Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

KE Bridge, N Berg, R Adalbert, E Babetto, T Dias, MG Spillantini, RR Ribchester, MP Coleman Signalling

Axonal swellings, or spheroids, are a feature of central nervous system (CNS) axon degeneration during normal aging and in many disorders. The direct cause and mechanism are unknown. The use of transgenic mouse line YFP-H, which expresses yellow-fluorescent protein (YFP) in a subset of neurons, greatly facilitates longitudinal imaging and live imaging of axonal swellings, but it has not been established whether long-term expression of YFP itself contributes to axonal swelling. Using conventional methods to compare YFP-H mice with their YFP negative littermates, we found an age-related increase in swellings in discrete CNS regions in both genotypes, but the presence of YFP caused significantly more swellings in mice aged 8 months or over. Increased swelling was found in gracile tract, gracile nucleus and dorsal roots but not in lateral columns, olfactory bulb, motor cortex, ventral roots or peripheral nerve. Thus, long-term expression of YFP accelerates age-related axonal swelling in some axons and data reliant on the presence of YFP in these CNS regions in older animals needs to be interpreted carefully. The ability of a foreign protein to exacerbate age-related axon pathology is an important clue to the mechanisms by which such pathology can arise.

+view abstract Neurobiology of aging, PMID: 17658198 2009

WM Caudle, JR Richardson, MZ Wang, TN Taylor, TS Guillot, AL McCormack, RE Colebrooke, DA Di Monte, PC Emson, GW Miller

The vesicular monoamine transporter 2 (VMAT2; SLC18A2) is responsible for packaging dopamine into vesicles for subsequent release and has been suggested to serve a neuroprotective role in the dopamine system. Here, we show that mice that express approximately 5% of normal VMAT2 (VMAT2 LO) display age-associated nigrostriatal dopamine dysfunction that ultimately results in neurodegeneration. Elevated cysteinyl adducts to L-DOPA and DOPAC are seen early and are followed by increased striatal protein carbonyl and 3-nitrotyrosine formation. These changes were associated with decreased striatal dopamine and decreased expression of the dopamine transporter and tyrosine hydroxylase. Furthermore, we observed an increase in alpha-synuclein immunoreactivity and accumulation and neurodegeneration in the substantia nigra pars compacta in aged VMAT2 LO mice. Thus, VMAT2 LO animals display nigrostriatal degeneration that begins in the terminal fields and progresses to eventual loss of the cell bodies, alpha-synuclein accumulation, and an L-DOPA responsive behavioral deficit, replicating many of the key aspects of Parkinson's disease. These data suggest that mishandling of dopamine via reduced VMAT2 expression is, in and of itself, sufficient to cause dopamine-mediated toxicity and neurodegeneration in the nigrostriatal dopamine system. In addition, the altered dopamine homeostasis resulting from reduced VMAT2 function may be conducive to pathogenic mechanisms induced by genetic or environmental factors thought to be involved in Parkinson's disease.

+view abstract The Journal of neuroscience : the official journal of the Society for Neuroscience, PMID: 17652604 2007

M Veldhoen Epigenetics

+view abstract Immunology and cell biology, PMID: 17646848 0

Calaminus SD, Auger JM, McCarty OJ, Wakelam MJ, Machesky LM, Watson SP Signalling

MyosinIIs are adenosine triphosphate-driven molecular motors that form part of a cell's contractile machinery. They are activated by phosphorylation of their light chains, by either activation of myosin light chain (MLC) kinase or inhibition of MLC phosphatase via Rho kinase (ROCK). MyosinIIa phosphorylation underlies platelet rounding and stress fiber formation.

+view abstract Journal of thrombosis and haemostasis : JTH, PMID: 17645784 2007

N Kim, A Saudemont, L Webb, M Camps, T Ruckle, E Hirsch, M Turner, F Colucci Immunology

The signal transduction pathways that lead activated natural killer (NK) cells to produce cytokines, releases cytotoxic granules, or do both, are not clearly dissected. For example, phosphoinositide 3-kinases (PI3Ks) are key players in the execution of both functions, but the relative contribution of each isoform is unknown. We show here that the catalytic isoform p110delta, not p110gamma, was required for interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and granulocyte macrophage colony-stimulating factor (GM-CSF) secretion, whereas neither was necessary for cytotoxicity. Yet, when both p110delta and p110gamma isoforms were inactivated by a combination of genetic and biochemical approaches, cytotoxicity was decreased. NK-cell numbers were also affected by the lack of p110delta but not p110gamma and more severely so in mice lacking both subunits. These results provide genetic evidence that p110delta is the dominant PI3K isoform for cytokine secretion by NK cells and suggest that PI3Ks cooperate during NK-cell development and cytotoxicity.

