To produce a diverse antibody repertoire, immunoglobulin heavy-chain (Igh) loci undergo large-scale alterations in structure to facilitate juxtaposition and recombination of spatially separated variable (V), diversity (D), and joining (J) genes. These chromosomal alterations are poorly understood. Uncovering their patterns shows how chromosome dynamics underpins antibody diversity. Using tiled Capture Hi-C, we produce a comprehensive map of chromatin interactions throughout the 2.8-Mb Igh locus in progenitor B cells. We find that the Igh locus folds into semi-rigid subdomains and undergoes flexible looping of the V genes to its 3' end, reconciling two views of locus organization. Deconvolution of single Igh locus conformations using polymer simulations identifies thousands of different structures. This heterogeneity may underpin the diversity of V(D)J recombination events. All three immunoglobulin loci also participate in a highly specific, developmentally regulated network of interchromosomal interactions with genes encoding B cell-lineage factors. This suggests a model of interchromosomal coordination of B cell development.
Chromosomal translocations are important drivers of hematological malignancies whereby proto-oncogenes are activated by juxtaposition with super-enhancers, often called enhancer hijacking. We analysed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus () and proto-oncogene that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterised the normal chromatin landscape of the human locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the locus of healthy B cells that was absent in samples with translocations. The appearance of H3K4me3-BD over in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with super-enhancer hijacking of other common oncogenes in B cell (, and /) and in T-cell malignancies (, and ). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, where the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.
Generation of the primary antibody repertoire requires V(D)J recombination of hundreds of gene segments in the immunoglobulin heavy chain (Igh) locus. The role of interleukin-7 receptor (IL-7R) signaling in Igh recombination has been difficult to partition from its role in B cell survival and proliferation. With a detailed description of the Igh repertoire in murine IL-7Rα bone marrow B cells, we demonstrate that IL-7R signaling profoundly influences V gene selection during V-to-DJ recombination. We find skewing toward 3' V genes during de novo V-to-DJ recombination more severe than the fetal liver (FL) repertoire and uncover a role for IL-7R signaling in D-to-J recombination. Transcriptome and accessibility analyses suggest reduced expression of B lineage transcription factors (TFs) and targets and loss of D and V antisense transcription in IL-7Rα B cells. Thus, in addition to its roles in survival and proliferation, IL-7R signaling shapes the Igh repertoire by activating underpinning mechanisms.
The transition from naive to primed pluripotency is accompanied by an extensive reorganisation of transcriptional and epigenetic programmes. However, the role of transcriptional enhancers and three-dimensional chromatin organisation in coordinating these developmental programmes remains incompletely understood. Here, we generate a high-resolution atlas of gene regulatory interactions, chromatin profiles and transcription factor occupancy in naive and primed human pluripotent stem cells, and develop a network-graph approach to examine the atlas at multiple spatial scales. We uncover highly connected promoter hubs that change substantially in interaction frequency and in transcriptional co-regulation between pluripotent states. Small hubs frequently merge to form larger networks in primed cells, often linked by newly-formed Polycomb-associated interactions. We identify widespread state-specific differences in enhancer activity and interactivity that correspond with an extensive reconfiguration of OCT4, SOX2 and NANOG binding and target gene expression. These findings provide multilayered insights into the chromatin-based gene regulatory control of human pluripotent states.
A functional adaptive immune system must generate enormously diverse antigen receptor (AgR) repertoires from a limited number of AgR genes, using a common mechanism, V(D)J recombination. The AgR loci are among the largest in the genome, and individual genes must overcome huge spatial and temporal challenges to co-localize with optimum variability. Our understanding of the complex mechanisms involved has increased enormously, due in part to new technologies for high resolution mapping of AgR structure and dynamic movement, underpinning mechanisms, and resulting repertoires. This review will examine these advances using the paradigm of the mouse immunoglobulin heavy chain (Igh) locus. We will discuss the key regulatory elements implicated in Igh locus structure. Recent next generation repertoire sequencing methods have shown that local chromatin state at V genes contribute to recombination efficiency. Next on the multidimensional scale, we will describe imaging studies that provided the first picture of the large-scale dynamic looping and contraction the Igh locus undergoes during recombination. We will discuss chromosome conformation capture (3C)-based technologies that have provided higher resolution pictures of Igh locus structure, including the different models that have evolved. We will consider the key transcription factors (PAX5, YY1, E2A, Ikaros), and architectural factors, CTCF and cohesin, that regulate these processes. Lastly, we will discuss a plethora of recent exciting mechanistic findings. These include Rag recombinase scanning for convergent RSS sequences within DNA loops; identification of Igh loop extrusion, and its putative role in Rag scanning; the roles of CTCF, cohesin and cohesin loading factor, WAPL therein; a new phase separation model for Igh locus compartmentalization. We will draw these together and conclude with some horizon-scanning and unresolved questions.
We describe the 'Crescendo Mouse', a human V transgenic platform combining an engineered heavy chain locus with diverse human heavy chain V, D and J genes, a modified mouse Cγ1 gene and complete 3' regulatory region, in a triple knock-out (TKO) mouse background devoid of endogenous immunoglobulin expression. The addition of the engineered heavy chain locus to the TKO mouse restored B cell development, giving rise to functional B cells that responded to immunization with a diverse response that comprised entirely 'heavy chain only' antibodies. Heavy chain variable (V) domain libraries were rapidly mined using phage display technology, yielding diverse high-affinity human V that had undergone somatic hypermutation, lacked aggregation and showed enhanced expression in E. coli. The Crescendo Mouse produces human V fragments, or Humabody® V, with excellent bio-therapeutic potential, as exemplified here by the generation of antagonistic Humabody® V specific for human IL17A and IL17RA.
