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A Negative Feedback Loop Regulates Integrin Inactivation
and Promotes Neutrophil Recruitment to Inflammatory Sites
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Neutrophils are abundant circulating leukocytes that are rapidly recruited to sites of inflammation in an integrin-dependent fashion.

Contrasting with the well-characterized regulation of integrin activation, mechanisms regulating integrin inactivation remain

largely obscure. Using mouse neutrophils, we demonstrate in this study that the GTPase activating protein ARAP3 is a critical

regulator of integrin inactivation; experiments with Chinese hamster ovary cells indicate that this is not restricted to neutrophils.

Specifically, ARAP3 acts in a negative feedback loop downstream of PI3K to regulate integrin inactivation. Integrin ligand binding

drives the activation of PI3K and of its effectors, including ARAP3, by outside-in signaling. ARAP3, in turn, promotes localized

integrin inactivation by negative inside-out signaling. This negative feedback loop reduces integrin-mediated PI3K activity, with

ARAP3 effectively switching off its own activator, while promoting turnover of substrate adhesions. In vitro, ARAP3-deficient neu-

trophils display defective PIP3 polarization, adhesion turnover, and transendothelial migration. In vivo, ARAP3-deficient neutro-

phils are characterized by a neutrophil-autonomous recruitment defect to sites of inflammation. The Journal of Immunology,

2019, 203: 1579–1588.

N
eutrophils are abundant leukocytes that are key to the
inflammatory response and provide a first line of defense
against infections. Upon stimulation, circulating neu-

trophils leave the blood stream to be recruited to sites of infection
or injury, where they phagocytose and kill pathogens, releasing
reactive oxygen species (ROS) and other cytotoxic agents (1, 2).
Inappropriately activated neutrophils can make important contri-
butions to host injury.
Integrins are a/b heterodimeric cell surface receptors that

bind to extracellular matrix proteins and transmembrane re-
ceptors expressed by activated endothelial cells, bridging them
to the cytoskeleton (3). In addition to the major b2 leukocyte
integrins, neutrophils also express others, including the ubiquitous

b1 integrins. Integrin ligation triggers “outside-in” signaling to
initiate intracellular signaling cascades. This is distinct from
“inside-out” signaling, which refers to intracellular signaling
events that regulate the integrin ligand binding affinity status.
Although the mechanism of integrin activation is well charac-
terized in leukocytes, the regulation of integrin inactivation re-
mains largely elusive.
Integrins are essential for neutrophil recruitment to sites and

clearance of infections, as illustrated by leukocyte adhesion defi-
ciencies, rare genetic diseases characterized by lacking, dysfunc-
tional, or activation-impaired b2 integrins (4, 5). A large body of
work identified how leukocyte integrins are activated in a mech-
anism that is crucial for neutrophil recruitment to inflamed sites.
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Proximally, this involves the adapters talin and kindlin-3, which
directly bind to integrin cytoplasmic tails, promoting their activation
(6, 7), with Rap and its effectors, RAPL, RIAM, and Radil, acting
upstream. Excessive integrin activity has also been shown to inter-
fere with leukocyte recruitment (8, 9), but mechanisms governing
integrin inactivation in this context remain poorly defined.
Class I (agonist-activated) PI3Ks transduce signals through the

generation of the lipid second messenger phosphatidylinositol 3,4,5-
trisphosphate (PIP3) by phosphorylation of PI(4,5)P2 in the plasma
membrane. Four class I PI3K isoforms exist and are expressed by the
neutrophil: a, b, g, and d (10). Class I PI3K isoforms are activated
upon receptor ligation by SH2 domain binding to phosphotyrosine
motifs in receptors or their adapters (e.g., in integrin outside-in
signaling) and G protein bg subunits, as well as Ras/Rho family
small GTPases. PIP3 causes the recruitment to the plasma mem-
brane and activation of numerous PI3K effector proteins, including
several regulators of small GTPases.
ARAP3 is a PI3K- and Rap-regulated GTPase activating protein

for RhoA and Arf6 that was identified as a PIP3 binding protein
from pig neutrophils (11, 12). ARAP3 shares its domain structure
with ARAP1/2, which differ in their expression profiles and
substrate specificities (11, 13–15). We previously showed ARAP3
to regulate adhesion-dependent processes in the neutrophil (16).
The data presented in this study identify that integrin activation
triggers a negative feedback loop downstream of PI3K by which
ARAP3 promotes integrin inactivation. Despite focusing in this
study on b1 integrins in neutrophils, we demonstrate that this
function of ARAP3 is also broadly applicable elsewhere. As well
as causing a polarization and chemotaxis defect in vitro, in vivo,
ARAP3-deficiency interferes with efficient neutrophil recruitment
to sites of inflammation.