+view abstract Blood, PMID: 17644738 2007

C Carter, C Dion, S Schnell, WJ Coadwell, M Graham, L Hepburn, G Morgan, A Hutchings, JC Pascall, H Jacobs, JR Miller, GW Butcher Immunology,Flow Cytometry

The Gimap/IAN family of GTPases has been implicated in the regulation of cell survival, particularly in lymphomyeloid cells. Prosurvival and prodeath properties have been described for different family members. We generated novel serological reagents to study the expression in rats of the prodeath family member Gimap4 (IAN1), which is sharply up-regulated at or soon after the stage of T cell-positive selection in the thymus. During these investigations we were surprised to discover a severe deficiency of Gimap4 expression in the inbred Brown Norway (BN) rat. Genetic analysis linked this trait to the Gimap gene cluster on rat chromosome 4, the probable cause being an AT dinucleotide insertion in the BN Gimap4 allele (AT(+)). This allele encodes a truncated form of Gimap4 that is missing 21 carboxyl-terminal residues relative to wild type. The low protein expression associated with this allele appears to have a posttranscriptional cause, because mRNA expression was apparently normal. Spontaneous and induced apoptosis of BN and wild-type T cells was analyzed in vitro and compared with the recently described mouse Gimap4 knockout. This revealed a "delayed" apoptosis phenotype similar to but less marked than that of the knockout. The Gimap4 AT(+) allele found in BN was shown to be rare in inbred rat strains. Nevertheless, when wild rat DNA samples were studied the AT(+) allele was found at a high overall frequency ( approximately 30%). This suggests an adaptive significance for this hypomorphic allele.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 17641045 2007

O Stoevesandt, MJ Taussig

Essential to the ambition of characterising fully the human proteome are systematic and comprehensive collections of specific affinity reagents directed against all human proteins, including splice variants and modifications. Although a large number of affinity reagents are available commercially, their quality is often questionable and only a fraction of the proteome is covered. In order for more targets to be examined, there is a need for broad availability of panels of affinity reagents, including binders against proteins of unknown functions. The most familiar affinity reagents are antibodies and their fragments, but engineered forms of protein scaffolds and nucleic acid aptamers with similar diversity and binding properties are becoming viable alternatives. Recent initiatives in Europe and the USA have been established to improve both the availability and quality of reagents for affinity proteomics, with the ultimate aim of creating standardised collections of well-validated binding molecules for proteome analysis. As well as coordinating affinity reagent production through existing resources and technology providers, these projects aim to benchmark key molecular entities, tools, and applications, and establish the bioinformatics framework and databases needed. The benefits of such reagent resources will be seen in basic research, medicine and the biotechnology and pharmaceutical industries.

+view abstract Proteomics, PMID: 17639606 2007

J Miles, JA Mitchell, L Chakalova, B Goyenechea, CS Osborne, L O'Neill, K Tanimoto, JD Engel, P Fraser

Several lines of evidence have established strong links between transcriptional activity and specific post-translation modifications of histones. Here we show using RNA FISH that in erythroid cells, intergenic transcription in the human beta-globin locus occurs over a region of greater than 250 kb including several genes in the nearby olfactory receptor gene cluster. This entire region is transcribed during S phase of the cell cycle. However, within this region there are approximately 20 kb sub-domains of high intergenic transcription that occurs outside of S phase. These sub-domains are developmentally regulated and enriched with high levels of active modifications primarily to histone H3. The sub-domains correspond to the beta-globin locus control region, which is active at all developmental stages in erythroid cells, and the region flanking the developmentally regulated, active globin genes. These results correlate high levels of non-S phase intergenic transcription with domain-wide active histone modifications to histone H3.