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy resulting from the dysregulation of signaling pathways that control intrathymic T-cell development. Relapse rates are still significant and prognosis is particularly bleak for relapsed patients. Therefore, development of novel therapies specifically targeting pathways controlling leukemia-initiating cell (LIC) activity is mandatory for fighting refractory T-ALL. The interleukin-7 receptor (IL-7R) is a crucial T-cell developmental pathway commonly expressed in T-ALL, which has been implicated in leukemia progression. However, the significance of IL-7R/IL-7 signaling in T-ALL pathogenesis and its contribution to disease relapse remain unknown. To directly explore whether IL-7R targeting may be therapeutically efficient against T-ALL relapse, we focused here on a known Notch1-induced T-ALL model, since a majority of T-ALL patients harbor activating mutations in , which is a transcriptional regulator of IL-7R expression. Using loss-of-function approaches, we show that -deficient, but not wild type, mouse hematopoietic progenitors transduced with constitutively active Notch1 failed to generate leukemia upon transplantation into immunodeficient mice, thus providing formal evidence that IL-7R function is essential for Notch1-induced T-cell leukemogenesis. Moreover, we demonstrate that IL-7R expression is an early functional biomarker of T-ALL cells with LIC potential, and demonstrate that impaired IL-7R signaling hampers engraftment and progression of patient-derived T-ALL xenografts. Notably, we show that IL-7R-dependent LIC activity and leukemia progression can be extended to human B-ALL. These results have important therapeutic implications, highlighting the relevance that targeting normal IL-7R signaling may have in future therapeutic interventions, particularly for preventing T-ALL (and B-ALL) relapse.
Class-switch recombination (CSR) is a DNA recombination process that replaces the immunoglobulin (Ig) constant region for the isotype that can best protect against the pathogen. Dysregulation of CSR can cause self-reactive BCRs and B cell lymphomas; understanding the timing and location of CSR is therefore important. Although CSR commences upon T cell priming, it is generally considered a hallmark of germinal centers (GCs). Here, we have used multiple approaches to show that CSR is triggered prior to differentiation into GC B cells or plasmablasts and is greatly diminished in GCs. Despite finding a small percentage of GC B cells expressing germline transcripts, phylogenetic trees of GC BCRs from secondary lymphoid organs revealed that the vast majority of CSR events occurred prior to the onset of somatic hypermutation. As such, we have demonstrated the existence of IgM-dominated GCs, which are unlikely to occur under the assumption of ongoing switching.
Antigen receptor assembly in lymphocytes involves stringently regulated coordination of specific DNA rearrangement events across several large chromosomal domains. Previous studies indicate that transcription factors such as paired box 5 (PAX5), Yin Yang 1 (YY1), and CCCTC-binding factor (CTCF) play a role in regulating the accessibility of the antigen receptor loci to the V(D)J recombinase, which is required for these rearrangements. To gain clues about the role of CTCF binding at the murine immunoglobulin heavy chain (IgH) locus, we utilized a computational approach that identified 144 putative CTCF-binding sites within this locus. We found that these CTCF sites share a consensus motif distinct from other CTCF sites in the mouse genome. Additionally, we could divide these CTCF sites into three categories: intergenic sites remote from any coding element, upstream sites present within 8 kb of the VH-leader exon, and recombination signal sequence (RSS)-associated sites characteristically located at a fixed distance (~18 bp) downstream of the RSS. We noted that the intergenic and upstream sites are located in the distal portion of the VH locus, whereas the RSS-associated sites are located in the DH-proximal region. Computational analysis indicated that the prevalence of CTCF-binding sites at the IgH locus is evolutionarily conserved. In all species analyzed, these sites exhibit a striking strand-orientation bias, with > 98% of the murine sites being present in one orientation with respect to VH gene transcription. Electrophoretic mobility shift and enhancer-blocking assays and ChIP-chip analysis confirmed CTCF binding to these sites both in vitro and in vivo.
The generation of protective humoral immunity after vaccination relies on the productive interaction between antigen-specific B cells and T follicular helper (Tfh) cells. Despite the central role of Tfh cells in vaccine responses, there is currently no validated way to enhance their differentiation in humans. From paired human lymph node and blood samples, we identify a population of circulating Tfh cells that are transcriptionally and clonally similar to germinal center Tfh cells. In a clinical trial of vaccine formulations, circulating Tfh cells were expanded in Tanzanian volunteers when an experimental malaria vaccine was adjuvanted in GLA-SE but not when formulated in Alum. The GLA-SE-formulated peptide was associated with an increase in the extrafollicular antibody response, long-lived antibody production, and the emergence of public TCRβ clonotypes in circulating Tfh cells. We demonstrate that altering vaccine adjuvants is a rational approach for enhancing Tfh cells in humans, thereby supporting the long-lived humoral immunity that is required for effective vaccines.
Aging is characterized by loss of function of the adaptive immune system, but the underlying causes are poorly understood. To assess the molecular effects of aging on B cell development, we profiled gene expression and chromatin features genome-wide, including histone modifications and chromosome conformation, in bone marrow pro-B and pre-B cells from young and aged mice.