Materials and Methods
Unless indicated otherwise, cell culture reagents were from Life Technolo-
gies, cell culture plastics were from Corning, and all other materials were
from Sigma. All reagents were of the lowest available endotoxin grade. PI3K
inhibitors (Selleck Chemicals) and final concentrations used were as follows:
pan-PI3K, wortmannin (50 nM); PI3Ka, BYL-719 (0.25 mM); PI3Kb,
TGX-221 (40 nM); and PI3Kd, IC87114 (1 mM).

Inducible Arap32/2 mouse model

To analyze neutrophils in vitro, 10–12-wk-old sex-matched Arap3fl/fl

ERT2Cre+ mice were induced with a single i.p. injection with 200 mg/kg
tamoxifen or vehicle, with experiments performed 10–12 d after induction
as described (16). For in vivo experiments, age- and sex-matched Arap3fl/fl

ERT2Cre+ mice and Arap3+/+ERT2Cre+ controls were subjected to five
successive gavages with emulsion containing 1.5 mg of tamoxifen, fol-
lowed by a rest period of 10 d (Supplemental Fig. 3A for an example).
For ease of reading, tamoxifen-induced Arap3fl/fl ERT2Cre+ mice (or
neutrophils) are referred to in the text as ARAP3-deficient and in figures
as 2/2, whereas vehicle-induced Arap3fl/fl ERT2Cre+ and tamoxifen-induced
Arap3+/+ERT2Cre+ controls are referred to as controls and +/+, with expla-
nations provided in the figure legends. All mice were housed in a specific
pathogen–free small animal barrier unit at the University of Edinburgh. All
animal work was approved by the University of Edinburgh Animal Welfare
Committee and conducted under the control of the U.K. Home Office (PPL
60/4502 and PFFB 42579).

Neutrophil preparations

Bone marrow–derived mouse neutrophils were prepared on a discon-
tinuous Percoll gradient as previously described (17), using endotoxin
reagents throughout, yielding ∼70% purity as assessed by cytocentrifuge
preparations. Unless stated otherwise, experiments were performed in
Dulbecco’s PBS supplemented with Ca2+ and Mg2+, 1 g/l glucose, and 4 mM
sodium bicarbonate.

Adhesion-induced neutrophil functions

Tissue culture wells were coated overnight at 4˚C with fibronectin as in-
dicated. Surfaces were washed three times with PBS, blocked with 10%

FBS in PBS, and washed again before addition of prewarmed neutro-
phils. ROS production was measured indirectly using chemilumines-
cence produced by 5 3 105 neutrophils per well at 37˚C with 150 mM
luminol and 18.75 U/ml HRP in the presence or absence of TNF-a
(20 ng/ml final concentration) in luminescence-grade 96-well plates (Nunc)
using a Cytation plate reader (BioTek) essentially as described (16). Where
indicated, neutrophils were preincubated with inhibitors for 10 min at 37˚C
at the indicated concentrations. Where blocking peptides were employed,
neutrophils were plated onto the immobilized stimuli and the competing
peptide, such that both were encountered at the same time. Neutrophil
adhesion, spreading, and degranulation assays were done as previously
described (16). For adhesion to endothelial cells, bEND5 cells were seeded
into 24 wells, allowed to form confluent monolayers for 2 d, and stimulated
with 5 nM TNF-a for 16 h. After washing and careful aspiration, 100 ml
of HBSS (with Ca2+ and Mg2+) containing 1 3 105 neutrophils were
added and allowed to bind to the stimulated endothelial cells under
gentle rocking. After 30 min, nonadherent neutrophils were washed away
with HBSS (without Ca2+ and Mg2+). Adherent neutrophils were fixed
with PFA, labeled for GR1 (clone RB6-8C5; BioLegend), and counted in
randomly taken frames (EVOS imaging system; Advanced Microscopy
Group/Thermo Fisher). Transendothelial migration toward the indicated
concentrations of MIP2 (R&D Systems) for 1 h in 6.5-mm transwell inserts
with 3-mm pore polycarbonate membranes (Corning) was performed as
described (17). Transmigrated neutrophils were labeled for GR1, and eight
random fields of view were photographed and counted (320 magnifica-
tion; EVOS imaging system).

