), derived from an RA patient and with a relatively high affinity for IgG Fc. In the complex, two Fab fragments bind to each Fc at epitopes close to the C terminus, and each epitope comprises residues from both Cgamma3 domains. A central role in the unusually hydrophilic epitope is played by the side-chain of Arg355, accounting for the subclass specificity of RF61, which recognizes IgG1,-2, and -3 in preference to IgG4, in which the corresponding residue is Gln355. Compared with a previously determined complex of a lower affinity RF (RF-AN) bound to IgG4 Fc, in which only residues at the very edge of the antibody combining site were involved in binding, the epitope bound by RF61 is centered in classic fashion on the axis of the V(H):V(L) beta-barrel. The complementarity determining region-H3 loop plays a key role, forming a pocket in which Arg355 is bound by two salt-bridges. The antibody contacts also involve two somatically mutated V(H) residues, reinforcing the suggestion of a process of antigen-driven maturation and selection for IgG Fc during the generation of this RF autoantibody.

+view abstract Journal of molecular biology, PMID: 17395205 2007

Liston A, Siggs OM, Goodnow CC Immunology

Genetic variants of interleukin 2 (IL-2) and its receptor are associated with murine and human susceptibility to Type 1 diabetes, yet the role of IL-2 in controlling pancreatic islet-reactive T cells is unknown. Here, we develop a model where IL-2 deficiency precipitates a breakdown of self-tolerance and progression to diabetes, and its action upon diabetogenic islet-specific CD4 T cells can be tracked. We find that IL-2 is not required for Aire-dependent thymic clonal deletion of high-avidity diabetogenic clones, but is essential for thymic formation of islet-specific Foxp3-expressing CD4 T cells. The absence of IL-2 results in the expansion of low-avidity Foxp3(-) islet-reactive CD4 T cells. The mechanism by which IL-2 prevents diabetes is therefore through the establishment of a repertoire of islet-reactive Foxp3(+) T cells within the thymus, and limitation of the peripheral activation of low-avidity islet-reactive T cells that normally escape thymic negative selection.

+view abstract Immunology and cell biology, PMID: 17372610 2007

A Saudemont, K Okkenhaug, F Colucci Immunology

NK cell (natural killer cells) are lymphocytes of innate immunity that kill tumour cells and respond to infections, without prior stimulation. A balance of activating and inhibitory signals regulates NK cell cytotoxicity, but the molecular mechanisms are not fully understood. General inhibitors of PI3K (phosphoinositide 3-kinase) suppress cytotoxicity in human and mouse NK cells. However, which isoforms and how they regulate NK cell activation is unknown, and no data have been published on mice carrying PI3K mutations. p110delta expression is restricted to leucocytes, where it plays central roles in lymphocyte development and signalling. We have used mice carrying a catalytically inactive mutant form of p110delta in order to determine its role in NK cell biology. We show here that p110delta is not required to kill tumour cells, but unexpectedly p110delta mutant mice failed to fully reject transplanted lymphomas. Our results show for the first time a critical role for p110delta in NK cell biology in vivo.

+view abstract Biochemical Society transactions, PMID: 17371233 2007

DT Patton, F Garçon, K Okkenhaug Immunology

PI3Ks (phosphoinositide 3-kinases) regulate diverse cellular functions such as metabolism, growth, gene expression and migration. The p110delta isoform of PI3K is mainly expressed in cells of the immune system and contributes to cellular and humoral immunity. In the thymus, p110delta and p110gamma play complementary roles in regulating the transition through key developmental checkpoints. In addition, p110delta regulates the differentiation of peripheral Th (helper T-cells) towards the Th1 and Th2 lineages. Moreover, p110delta is critical for Treg (regulatory T-cell) function. Here, we review the role of PI3Ks in T-cell development and function.

+view abstract Biochemical Society transactions, PMID: 17371229 2007

M Spivakov, AG Fisher

Pluripotent stem cells, similar to more restricted stem cells, are able to both self-renew and generate differentiated progeny. Although this dual functionality has been much studied, the search for molecular signatures of 'stemness' and pluripotency is only now beginning to gather momentum. While the focus of much of this work has been on the transcriptional features of embryonic stem cells, recent studies have indicated the importance of unique epigenetic profiles that keep key developmental genes 'poised' in a repressed but activatable state. Determining how these epigenetic features relate to the transcriptional signatures of ES cells, and whether they are also important in other types of stem cell, is a key challenge for the future.

+view abstract Nature Reviews Genetics, PMID: 17363975 2007

JM Williams, TR Pettitt, W Powell, J Grove, CO Savage, MJ Wakelam Signalling

Patients with certain forms of systematic vasculitis, such as Wegener's granulomatosis, have circulating antineutrophil cytoplasmic antibodies (ANCA). These inappropriately stimulate circulating neutrophils adhere to and thereby obstruct small vessels. This, together with ANCA-induced degranulation and an oxidative burst, leads to local tissue damage. The signaling pathways that are activated by ANCA IgG are distinct from those that are involved in normal neutrophil activation. This study shows that diacylglycerol kinase is selectively activated by ANCA and that the generated phosphatidic acid is responsible for promoting neutrophil adhesion, in part through integrin activation. The data presented point to diacylglycerol kinase alpha as a novel but selective target for the development of drugs to treat this potentially fatal disorder.

+view abstract Journal of the American Society of Nephrology : JASN, PMID: 17360949 2007