V(D)J recombination is essential for the generation of diverse antigen receptor (AgR) repertoires. In B cells, immunoglobulin kappa (Igκ) light chain recombination follows immunoglobulin heavy chain (Igh) recombination. We recently developed the DNA-based VDJ-seq assay for the unbiased quantitation of Igh VH and DH repertoires. Integration of VDJ-seq data with genome-wide datasets revealed that two chromatin states at the recombination signal sequence (RSS) of VH genes are highly predictive of recombination in mouse pro-B cells. It is unknown whether local chromatin states contribute to Vκ gene choice during Igκ recombination. Here we adapt VDJ-seq to profile the Igκ VκJκ repertoire and present a comprehensive readout in mouse pre-B cells, revealing highly variable Vκ gene usage. Integration with genome-wide datasets for histone modifications, DNase hypersensitivity, transcription factor binding and germline transcription identified PU.1 binding at the RSS, which was unimportant for Igh, as highly predictive of whether a Vκ gene will recombine or not, suggesting that it plays a binary, all-or-nothing role, priming genes for recombination. Thereafter, the frequency with which these genes recombine was shaped both by the presence and level of enrichment of several other chromatin features, including H3K4 methylation and IKAROS binding. Moreover, in contrast to the Igh locus, the chromatin landscape of the promoter, as well as of the RSS, contributes to Vκ gene recombination. Thus, multiple facets of local chromatin features explain much of the variation in Vκ gene usage. Together, these findings reveal shared and divergent roles for epigenetic features and transcription factors in AgR V(D)J recombination and provide avenues for further investigation of chromatin signatures that may underpin V(D)J-mediated chromosomal translocations.
Although much has been done to understand how rearrangement of the Igκ locus is regulated during B-cell development, little is known about the way the variable (V) segments themselves are selected. Here we show, using B6/Cast hybrid pre-B-cell clones, that a limited number of V segments on each allele is stochastically activated as characterized by the appearance of non-coding RNA and histone modifications. The activation states are clonally distinct, stable across cell division and developmentally important in directing the Ig repertoire upon differentiation. Using a new approach of allelic ATAC-seq, we demonstrate that the Igκ V alleles have differential chromatin accessibility, which may serve as the underlying basis of clonal maintenance at this locus, as well as other instances of monoallelic expression throughout the genome. These findings highlight a new level of immune system regulation that optimizes gene diversity.
DNA methylation changes at a discrete set of sites in the human genome are predictive of chronological and biological age. However, it is not known whether these changes are causative or a consequence of an underlying ageing process. It has also not been shown whether this epigenetic clock is unique to humans or conserved in the more experimentally tractable mouse.
Human pluripotent stem cells (PSCs) exist in naive and primed states and provide important models to investigate the earliest stages of human development. Naive cells can be obtained through primed-to-naive resetting, but there are no reliable methods to prospectively isolate unmodified naive cells during this process. Here we report comprehensive profiling of cell surface proteins by flow cytometry in naive and primed human PSCs. Several naive-specific, but not primed-specific, proteins were also expressed by pluripotent cells in the human preimplantation embryo. The upregulation of naive-specific cell surface proteins during primed-to-naive resetting enabled the isolation and characterization of live naive cells and intermediate cell populations. This analysis revealed distinct transcriptional and X chromosome inactivation changes associated with the early and late stages of naive cell formation. Thus, identification of state-specific proteins provides a robust set of molecular markers to define the human PSC state and allows new insights into the molecular events leading to naive cell resetting.
Variable (V), diversity (D), and joining (J) (V(D)J) recombination is the first determinant of antigen receptor diversity. Understanding how recombination is regulated requires a comprehensive, unbiased readout of V gene usage. We have developed VDJ sequencing (VDJ-seq), a DNA-based next-generation-sequencing technique that quantitatively profiles recombination products. We reveal a 200-fold range of recombination efficiency among recombining V genes in the primary mouse Igh repertoire. We used machine learning to integrate these data with local chromatin profiles to identify combinatorial patterns of epigenetic features that associate with active VH gene recombination. These features localize downstream of VH genes and are excised by recombination, revealing a class of cis-regulatory element that governs recombination, distinct from expression. We detect two mutually exclusive chromatin signatures at these elements, characterized by CTCF/RAD21 and PAX5/IRF4, which segregate with the evolutionary history of associated VH genes. Thus, local chromatin signatures downstream of VH genes provide an essential layer of regulation that determines recombination efficiency.
Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR-induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-μ at the pre-BCR checkpoint.
In order to manage the rise in life expectancy and the concomitant increased occurrence of age-related diseases, research into ageing has become a strategic priority. Mouse models are commonly utilised as they share high homology with humans and show many similar signs and diseases of ageing. However, the time and cost needed to rear aged cohorts can limit research opportunities. Sharing of resources can provide an ethically and economically superior framework to overcome some of these issues but requires dedicated infrastructure. Shared Ageing Research Models (ShARM) ( www.ShARMUK.org ) is a new, not-for-profit organisation funded by Wellcome Trust, open to all investigators. It collects, stores and distributes flash frozen tissues from aged murine models through its biorepository and provides a database of live ageing mouse colonies available in the UK and abroad. It also has an online environment (MICEspace) for collation and analysis of data from communal models and discussion boards on subjects such as the welfare of ageing animals and common endpoints for intervention studies. Since launching in July 2012, thanks to the generosity of researchers in UK and Europe, ShARM has collected more than 2,500 tissues and has in excess of 2,000 mice registered in live ageing colonies. By providing the appropriate support, ShARM has been able to bring together the knowledge and experience of investigators in the UK and Europe to maximise research outputs with little additional cost and minimising animal use in order to facilitate progress in ageing research.