ARAP3 knockdown in aIIbb3-expressing Chinese hamster
ovary cells

aIIbb3-Expressing Chinese hamster ovary (CHO) cells were transduced
with lentiviral short hairpin RNAs (shRNAs) directed against mouse
ARAP3. shRNA sequences (shRNA1, 59-CTCCGGCTGGAAGGTGTATAT-
39 and 59-GGAATCCGCAAGAAGTTAAA-39; shRNA2, 59-GCAGAAGT-
GTGCGTCTCTAAA-39 and 59-TGTATGAAGAGCCAGTATATG-39)
identified from the Broad Institute RNA interference consortium database
(https://portals.broadinstitute.org/gpp/public) were used alongside a non-
targeting control (NTC; 59-GCGCGATAGCGCTAATAATTT-39). Oligo-
nucleotides were synthesized (Sigma-Genosys) and cloned into pLKO.1
(18), inserts were sequenced, lentiviral particles were generated, and
transduced CHO cell populations were selected with puromycin. Sam-
ples were analyzed by Western blot using sheep anti-ARAP3 antiserum
(11) and anti-human CD41 (MAB7616; R&D Systems), with HSP90
(clone 3H3C27; BioLegend) serving as loading control.

CHO cell adhesion and spreading

Trypsinized CHO cells in Dulbecco’s PBS supplemented with Ca2+ and
Mg2+, 1 g/l glucose, and 4 mM sodium bicarbonate were preincubated with
inhibitors or vehicle for 10 min at 37˚C as indicated prior to being plated
for 30 min onto glass coverslips that had been coated with 150 mg/ml fi-
brinogen and blocked with 2% fatty acid–free BSA. Fixed, washed cells
were stained with AF568-conjugated phalloidin (Thermo Fisher Scien-
tific); random images were acquired at 320 magnification (EVOS imaging
system). Prior to measuring cell areas with ImageJ, binary images were
thresholded, and the watershed feature was applied to define single cells.

Direct analysis of integrin activity status

Activated b1 integrin was detected using an activation epitope–specific
Ab (clone 9EG7; BD Biosciences) with an AF488-conjugated secondary
Ab (Invitrogen). Images were acquired with a 633 objective using a
Zeiss LSM780 confocal microscope with Zeiss Zen Black software. The
corrected total cellular fluorescence was calculated using ImageJ by
selecting regions for each cell and nearby regions of background and
applying the following formula: corrected total cellular fluorescence = inte-
grated density – (area of selected cell 3 mean fluorescence of back-
ground readings).

Neutrophil binding to an AF647-labeled fibronectin fragment was
performed essentially as described (19) using flow cytometry using a 5L
LSRFortessa (BD Biosciences). Analysis was performed using FlowJo
software (version 10) by gating for singlets, selecting neutrophils based
on forward- and side-scatter profile, and measuring the geometric mean
fluorescence intensity. Similarly, CHO cell binding to AF594-labeled
fibrinogen (Thermo Fisher Scientific) as well as activated and total
aIIbb3 on trypsinized CHO cells were detected with fluorescently
conjugated Abs (clones PAC-1 and A2A9.6, respectively; BioLegend)
and analyzed by measuring the geometric mean fluorescence intensity
of singlets.
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Indirect analysis of PI3K activity

Neutrophil lysates were subjected to immunoblotting with a phosphospecific
anti-PKB T308 (clone C25E6; Cell Signaling Technology) essentially as
described (17), with Syk used as loading control (clone 5F5; BioLegend).

Analysis of GFP–PH–PKB reporter distribution

Micropipette chemotaxis assays were conducted, and polar plots were
derived and overlaid using Anagraph (S. Andrews, The Babraham Institute)
and QuimP software (20) (Garching Innovation) as described (21).

Neutrophil adhesion under laminar flow conditions

Purified neutrophils were preincubated for 10 min at 37˚C with PI3K in-
hibitors or vehicle as indicated prior to being perfused through flow
chamber slides (Ibidi VI0.4) that had been coated with recombinant murine
(rm) ICAM-1 (15 mg/ml), rm P-selectin (10 mg/ml; both BioLegend), and
rm CXCL1 (10 mg/ml; Biotechne) using a syringe pump (Legato 200; KD
Scientific) to deliver a constant shear stress of 1 dyne/cm2 at 37˚C. Ad-
hesion under flow was recorded with 320 magnification by time lapse
imaging (2.5 images/s) for 1 min at 1, 5, 10, and 15 min after starting the flow.
This was done using a Leica IRB inverted microscope equipped with a
temperature-controlled automated stage (Prior), an Orca camera (Hamamatsu),
and Micro-Manager image acquisition software (Fiji). Firmly adherent cells
were manually counted using ImageJ.