+view abstract PloS one, PMID: 17637845 2007

A Bruckbauer, P James, D Zhou, JW Yoon, D Excell, Y Korchev, R Jones, D Klenerman

We have developed a new method, using a nanopipette, for controlled voltage-driven delivery of individual fluorescently labeled probe molecules to the plasma membrane which we used for single-molecule fluorescence tracking (SMT). The advantages of the method are 1), application of the probe to predefined regions on the membrane; 2), release of only one or a few molecules onto the cell surface; 3), when combined with total internal reflection fluorescence microscopy, very low background due to unbound molecules; and 4), the ability to first optimize the experiment and then repeat it on the same cell. We validated the method by performing an SMT study of the diffusion of individual membrane glycoproteins labeled with Atto 647-wheat germ agglutin in different surface domains of boar spermatozoa. We found little deviation from Brownian diffusion with a mean diffusion coefficient of 0.79 +/- 0.04 microm(2)/s in the acrosomal region and 0.10 +/- 0.02 microm(2)/s in the postacrosomal region; this difference probably reflects different membrane structures. We also showed that we can analyze diffusional properties of different subregions of the cell membrane and probe for the presence of diffusion barriers. It should be straightforward to extend this new method to other probes and cells, and it can be used as a new tool to investigate the cell membrane.

+view abstract Biophysical journal, PMID: 17631532 2007

H Ji, F Rintelen, C Waltzinger, D Bertschy Meier, A Bilancio, W Pearce, E Hirsch, MP Wymann, T Rückle, M Camps, B Vanhaesebroeck, K Okkenhaug, C Rommel Immunology

Mice lacking both the p110gamma and p110delta isoforms display severe impairment of thymocyte development. Here, we show that this phenotype is recapitulated in p110gamma-/-/p110delta(D910A/D910A) (p110gamma(KO)delta(D910A)) mice where the p110delta isoform has been inactivated by a point mutation. Moreover, we have examined the pathological consequences of the p110gammadelta deficiency, which include profound T-cell lymphopenia, T-cell and eosinophil infiltration of mucosal organs, elevated IgE levels, and a skewing toward Th2 immune responses. Using small-molecule selective inhibitors, we demonstrated that in mature T cells, p110delta, but not p110gamma, controls Th1 and Th2 cytokine secretion. Thus, the pathology in the p110gammadelta-deficient mice is likely to be secondary to a developmental block in the thymus that leads to lymphopenia-associated inflammatory responses.

+view abstract Blood, PMID: 17626838 2007

CS Osborne, L Chakalova, JA Mitchell, A Horton, AL Wood, DJ Bolland, AE Corcoran, P Fraser

Transcription in mammalian nuclei is highly compartmentalized in RNA polymerase II-enriched nuclear foci known as transcription factories. Genes in cis and trans can share the same factory, suggesting that genes migrate to preassembled transcription sites. We used fluorescent in situ hybridization to investigate the dynamics of gene association with transcription factories during immediate early (IE) gene induction in mouse B lymphocytes. Here, we show that induction involves rapid gene relocation to transcription factories. Importantly, we find that the Myc proto-oncogene on Chromosome 15 is preferentially recruited to the same transcription factory as the highly transcribed Igh gene located on Chromosome 12. Myc and Igh are the most frequent translocation partners in plasmacytoma and Burkitt lymphoma. Our results show that transcriptional activation of IE genes involves rapid relocation to preassembled transcription factories. Furthermore, the data imply a direct link between the nonrandom interchromosomal organization of transcribed genes at transcription factories and the incidence of specific chromosomal translocations.

+view abstract PLoS biology, PMID: 17622196 2007

M He, MW Wang

Recent advances in life science have led to great motivation for the development of protein arrays to study functions of genome-encoded proteins. While traditional cell-based methods have been commonly used for generating protein arrays, they are usually a time-consuming process with a number of technical challenges. Cell-free protein synthesis offers an attractive system for making protein arrays, not only does it rapidly converts the genetic information into functional proteins without the need for DNA cloning, but also presents a flexible environment amenable to production of folded proteins or proteins with defined modifications. Recent advancements have made it possible to rapidly generate protein arrays from PCR DNA templates through parallel on-chip protein synthesis. This article reviews current cell-free protein array technologies and their proteomic applications.