3D DNA FISH has become a major tool for analyzing three-dimensional organization of the nucleus, and several variations of the technique have been published. In this article we describe a protocol which has been optimized for robustness, reproducibility, and ease of use. Brightly fluorescent directly labeled probes are generated by nick-translation with amino-allyldUTP followed by chemical coupling of the dye. 3D DNA FISH is performed using a freeze-thaw step for cell permeabilization and a heating step for simultaneous denaturation of probe and nuclear DNA. The protocol is applicable to a range of cell types and a variety of probes (BACs, plasmids, fosmids, or Whole Chromosome Paints) and allows for high-throughput automated imaging. With this method we routinely investigate nuclear localization of up to three chromosomal regions.
The enormous antigen receptor loci in lymphocytes are a paradigm of dynamic nuclear organisation, which is integral to their need to move extensively in 3D space to achieve distal gene synapse for V(D)J recombination and allelic exclusion. The loci undergo extensive 3D looping to bring distal genes together, controlled by several tissue-specific and ubiquitous factors, but how these factors achieve looping, synapsis and V(D)J recombination has been a mystery. Now several studies provide evidence that non-coding transcription, often proposed to play a role, is indeed an important driver, and furthermore has a specific nuclear destination for recombination. Both local transcription-independent looping and longer range factor-mediated transcription-dependent looping play separate roles in altering AgR architecture to enable V(D)J recombination.
Mice deficient for the adapter protein Slp65 (also known as Blnk), a key component in precursor-BCR (pre-BCR) signaling, spontaneously develop pre-B cell leukemia. In these leukemias, proliferation is thought to be driven by constitutive Jak3/Stat5 signaling, mostly due to autocrine production of IL-7, together with high surface expression of the pre-BCR. In this study, we investigated whether particular IgH specificities would predispose Slp65-deficient pre-B cells to malignant transformation. Whereas V(H)-D-J(H) junctions were diverse, we found highly restricted Ig V(H) gene usage: 55 out of 60 (~92%) leukemias used a V(H)14/SM7-family gene, mainly V(H)14-1 and V(H)14-2. When combined with surrogate or conventional L chains, these V(H)14 IgH chains did not provide increased proliferative signals or exhibit enhanced poly- or autoreactivity. We therefore conclude that pre-BCR specificity per se did not contribute to oncogenic transformation. Remarkably, in a high proportion of Slp65-deficient leukemias, the nonexpressed IgH allele also harbored a V(H)14-family rearrangement (10 out of 50) or was in the germline configuration (10 out of 50). V(H)14-1 and V(H)14-2 gene regions differed from their neighboring V(H) genes in that they showed active H3K4me3 histone modification marks and germline transcription at the pro-B cell stage in Rag1-deficient mice. Taken together, these findings demonstrate that in Slp65-deficient mice, malignant transformation is largely limited to particular pre-B cells that originate from pro-B cells that had restricted IgH V(H) region accessibility at the time of V(H)-to D-J(H) recombination.
Despite using the same Rag recombinase machinery expressed in both lymphocyte lineages, V(D)J recombination of immunoglobulins only occurs in B cells and T cell receptor recombination is confined to T cells. This vital segregation of recombination targets is governed by the coordinated efforts of several epigenetic mechanisms that control both the general chromatin accessibility of these loci to the Rag recombinase, and the movement and synapsis of distal gene segments in these enormous multigene AgR loci, in a lineage and developmental stage-specific manner. These mechanisms operate both locally at individual gene segments and AgR domains, and globally over large distances in the nucleus. Here we will discuss the roles of several epigenetic components that regulate V(D)J recombination of the immunoglobulin heavy chain locus in B cells, both in the context of the locus itself, and of its 3D nuclear organization, focusing in particular on non-coding RNA transcription. We will also speculate about how several newly described epigenetic mechanisms might impact on AgR regulation.
The t(12;21) translocation that generates the ETV6-RUNX1 (TEL-AML1) fusion gene, is the most common chromosomal rearrangement in childhood cancer and is exclusively associated with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The translocation arises in utero and is necessary but insufficient for the development of leukemia. Single-nucleotide polymorphism array analysis of ETV6-RUNX1 patient samples has identified multiple additional genetic alterations; however, the role of these lesions in leukemogenesis remains undetermined. Moreover, murine models of ETV6-RUNX1 ALL that faithfully recapitulate the human disease are lacking. To identify novel genes that cooperate with ETV6-RUNX1 in leukemogenesis, we generated a mouse model that uses the endogenous Etv6 locus to coexpress the Etv6-RUNX1 fusion and Sleeping Beauty transposase. An insertional mutagenesis screen was performed by intercrossing these mice with those carrying a Sleeping Beauty transposon array. In contrast to previous models, a substantial proportion (20%) of the offspring developed BCP-ALL. Isolation of the transposon insertion sites identified genes known to be associated with BCP-ALL, including Ebf1 and Epor, in addition to other novel candidates. This is the first mouse model of ETV6-RUNX1 to develop BCP-ALL and provides important insight into the cooperating genetic alterations in ETV6-RUNX1 leukemia.