LPS-induced acute lung inflammation

LPS-induced acute lung inflammation (ALI) was performed essentially as
described (22). Some mice received 3 mg of allophycocyanin–anti-CD45
(30-F11; BioLegend) in 100 ml of sterile PBS i.v. 15 min prior to being
sacrificed 4 h after LPS administration, such that in lung digest samples,
neutrophils could be stratified by CD45+ and CD452 staining, indicating
vascular or interstitial cells, respectively. Lungs were slowly perfused
through the right ventricle with 10 ml of saline, and a portion of the
right inferior lobe was collected for single-cell digestion with collage-
nase (Roche) and subsequent analysis. Bronchoalveolar lavage (BAL)
cells were counted (NucleoCounter; Sartorius). BAL cells and lung
digests were labeled with FITC–anti-GR1 and allophycocyanin–anti-
CD11b (BioLegend) and analyzed by flow cytometry to calculate total
neutrophil numbers (GR1high, CD11b+). For imaging, lungs were perfused
with low-melting-point agarose, allowed to set on ice, dissected, and fixed
with formaldehyde. Left lungs were precision-sliced 300 mm thick using a
vibratome (5100 MZ; Campden Instruments), permeabilized, blocked, and
labeled for PECAM-1 (clone 2H8; Abcam) and S100A9/MRP14 (Hycult
Biotech) with DAPI counterstaining. Following brief formaldehyde
postfixation, slices were mounted using Mowiol containing 2.5% (w/v)
DABCO in gaskets and analyzed using a confocal laser scanning mi-
croscope to produce tile-scanned z-stacks (LSM 880 nonlinear optical
Airyscan Fast using a 203 plan Apo 1.0 numerical aperture, water im-
mersion objective and 405-, 488-, and 561-nm continuous wave lasers
and acquiring in Airyscan Fast mode; Zeiss). Image analysis was per-
formed using IMARIS software (versions 8 and 9, Bitplane; Oxford
Instruments). Endothelial surfaces (PECAM-1+) were rendered to allow
identification of airway, interstitital, or vascular compartments. Vascular
and perivascular neutrophils (S100A9+) were counted and normalized to
the total volume of the vasculature.

Statistical analysis

Where data met the assumptions for parametric tests, two-tailed Student t
tests or one-way ANOVAwith Bonferroni-corrected post hoc comparisons
was used. Otherwise, the nonparametric Mann–Whitney rank sum test was
used for comparisons. For multiple comparisons, ANOVAwith Bonferroni-
corrected post hoc comparisons was used. For kinetic experiments (ROS
production), the area under the curve was calculated, excluding baseline
measures, and comparisons were made using a two-tailed Student t test.
The p values ,0.05 were considered statistically significant.

Results
We previously described an embryonically lethal Arap3-knockout
mouse (23) and a tamoxifen-inducible system for the analysis of
ARAP3-deficient neutrophils. Apart from leukocyte-specific b2
integrins, neutrophils express many others, including ubiquitous
b1 integrins that are involved in interactions with extracellular
matrix components such as fibronectin and vitronectin. In keeping
with our earlier work, we observed enhanced effector functions,

including adhesion, spreading, ROS production, and degranula-
tion, with ARAP3-deficient neutrophils that had been plated onto
fibronectin with costimulation by TNF-a (Supplemental Fig. 1A–
G) but not upon stimulation with formylated peptides (16). This
implies that ARAP3 is an important regulator of neutrophil
functions downstream of b1 integrin ligation.