+view abstract Biomolecular engineering, PMID: 17604221 2007

IG Brons, LE Smithers, MW Trotter, P Rugg-Gunn, B Sun, SM Chuva de Sousa Lopes, SK Howlett, A Clarkson, L Ahrlund-Richter, RA Pedersen, L Vallier Epigenetics

Although the first mouse embryonic stem (ES) cell lines were derived 25 years ago using feeder-layer-based blastocyst cultures, subsequent efforts to extend the approach to other mammals, including both laboratory and domestic species, have been relatively unsuccessful. The most notable exceptions were the derivation of non-human primate ES cell lines followed shortly thereafter by their derivation of human ES cells. Despite the apparent common origin and the similar pluripotency of mouse and human embryonic stem cells, recent studies have revealed that they use different signalling pathways to maintain their pluripotent status. Mouse ES cells depend on leukaemia inhibitory factor and bone morphogenetic protein, whereas their human counterparts rely on activin (INHBA)/nodal (NODAL) and fibroblast growth factor (FGF). Here we show that pluripotent stem cells can be derived from the late epiblast layer of post-implantation mouse and rat embryos using chemically defined, activin-containing culture medium that is sufficient for long-term maintenance of human embryonic stem cells. Our results demonstrate that activin/Nodal signalling has an evolutionarily conserved role in the derivation and the maintenance of pluripotency in these novel stem cells. Epiblast stem cells provide a valuable experimental system for determining whether distinctions between mouse and human embryonic stem cells reflect species differences or diverse temporal origins.

+view abstract Nature, PMID: 17597762 2007

D Bello, T Aslam, G Bultynck, AM Slawin, HL Roderick, MD Bootman, SJ Conway

The design of a range of 4-position-modified D-myo-inositol 1,4,5-trisphosphate derivatives is described. The enantioselective synthesis of these compounds is reported, along with initial biological analysis, which indicates that these compounds do not act as D-myo-inositol 1,4,5-trisphosphate receptor agonists or antagonists.

+view abstract The Journal of organic chemistry, PMID: 17585817 2007

M Hemberger Epigenetics

Formation of extraembryonic tissues, and in particular the placenta, is an absolute necessity to ensure growth and survival of the embryo during intrauterine development in mammals. To date, an intriguing number of genes have been identified that are essential for development of extraembryonic structures. However, the underlying genetic information must be interpreted by a set of epigenetic instructions to both establish and maintain lineage- and cell type-specific expression profiles. Based on accumulating data in particular from studies in the mouse, this article is aimed at highlighting the epigenetic machinery required for differentiation of extraembryonic cell types and formation of the placenta. An overview of knockout models reveals key stages in extraembryonic development that are particularly sensitive to alterations in the chromatin environment. The article also summarizes the importance of complex epigenetically controlled mechanisms for placental development, such as imprinted gene expression and imprinted X chromosome inactivation. These investigations of the epigenetic regulation of transcriptional states will provide valuable insights into the dynamic chromatin environment that is specific to extraembryonic tissues and determines gene expression patterns required for normal trophoblast differentiation.

+view abstract Cellular and molecular life sciences : CMLS, PMID: 17585370 2007

SE Ozanne, M Constância

There is accumulating evidence that many chronic diseases such as type 2 diabetes and coronary heart disease might originate during early life. This evidence gives rise to the developmental origins of disease hypothesis, and is supported by epidemiological data in humans and experimental animal models. A perturbed environment in early life is thought to elicit a range of physiological and cellular adaptive responses in key organ systems. These adaptive changes result in permanent alterations and might lead to pathology in later life. Aging organs and cells seem therefore to retain a 'memory' of their fetal history and adaptive responses. The mechanisms underlying the developmental origins of disease remain poorly defined. Epigenetic tagging of genes, such as DNA methylation and histone modification, controls the function of the genome at different levels and maintains cellular memory after many cellular divisions; importantly, tagging can be modulated by the environment and is involved in onset of diseases such as cancer. Here we review the evidence for the developmental origins of disease and discuss the role of the epigenotype as a contributing mechanism. Environmentally induced changes in the epigenotype might be key primary events in the developmental origins of disease, with important clinical implications.