Defective V(D)J rearrangement of immunoglobulin heavy or light chain (IgH or IgL) or class switch recombination (CSR) can initiate chromosomal translocations. The DNA-damage kinase ATM is required for the suppression of chromosomal translocations but ATM regulation is incompletely understood. Here, we show that mice lacking the ATM cofactor ATMIN in B cells (ATMIN(ΔB/ΔB)) have impaired ATM signaling and develop B cell lymphomas. Notably, ATMIN(ΔB/ΔB) cells exhibited defective peripheral V(D)J rearrangement and CSR, resulting in translocations involving the Igh and Igl loci, indicating that ATMIN is required for efficient repair of DNA breaks generated during somatic recombination. Thus, our results identify a role for ATMIN in regulating the maintenance of genomic stability and tumor suppression in B cells.
T cell fate is associated with mutually exclusive expression of CD4 or CD8 in helper and cytotoxic TÂ cells, respectively. How expression of one locus is temporally coordinated with repression of the other has been a long-standing enigma, though we know RUNX transcription factors activate the Cd8 locus, silence the Cd4 locus, and repress the Zbtb7b locus (encoding the transcription factor ThPOK), which is required for CD4 expression. Here we found that nuclear organization was altered by interplay among members of this transcription factor circuitry: RUNX binding mediated association of Cd4 and Cd8 whereas ThPOK binding kept the loci apart. Moreover, targeted deletions within Cd4 modulated CD8 expression and pericentromeric repositioning of Cd8. Communication between Cd4 and Cd8 thus appears to enable long-range epigenetic regulation to ensure that expression of one excludes the other in mature CD4 or CD8 single-positive (SP) cells.
Within the lymphocyte lineages, restriction of immunoglobulin V(D)J recombination to B cells and T cell receptor (TCR) recombination to T cells is governed by a myriad of epigenetic mechanisms that control the chromatin accessibility of these loci to the Rag recombinase machinery in a lineage and developmental stage-specific manner. These mechanisms operate both locally at individual gene segments, and globally over large chromatin domains in these enormous multigene loci. In this review we will explore the established and emerging roles of three aspects of epigenetic regulation that contribute to large-scale control of the immunoglobulin heavy chain locus in B cells: non-coding RNA transcription, regulatory elements, and nuclear organization. Recent conceptual and technological advances have produced a paradigm shift in our thinking about how these components regulate gene expression in general and V(D)J recombination in particular.
B cell development is controlled by a series of checkpoints that ensure that the immunoglobulin (Ig)-encoding genes produce a functional B cell receptor (BCR) and antibodies. As part of this process, recombination-activating gene (Rag) proteins regulate the in-frame assembly of the Ig-encoding genes. The BCR consists of Ig proteins in complex with the immunoreceptor tyrosine-based activation motif (ITAM)-containing Igalpha and Igbeta chains. Whereas the activation of the tyrosine kinases Src and Syk is essential for BCR signaling, the pathways that act downstream of these kinases are incompletely defined. Previous work has revealed a key role for the p110delta isoform of phosphatidylinositol 3-kinase (PI3K) in agonist-induced BCR signaling; however, early B cell development and mature B cell survival, which depend on agonist-independent or "tonic" BCR signaling, are not substantially affected by a deficiency in p110delta. Here, we show that p110alpha, but not p110beta, compensated in the absence of p110delta to promote early B cell development in the bone marrow and B cell survival in the spleen. In the absence of both p110alpha and p110delta activities, pre-BCR signaling failed to suppress the production of Rag proteins and to promote developmental progression of B cell progenitors. Unlike p110delta, however, p110alpha did not contribute to agonist-induced BCR signaling. These studies indicate that either p110alpha or p110delta can mediate tonic signaling from the BCR, but only p110delta can contribute to antigen-dependent activation of B cells.
During immunoglobulin heavy chain (Igh) V(D)J recombination, D to J precedes V to DJ recombination in an ordered manner, controlled by differential chromatin accessibility of the V and DJ regions and essential for correct antibody assembly. However, with the exception of the intronic enhancer Emu, which regulates D to J recombination, cis-acting regulatory elements have not been identified. We have assembled the sequence of a strategically located 96-kb V-D intergenic region in the mouse Igh and analyzed its activity during lymphocyte development. We show that Emu-dependent D antisense transcription, proposed to open chromatin before D to J recombination, extends into the V-D region for more than 30 kb in B cells before, during, and after V(D)J recombination and in T cells but terminates 40 kb from the first V gene. Thus, subsequent V antisense transcription before V to DJ recombination is actively prevented and must be independently activated. To find cis-acting elements that regulate this differential chromatin opening, we identified six DNase I-hypersensitive sites (HSs) in the V-D region. One conserved HS upstream of the first D gene locally regulates D genes. Two further conserved HSs near the D region mark a sharp decrease in antisense transcription, and both HSs bind CTCF in vivo. Further, they both possess enhancer-blocking activity in vivo. Thus, we propose that they are enhancer-blocking insulators preventing Emu-dependent chromatin opening extending into the V region. Thus, they are the first elements identified that may control ordered V(D)J recombination and correct assembly of antibody genes.