ARAP3 promotes neutrophil b1 integrin inactivation

To ascertain whether the hyper-stimulatory effect of fibronectin
binding on ARAP3-deficient neutrophils was due to integrin
activity, we made use of a blocking peptide, GRGDSPK, that has
been shown to compete with fibronectin binding (24, 25).
GRGDSPK, but not a control peptide with disrupted arginine/
glycine/aspartic acid (RGD) motif, interfered with ROS produc-
tion induced by plating control and ARAP3-deficient neutrophils
onto fibronectin-coated plastic in the presence of TNF-a in a
concentration-dependent fashion (Fig. 1A).
Increased integrin abundance might explain such increased re-

sponses. We did, however, not observe any increased surface integrin
expression with ARAP3-deficient neutrophils [Supplemental
Fig. 1H, 1J, data not shown (16)]. An alternative explanation
would be an activated integrin conformation present in ARAP3-
deficient neutrophils. We analyzed binding of suspension control
and ARAP3-deficient neutrophils to a fluorescently tagged soluble
fibronectin fragment. In the presence of 1 mM Mg++, ARAP3-
deficient neutrophils exhibited a significant increase in fibro-
nectin fragment binding compared with controls (Fig. 1B, 1C).
We also employed an Ab that binds to an activation epitope
present on both human and mouse b1, 9EG7. We plated control
and ARAP3-deficient neutrophils onto fibronectin in the presence
of TNF-a and observed significantly increased 9EG7 binding with
ARAP3 deficiency (Fig. 1D, 1E). We concluded that ARAP3 pro-
motes integrin inactivation in the neutrophil.

ARAP3 promotes inactivation of heterologous human aIIbb3
and endogenous integrins in CHO cells

ARAP3 expression is restricted to some myeloid cells and the
vasculature in the mouse (data not shown), but it is more broadly
expressed in epithelial cells in some other organisms (11). To
establish whether ARAP3-mediated integrin inactivation is re-
stricted to the neutrophil, we used CHO cells that had been
engineered to express the human platelet integrin aIIbb3 (26).
Taking advantage of the high degree of conservation between
hamster and mouse ARAP3 (92% cDNA identity), we generated
two ARAP3-knockdown CHO cell populations by expressing
distinct pools of mouse ARAP3-targeting shRNAs alongside a
population expressing an NTC shRNA (Fig. 2A).
Surface (but not total) human aIIbb3 was reduced in both

ARAP3 knockdowns (Fig. 2A–D). To test whether ARAP3 reg-
ulates the activity status of the heterologous aIIbb3 in CHO cells,
we measured binding to fluorescently labeled fibrinogen by sus-
pending CHO cells by flow cytometry. Increased fibrinogen
binding was observed with both ARAP3-knockdown populations
(Fig. 2E, 2F). Moreover, by employing the activation epitope–
specific Ab PAC-1, we noted that the proportion of activated out of
total surface aIIbb3 was increased in ARAP3-knockdown cells
(Fig. 2G), consistent with the notion that ARAP3 regulates inac-
tivation of heterologous human aIIbb3 integrin in CHO cells, too.
In cancer cells, increased b1 integrin activity correlates with

increased spreading (19). As an indirect readout of integrin activity,
we therefore also measured the areas occupied by CHO cells that
had been plated onto fibrinogen (Fig. 2H, 2I). ARAP3-knockdown
CHO cells occupied a significantly larger area than NTC-expressing
CHO cells, again indicative of ARAP3-dependent control of CHO

The Journal of Immunology 1581

http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1900443/-/DCSupplemental
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1900443/-/DCSupplemental
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1900443/-/DCSupplemental
http://www.jimmunol.org/lookup/suppl/doi:10.4049/jimmunol.1900443/-/DCSupplemental


cell integrins. Preincubating the cells with aIIbb3-blocking
abciximab significantly reduced the area occupied by control
and ARAP3-knockdown CHO cells, suggesting that heterologous
aIIbb3 mediated most fibrinogen binding. Interestingly, however,
abciximab-preincubated ARAP3-knockdown cells remained more
spread than controls, suggesting that ARAP3 inactivates not only
aIIbb3 but also endogenous hamster integrins that were also ca-
pable of binding fibrinogen without being affected by the blocking
Ab. Inhibiting PI3K significantly reduced the areas occupied
by control and ARAP3-knockdown CHO cells. No significant
difference remained between experimental groups after treatment

with wortmannin. These observations are in keeping with ARAP3
being a PI3K effector that is able to regulate many integrins, in-
cluding heterologous human aIIbb3 in CHO cells.