+view abstract Nature clinical practice. Endocrinology & metabolism, PMID: 17581623 2007

D Bolland, A Corcoran

+view abstract Nature immunology, PMID: 17579643 2007

MD Bootman, D Harzheim, I Smyrnias, SJ Conway, HL Roderick

Endothelin-1 (ET-1) is a potent G(q)-coupled agonist with important physiological effects on the heart. In the present study, we characterised the effect of prolonged ET-1 stimulation on Ca(2+) signalling within acutely isolated atrial myocytes. ET-1 induced a reproducible and complex sequence of effects, including negative inotropy, positive inotropy and pro-arrhythmic spontaneous Ca(2+) transients (SCTs). The negative and positive inotropic effects correlated with the ability of Ca(2+) to propagate from the subsarcolemmal sites where EC-coupling initiates into the centre of the atrial cells. We examined the spatial and temporal properties of the SCTs and observed them to range from elementary Ca(2+) sparks, flurries of Ca(2+) sparks, to Ca(2+) waves and action potential-evoked global Ca(2+) transients. The positive inotropic effect of ET-1 and its ability to trigger SCTs were mimicked by direct stimulation of InsP(3)Rs. An antagonist of InsP(3)Rs prevented the generation of SCTs and partially reduced the positive inotropy evoked by ET-1. Our data suggest that ET-1 engages multiple signal transduction pathways to provoke a plethora of different responses within an atrial myocyte. Some of the actions of ET-1 appear to be due to stimulation of InsP(3)Rs.

+view abstract Cell calcium, PMID: 17574672 2007

, O Adewumi, B Aflatoonian, L Ahrlund-Richter, M Amit, PW Andrews, G Beighton, PA Bello, N Benvenisty, LS Berry, S Bevan, B Blum, J Brooking, KG Chen, AB Choo, GA Churchill, M Corbel, I Damjanov, JS Draper, P Dvorak, K Emanuelsson, RA Fleck, A Ford, K Gertow, M Gertsenstein, PJ Gokhale, RS Hamilton, A Hampl, LE Healy, O Hovatta, J Hyllner, MP Imreh, J Itskovitz-Eldor, J Jackson, JL Johnson, M Jones, K Kee, BL King, BB Knowles, M Lako, F Lebrin, BS Mallon, D Manning, Y Mayshar, RD McKay, AE Michalska, M Mikkola, M Mileikovsky, SL Minger, HD Moore, CL Mummery, A Nagy, N Nakatsuji, CM O'Brien, SK Oh, C Olsson, T Otonkoski, KY Park, R Passier, H Patel, M Patel, R Pedersen, MF Pera, MS Piekarczyk, RA Pera, BE Reubinoff, AJ Robins, J Rossant, P Rugg-Gunn, TC Schulz, H Semb, ES Sherrer, H Siemen, GN Stacey, M Stojkovic, H Suemori, J Szatkiewicz, T Turetsky, T Tuuri, S van den Brink, K Vintersten, S Vuoristo, D Ward, TA Weaver, LA Young, W Zhang Epigenetics

The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue-nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.

+view abstract Nature biotechnology, PMID: 17572666 2007

DV Dear, DS Young, J Kazlauskaite, F Meersman, D Oxley, J Webster, TJ Pinheiro, AC Gill, I Bronstein, CR Lowe Mass Spectrometry

Prion diseases, or transmissible spongiform encephalopathies (TSEs) are typically characterised by CNS accumulation of PrP(Sc), an aberrant conformer of a normal cellular protein PrP(C). It is thought PrP(Sc) is itself infectious and the causative agent of such diseases. To date, no chemical modifications of PrP(Sc), or a sub-population thereof, have been reported. In this study we have investigated whether chemical modification of amino acids within PrP might cause this protein to exhibit aberrant properties and whether these properties can be propagated onto unmodified prion protein. Of particular interest were post-translational modifications resulting from physiological conditions shown to be associated with TSE disease. Here we report that in vitro exposure of recombinant PrP to conditions that imitate the end effects of oxidative/nitrative stress in TSE-infected mouse brains cause the protein to adopt many of the physical characteristics of PrP(Sc). Most interestingly, these properties could be propagated onto unmodified PrP protein when the modified protein was used as a template. These data suggest that post-translational modifications of PrP might contribute to the initiation and/or propagation of prion protein-associated plaques in vivo during prion disease, thereby high-lighting novel biochemical pathways as possible therapeutic targets for these conditions.

+view abstract Biochimica et biophysica acta, PMID: 17572162 2007

Le Novère N Signalling

Computational neurobiology was born over half a century ago, and has since been consistently at the forefront of modelling in biology. The recent progress of computing power and distributed computing allows the building of models spanning several scales, from the synapse to the brain. Initially focused on electrical processes, the simulation of neuronal function now encompasses signalling pathways and ion diffusion. The flow of quantitative data generated by the "omics" approaches, alongside the progress of live imaging, allows the development of models that will also include gene regulatory networks, protein movements and cellular remodelling. A systems biology of brain functions and disorders can now be envisioned. As it did for the last half century, neuroscience can drive forward the field of systems biology.