V(D)J recombination in lymphocytes is the cutting and pasting together of antigen receptor genes in cis to generate the enormous variety of coding sequences required to produce diverse antigen receptor proteins. It is the key role of the adaptive immune response, which must potentially combat millions of different foreign antigens. Most antigen receptor loci have evolved to be extremely large and contain multiple individual V, D and J genes. The immunoglobulin heavy chain (Igh) and immunoglobulin kappa light chain (Igk) loci are the largest multigene loci in the mammalian genome and V(D)J recombination is one of the most complicated genetic processes in the nucleus. The challenge for the appropriate lymphocyte is one of macro-management-to make all of the antigen receptor genes in a particular locus available for recombination at the appropriate developmental time-point. Conversely, these large loci must be kept closed in lymphocytes in which they do not normally recombine, to guard against genomic instability generated by the DNA double strand breaks inherent to the V(D)J recombination process. To manage all of these demanding criteria, V(D)J recombination is regulated at numerous levels. It is restricted to lymphocytes since the Rag genes which control the DNA double-strand break step of recombination are only expressed in these cells. Within the lymphocyte lineage, immunoglobulin recombination is restricted to B-lymphocytes and TCR recombination to T-lymphocytes by regulation of locus accessibility, which occurs at multiple levels. Accessibility of recombination signal sequences (RSSs) flanking individual V, D and J genes at the nucleosomal level is the key micro-management mechanism, which is discussed in greater detail in other chapters. This chapter will explore how the antigen receptor loci are regulated as a whole, focussing on the Igh locus as a paradigm for the mechanisms involved. Numerous recent studies have begun to unravel the complex and complementary processes involved in this large-scale locus organisation. We will examine the structure of the Igh locus and the large-scale and higher-order chromatin remodelling processes associated with V(D)J recombination, at the level of the locus itself, its conformational changes and its dynamic localisation within the nucleus.
Chromosomal translocation requires formation of paired double-strand DNA breaks (DSBs) on heterologous chromosomes. One of the most well characterized oncogenic translocations juxtaposes c-myc and the immunoglobulin heavy-chain locus (IgH) and is found in Burkitt's lymphomas in humans and plasmacytomas in mice. DNA breaks in IgH leading to c-myc/IgH translocations are created by activation-induced cytidine deaminase (AID) during antibody class switch recombination or somatic hypermutation. However, the source of DNA breaks at c-myc is not known. Here, we provide evidence for the c-myc promoter region being required in targeting AID-mediated DNA damage to produce DSBs in c-myc that lead to c-myc/IgH translocations in primary B lymphocytes. Thus, in addition to producing somatic mutations and DNA breaks in antibody genes, AID is also responsible for the DNA lesions in oncogenes that are required for their translocation.
Cellular identity is determined by the switching on and off of lineage-specific genes. This dynamic process is regulated by a highly co-ordinated series of chromatin remodelling mechanisms that control DNA accessibility to facilitate transcription, replication and recombination. The identity of an individual B-lymphocyte is defined by the expression of a unique antibody protein, composed of two identical immunoglobulin heavy and two identical light chain polypeptides, which recognize a single foreign antigen with high specificity. However, the mammalian adaptive immune system requires an enormous variety of antibody-expressing B cells to combat the millions of foreign antigens it may encounter. This diversity is generated primarily at the multigene immunoglobulin loci by V(D)J recombination, a specialised form of DNA recombination in which numerous variable (V), diversity (D) and joining (J) genes are cut and pasted together in a strict order to allow shuffling of immunoglobulin genes. The mouse immunoglobulin heavy chain (Igh) locus is the largest known multigene locus. It spans approximately 3 Mb and comprises more than 200 genes. Its size and complexity pose an enormous logistic challenge to the chromatin remodelling machinery, but recent major advances in our understanding of how the 200 genes are shuffled have begun to reveal an exquisitely co-ordinated set of chromatin remodelling mechanisms which exploit every aspect of nuclear dynamics, and provide a global view of multigene regulation. This review will explore the numerous processes implicated in opening up and positioning of the locus to enable shuffling of the Igh locus genes, including non-coding RNA transcription, histone modifications, transcription factors, nuclear relocation and locus contraction.
In healthy mammals, maturation of B cells expressing heavy (H) chain immunoglobulin (Ig) without light (L) chain is prevented by chaperone association of the H chain in the endoplasmic reticulum. Camelids are an exception, expressing homodimeric IgGs, an antibody type that to date has not been found in mice or humans. In camelids, immunization with viral epitopes generates high affinity H chain-only antibodies, which, because of their smaller size, recognize clefts and protrusions not readily distinguished by typical antibodies. Developmental processes leading to H chain antibody expression are unknown. We show that L(-/-) (kappa(-/-)lambda(-/-)-deficient) mice, in which conventional B cell development is blocked at the immature B cell stage, produce diverse H chain-only antibodies in serum. The generation of H chain-only IgG is caused by the loss of constant (C) gamma exon 1, which is accomplished by genomic alterations in C(H)1-circumventing chaperone association. These mutations can be attributed to errors in class switch recombination, which facilitate the generation of H chain-only Ig-secreting plasma cells. Surprisingly, transcripts with a similar deletion can be found in normal mice. Thus, naturally occurring H chain transcripts without C(H)1 (V(H)DJ(H)-hinge-C(H)2-C(H)3) are selected for and lead to the formation of fully functional and diverse H chain-only antibodies in L(-/-) animals.
Facioscapulohumeral muscular dystrophy (FSHD) is caused by deletions within the polymorphic DNA tandem array D4Z4. Each D4Z4 repeat unit has an open reading frame (ORF), termed "DUX4," containing two homeobox sequences. Because there has been no evidence of a transcript from the array, these deletions are thought to cause FSHD by a position effect on other genes. Here, we identify D4Z4 homologues in the genomes of rodents, Afrotheria (superorder of elephants and related species), and other species and show that the DUX4 ORF is conserved. Phylogenetic analysis suggests that primate and Afrotherian D4Z4 arrays are orthologous and originated from a retrotransposed copy of an intron-containing DUX gene, DUXC. Reverse-transcriptase polymerase chain reaction and RNA fluorescence and tissue in situ hybridization data indicate transcription of the mouse array. Together with the conservation of the DUX4 ORF for >100 million years, this strongly supports a coding function for D4Z4 and necessitates re-examination of current models of the FSHD disease mechanism.