ARAP3 acts in a negative feedback loop downstream of
integrin and PI3K

Having established that ARAP3 mediates integrin inactivation,
we turned our attention to upstream signaling. In the neutrophil,
ARAP3’s master regulator, PI3K, is activated by integrin outside-
in signaling downstream of Src family kinases/Syk (27), with
PI3Kb and d isoforms implicated in mediating integrin-dependent
responses (28).
To probe the relationship between integrin, PI3K, and ARAP3,

we analyzed ROS production with neutrophils that had been plated
onto fibronectin in the presence or absence of TNF-a. Integrin
ligation-induced ROS depends on PIP3 generation through class I
PI3K, in particular PI3Kb and d (28), whereas SHIP1 (29) or
ARAP3 (Fig. 1) deficiency causes increased adhesion-dependent
ROS. Inhibiting individual class IA PI3K isoforms reduced
adhesion-induced ROS production observed with control and
ARAP3-deficient neutrophils and abrogated significant differences
observed between genotypes (Fig. 3A).
ROS production is dependent on PIP3-activated Rac guanine

nucleotide exchange factors, inhibition of which could poten-
tially explain the above result. We therefore also analyzed the
PI3K dependency of degranulation with control and ARAP3-
deficient neutrophils that been stimulated by being plated onto
fibronectin in the presence or absence of TNF-a. Inhibiting
class IA PI3Ks also reduced the enhanced degranulation that is
characteristic of ARAP3-deficient cells; in particular, following
PI3Kd inhibition, no significant difference remained between
genotypes (Fig. 3B).
We analyzed adhesion and spreading of control and ARAP3-

deficient neutrophils after PI3K inhibition to fibronectin-coated
plastic. Inhibiting PI3Kb/d did not significantly affect the
ability of neutrophils to adhere to fibronectin, in keeping with
an earlier report that had analyzed neutrophil adhesion to
immobilized immune complexes [(28), data not shown]. How-
ever, it resulted in compromised neutrophil spreading in both
genotypes, putting an end to significant differences between
them (Fig. 3C).
Finally, we compared adhesion of neutrophils under constant

flow in parallel-plate flow chambers. As previously reported (16),
we noted increased neutrophil adhesion with ARAP3-deficient
neutrophils compared with controls. Preincubating the neutro-
phils with a PI3Kb-specific inhibitor caused decreased neutrophil
adhesion in both genotypes (Fig. 3D). Notably, this abolished the
significant difference in adhesion observed between genotypes in
the absence of inhibitor treatment. Together, these results show
that ARAP3 acts downstream of PI3K in neutrophil adhesion and
adhesion-dependent neutrophil functions. Given the heightened
responses observed with ARAP3-deficient neutrophils, they also
suggest the existence of a negative feedback loop.
For experimental evidence of this feedback loop, we analyzed

PKB/Akt T308 phosphorylation as an indirect readout for PI3K
activity with neutrophils that did or did not express ARAP3. PKB
T308 phosphorylation was increased more dramatically in ARAP3-
deficient than control neutrophils that had been plated onto the
synthetic integrin ligand poly-RGD (Fig. 3E, 3F). In contrast,
ARAP3 deficiency did not confer increased PKB T308 phos-
phorylation in neutrophils that had been stimulated with the sol-
uble agonist fMLF (Fig. 3G, 3H). We concluded that ARAP3
functions in a negative feedback loop specifically downstream of
integrin-stimulated PI3K to inactivate integrins.

FIGURE 1. ARAP3 promotes b1 integrin inactivation in neutrophils.

Neutrophils were prepared from bone marrow of mock (+/+) and tamoxi-

fen-induced (2/2) inducible Arap3-knockout mice. (A) ROS production

was analyzed with neutrophils that had been plated onto 20 mg/ml fibro-

nectin in the presence or absence of 20 ng/ml TNF-a together with the

indicated concentration of the RGD blocking peptide GRGDSPK or the

control peptide GRADSP. Results obtained in four separate experiments

are combined in this graph. (B and C) Binding of control and ARAP3-

deficient neutrophils to a fluorochrome-coupled fibronectin fragment was

determined by flow cytometry. A representative experiment (B) and the

integrated results from four separate experiments (C) are presented. (D and

E) Neutrophils were allowed to adhere to fibronectin-coated coverslips,

fixed, and immunostained with a b1 activation epitope–specific Ab. Rep-

resentative confocal images with corresponding heatmaps of the fluores-

cence intensity are shown (D). Scale bar, 5 mm. (E) Integrated results

obtained with 9–18 cells analyzed per genotype from three separately

performed experiment are plotted. All bar graphs show mean 6 SEM.