+view abstract BMC systems biology, PMID: 17567903 2007

L Trabace, KM Kendrick, S Castrignanò, M Colaianna, A De Giorgi, S Schiavone, C Lanni, V Cuomo, S Govoni

Several studies suggest a pivotal role of amyloid beta (Abeta)(1-42) and nitric oxide (NO) in the pathogenesis of Alzheimer's disease. NO also possess central neuromodulatory properties. To study the soluble Abeta(1-42) effects on dopamine concentrations in rat prefrontal cortex, microdialysis technique was used. We showed that i.c.v. injection or retrodialysis Abeta(1-42) administration reduced basal and K(+)-stimulated dopamine levels, measured 2 and 48 h after peptide administration. Immunofluorescent experiments revealed that after 48 h from i.c.v. injection Abeta(1-42) was no longer detectable in the ventricular space. We then evaluated the role of NO on Abeta(1-42)-induced reduction in dopamine concentrations. Subchronic L-arginine administration decreased basal dopamine levels, measured either 2 h after i.c.v. Abeta(1-42) or on day 2 post-injection, whereas subchronic 7-nitroindazole administration increased basal dopamine concentrations, measured 2 h after i.c.v. Abeta(1-42) injection, and decreased them when measured on day 2 post-Abeta(1-42)-injection. No dopaminergic response activity was observed after K(+) stimulation in all groups. These results suggest that the dopaminergic system seems to be acutely vulnerable to soluble Abeta(1-42) effects. Finally, the opposite role of NO occurring at different phases might be regarded as a possible link between Abeta(1-42)-induced effects and dopaminergic dysfunction.

+view abstract Neuroscience, PMID: 17560043 2007

S Kulkarni, KJ Woollard, S Thomas, D Oxley, SP Jackson Mass Spectrometry

The ability of platelets to provide a highly reactive surface for the recruitment of other platelets and leukocytes to sites of vascular injury is critical for hemostasis, atherothrombosis, and a variety of inflammatory diseases. The mechanisms coordinating platelet-platelet and platelet-leukocyte interactions have been well defined and, in general, it is assumed that increased platelet activation correlates with enhanced reactivity toward other platelets and neutrophils. In the current study, we demonstrate a differential role for platelets in supporting platelet and neutrophil adhesive interactions under flow. We demonstrate that the conversion of spread platelets to microvesiculated procoagulant (annexin A5-positive [annexin A5+ve]) forms reduces platelet-platelet adhesion and leads to a paradoxical increase in neutrophil-platelet interaction. This enhancement in neutrophil adhesion and spreading is partially mediated by the proinflammatory lipid, platelet-activating factor (PAF). PAF production, unlike other neutrophil chemokines (IL-8, GRO-alpha, NAP-2, IL-1beta) is specifically and markedly up-regulated in annexin A5+ve cells. Physiologically, this spatially controlled production of PAF plays an important role in localizing neutrophils on the surface of thrombi. These studies define for the first time a specific proinflammatory function for annexin A5+ve platelets. Moreover, they demonstrate an important role for platelet-derived PAF in spatially regulating neutrophil adhesion under flow.

+view abstract Blood, PMID: 17548580 2007

D Trivedi, R Padinjat

The RdgBs are a group of evolutionarily conserved molecules that contain a phosphatidylinositol transfer protein (PITP) domain. However in contrast to classical PITPs (PITPalpha) with whom they share the conserved PITP domain, these proteins also contain several additional sequence elements whose functional significance remains unknown. The founding member of the family DrdgB alpha (Drosophila rdgB) appears to be essential for sensory transduction and maintenance of ultra structure in photoreceptors (retinal sensory neurons). Although proposed to support the maintenance of phosphatidylinositol 4, 5 bisphosphate [PI (4, 5) P(2)] levels during G-protein coupled phospholipase C activity in these cells, the biochemical mechanism of DrdgB alpha function remains unresolved. More recently, a mammalian RdgB protein has been implicated in the maintenance of diacylglycerol (DAG) levels and secretory function at Golgi membranes. In this review we discuss existing work on the function of RdgB proteins and set out future challenges in understanding this group of lipid transfer proteins.

+view abstract Biochimica et biophysica acta, PMID: 17543578 2007