Transcription in mammalian nuclei is highly compartmentalized in RNA polymerase II-enriched nuclear foci known as transcription factories. Genes in cis and trans can share the same factory, suggesting that genes migrate to preassembled transcription sites. We used fluorescent in situ hybridization to investigate the dynamics of gene association with transcription factories during immediate early (IE) gene induction in mouse B lymphocytes. Here, we show that induction involves rapid gene relocation to transcription factories. Importantly, we find that the Myc proto-oncogene on Chromosome 15 is preferentially recruited to the same transcription factory as the highly transcribed Igh gene located on Chromosome 12. Myc and Igh are the most frequent translocation partners in plasmacytoma and Burkitt lymphoma. Our results show that transcriptional activation of IE genes involves rapid relocation to preassembled transcription factories. Furthermore, the data imply a direct link between the nonrandom interchromosomal organization of transcribed genes at transcription factories and the incidence of specific chromosomal translocations.
V(D)J recombination is believed to be regulated by alterations in chromatin accessibility to the recombinase machinery, but the mechanisms responsible remain unclear. We previously proposed that antisense intergenic transcription, activated throughout the mouse Igh VH region in pro-B cells, remodels chromatin for VH-to-DJH recombination. Using RNA fluorescence in situ hybridization, we now show that antisense intergenic transcription occurs throughout the Igh DHJH region before D-to-J recombination, indicating that this is a widespread process in V(D)J recombination. Transcription initiates near the Igh intronic enhancer Emu and is abrogated in mice lacking this enhancer, indicating that Emu regulates DH antisense transcription. Emu was recently demonstrated to regulate DH-to-JH recombination of the Igh locus. Together, these data suggest that Emu controls DH-to-JH recombination by activating this form of germ line Igh transcription, thus providing a long-range, processive mechanism by which Emu can regulate chromatin accessibility throughout the DH region. In contrast, Emu deletion has no effect on VH antisense intergenic transcription, which is rarely associated with DH antisense transcription, suggesting differential regulation and separate roles for these processes at sequential stages of V(D)J recombination. These results support a directive role for antisense intergenic transcription in enabling access to the recombination machinery.
The mechanisms that regulate variable (V) gene selection during the development of the mouse IgH repertoire are not fully understood, due in part to the absence of the complete locus sequence. To better understand these processes, we have assembled the entire 2.5-Mb mouse IgH (Igh) V region sequence of the C57BL/6 strain from public sequences and present the first complete annotated map of the region, including V genes, pseudogenes, repeats, and nonrepetitive intergenic sequences. In so doing, we have discovered a new V gene family, VH16. We have identified clusters of conserved region-specific intergenic sequences and have verified our assembly by genic and intergenic Southern blotting. We have observed that V pseudogenes are not evenly spread throughout the V region, but rather cluster together. The largest J558 family, which spans more than half of the locus, has two strikingly different domains, which suggest points of evolutionary divergence or duplication. The 5' end contains widely spaced J558 genes interspersed with 3609 genes and is pseudogene poor. The 3' end contains closely spaced J558 genes, no 3609 genes, and is pseudogene rich. Each occupies a different branch of the phylogenetic tree. Detailed analysis of 500-bp upstream of all functional genes has revealed several conserved binding sites, general and B cell-specific, as well as key differences between families. This complete and definitive assembly of the mouse Igh V region will facilitate detailed study of promoter function and large-scale mechanisms associated with V(D)J recombination including locus contraction and antisense intergenic transcription.
The assembly of Ag receptor genes by V(D)J recombination is regulated by transcriptional promoters and enhancers which control chromatin accessibility at Ig and TCR gene segments to the RAG-1/RAG-2 recombinase complex. Paradoxically, germline deletions of the IgH enhancer (Emu) only modestly reduce D(H)-->J(H) rearrangements when assessed in peripheral B cells. However, deletion of Emu severely impairs recombination of V(H) gene segments, which are located over 100 kb away. We now test two alternative explanations for the minimal effect of Emu deletions on primary D(H)-->J(H) rearrangement: 1) Accessibility at the D(H)J(H) cluster is controlled by a redundant cis-element in the absence of Emu. One candidate for this element lies 5' to D(Q52) (PD(Q52)) and exhibits promoter/enhancer activity in pre-B cells. 2) In contrast to endpoint B cells, D(H)-->J(H) recombination may be significantly impaired in pro-B cells from enhancer-deficient mice. To elucidate the roles of PD(Q52) and Emu in the regulation of IgH locus accessibility, we generated mice with targeted deletions of these elements. We report that the defined PD(Q52) promoter is dispensable for germline transcription and recombination of the D(H)J(H) cluster. In contrast, we demonstrate that Emu directly regulates accessibility of the D(H)J(H) region. These findings reveal a significant role for Emu in the control mechanisms that activate IgH gene assembly and suggest that impaired V(H)-->D(H)J(H) rearrangement in enhancer-deficient cells may be a downstream consequence of the primary block in D(H)-->J(H) recombination.
During B cell development, proliferative expansion takes place after expression of the pre-BCR. At this pre-BII cell stage, the IL-7Ralpha is also expressed. Some in vitro studies suggest that pre-BCR-dependent expansion relies on the IL-7Ralpha, and others that it does not. It has also been suggested that the pre-BCR mediates down-regulation of the IL-7Ralpha. However, the in vivo relationship between the pre-BCR and the IL-7Ralpha has not been previously examined. Here, we have investigated this by establishing mice lacking both receptors. Our results show that in the absence of the IL-7Ralpha, the pre-BII population is reduced, as previously seen in mice lacking the pre-BCR, demonstrating that the IL-7Ralpha is important at this stage. A deficiency in both receptors results in a further reduction of the pre-BII cell population. We conclude that both the IL-7Ralpha and the pre-BCR are required for optimal pre-BII cell expansion. Furthermore, IL-7Ralpha expression levels are normal in pre-BCR-deficient mice, suggesting that the pre-BCR does not mediate its down-regulation. As a consequence of the absence of both receptors, the peripheral B cell pool is severely depleted, resulting in atypical splenic B cell structures and reduced serum Ig levels.
Lymphocytes are characterised by monoclonal expression of antigen receptors. This is achieved by silencing of one of two homologous antigen receptor alleles, a process known as allelic exclusion. This process is regulated both before and after V(D)J recombination, by a variety of mechanisms. These include nuclear localisation, changes in chromatin structure and histone modifications, non-coding sense and antisense RNA transcription, epigenetic alterations at the DNA level, feedback signalling from expressed alleles, locus contraction and decontraction, recruitment to heterochromatin. This review will focus on recent advances in the immunoglobulin heavy and kappa light chain loci. The current picture is of a complex, temporally ordered sequence of events, in which these loci share many contributory mechanisms, but clear and intriguing differences are emerging.
The cytokine IL-7 and its receptor are essential for normal B and T lymphopoiesis. We have analyzed the role of this receptor in B cell development throughout ontogeny in IL-7 receptor alpha-deficient mice. We demonstrate that the IL-7 receptor becomes progressively more important with age. B lymphopoiesis takes place, albeit at reduced levels, in fetal liver and bone marrow of young mice, but is arrested in adults. The outcome is a severe reduction, from an early age, in peripheral B cells including follicular, marginal zone and B-1 B cells as well as perturbed splenic B cell structures, which are restored after adoptive transfer of normal spleen cells. We conclude that in the absence of the IL-7 receptor, the residual B lymphopoiesis occurring early in ontogeny must be facilitated by another component, whereas the IL-7 receptor is the key factor in adults. The impairment of marginal zone and B-1 B cells in IL-7 receptor- but not IL-7-deficient mice suggests non-redundant functions for the IL-7 receptor ligands, IL-7 and thymic stromal lymphopoietin.
Antigen receptor genes undergo variable, diversity and joining (V(D)J) recombination, which requires ordered large-scale chromatin remodeling. Here we show that antisense transcription, both genic and intergenic, occurs extensively in the V region of the immunoglobulin heavy chain locus. RNA fluorescence in situ hybridization demonstrates antisense transcription is strictly developmentally regulated and is initiated during the transition from DJ(H) to VDJ(H) recombination and terminates concomitantly with VDJ(H) recombination. Our data show antisense transcription is specific to the V region and suggest transcripts extend across several genes. We propose that antisense transcription remodels the V region to facilitate V(H)-to-DJ(H) recombination. These findings have wider implications for V(D)J recombination of other antigen receptor loci and developmental regulation of multigene loci.
Two soluble tumour-necrosis-factor-alpha(TNF)-binding proteins are derived from the extracellular domains of the p55 and p75 TNF receptors. They are considered to play a pivotal regulatory role in TNF-mediated inflammatory processes, including diseases such as rheumatoid arthritis, by competing with the cell surface receptors for TNF and lymphotoxin (LT, tumour-necrosis factor beta). The extracellular domains of the two receptors each contain four similar cysteine-rich repeats of about 40 amino acids, in common with several other cell surface proteins including the p75 nerve-growth-factor receptor and the CD40 and Fas antigens. The aim of this study was to characterize the involvement of the four cysteine-rich repeats of the human p55 TNF receptor in TNF and LT binding by both membrane-bound and soluble forms of the receptor. Individual repeats were systematically deleted by PCR mutagenesis and the variants transiently expressed in COS cells. Immunoprecipitated receptor variants exhibited the expected sizes on SDS/PAGE gels, and bound a panel of conformation-dependent anti-(TNF receptor) antibodies. Binding of TNF by the four soluble derivatives was compared with binding by the wild-type soluble receptor using a TNF-affinity column and a BIAcore Biosensor, by measurement of their ability to inhibit TNF cytotoxicity on WEHI cells, and 125I-TNF binding to U937 cells. delta 4, which lacks the fourth cysteine-rich repeat, bound TNF comparably with the full-length soluble receptor. TNF-binding affinity was unaltered by deletion of the fourth membrane-proximal cysteine-rich repeat, as determined by Scatchard analysis of the transmembrane derivatives. We conclude that the fourth cysteine-rich repeat is not required for TNF binding. In contrast, both the soluble and the transmembrane derivatives lacking any one of the first, second or third repeats failed to bind TNF. Although we cannot entirely exclude the possibility that this may be due to indirect conformational change, rather than the removal of essential epitopes, our results suggest that the first three repeats are each required for TNF binding by both the soluble and the cell-surface receptor.