*p , 0.05, **p , 0.01, ***p , 0.001, calculated by unpaired two-tailed

Student t tests.
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Integrin–PI3K–ARAP3 negative feedback signaling regulates
persistent neutrophil polarization during chemotaxis

Chemotaxing neutrophils are characterized by polarized PIP3
at the pseudopod (30, 31). To analyze whether the nega-
tive feedback loop delineated in this study operates to con-
trol neutrophil behavior, we analyzed PIP3 generation in the
chemotaxing neutrophil in a spatiotemporal fashion. Having
crossed inducible ARAP3-knockout mice with mice expressing
a PIP3 probe, GFP–PKB–PH (30), we used confocal micros-
copy to monitor PIP3 production in real time in control and
ARAP3-deficient neutrophils that were allowed to chemotax on
glass coverslips toward fMLF. Control cells displayed persis-
tent PIP3 polarization toward the chemoattractant. In contrast,
ARAP3-deficient cells were unable to polarize PIP3 persis-
tently, with poles observed to move around cells; more than
50% of ARAP3-deficient neutrophils exhibited additional poles
(Fig. 4A for an example). We generated polar plots (21, 31), to
visualize PIP3 polarization over time in individual neutrophils
(data not shown). Overlays of these polar plots confirmed the

poor persistency of PIP3 polarization of ARAP3-deficient neutro-
phils (Fig. 4B).
In the absence of a probe for activated integrins, we were unable

to test whether nonpersistent PIP3 polarization of ARAP3-deficient

neutrophils coincided with poor turnover of activated integrins.

Fixed, adherent fMLF bath-stimulated control, and ARAP3-

deficient neutrophils were characterized by polarized activated

b1 integrin staining at the pseudopod, where it coincided with

F-actin (Supplemental Fig. 2). For efficient forward motion of

the neutrophil, these adhesions must be short-lived. Given that

ARAP3 is recruited to the plasma membrane by PIP3 (11), it is

well placed to be involved in localized integrin inactivation,

ensuring persistence of polarization and directionality.

ARAP3 regulates neutrophil transendothelial migration and
recruitment to sites of inflammation

We next determined the requirement for ARAP3-dependent integrin
inactivation in neutrophil recruitment to inflammatory sites.Whereas

interstitial migration is thought to be integrin-independent, barriers

FIGURE 2. ARAP3 promotes inactivation of heter-

ologous human aIIbb3 integrin in CHO cells. (A)

CHO cells were transduced to express two distinct

pools of shRNAs directed against mouse ARAP3 or an

NTC. A representative Western blot is shown; HSP90

served as a loading control. (B and C) Surface aIIbb3

on CHO cell populations was determined by flow

cytometry. A representative example (B) and integrated

results from three separately performed experiments

are plotted (C). (D) Integrated results from three sep-

arately performed Western blots for total cellular

aIIbb3 expression. (E and F) CHO cell binding to

fluorescently tagged fibrinogen was analyzed in sus-

pension cultures. A representative example is shown

(E), together with results integrated from at least five

separately performed experiments (F). (G) Activation

epitope–specific PAC1 staining normalized to the total

cell surface aIIbb3 in each cell population. Integrated

results from three separately performed experiments

are presented. (H and I) Control and ARAP3-knock-

down aIIbb3-expressing CHO cells that had or had

not been preincubated with the aIIbb3-blocking Ab

abciximab or the pan-PI3K inhibitor wortmannin, as

indicated, were allowed to adhere to fibrinogen-coated

coverslips. Random images were taken, and the cell

areas were analyzed. Results from four to seven sep-

arate experiments are plotted (H), together with rep-

resentative images (I). Scale bar, 20 mm. All bar graphs

show mean 6 SEM. Raw data were analyzed for sta-

tistical significance. The p values were calculated by

one-way ANOVA with Bonferroni-corrected post hoc

testing (C, D, F, and G), and data were analyzed by two-

way ANOVAwith Bonferroni posthoc test, respectively

(H). Significant differences between treatments of the

same populations are indicated above the individual bars

with hashtag symbols, whereas differences between

NTC and shRNA-expressing cells within each condition

are indicated by asterisk symbols above the brackets.
#,*p , 0.05, ##,**p , 0.01.
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need to be overcome in an integrin-dependent fashion for
neutrophil recruitment (e.g., during transendothelial migration).
We first addressed whether the increased integrin activity of
ARAP3-deficient neutrophils influences interactions with endo-
thelial cells and transendothelial migration efficiency in vitro. As

expected, we found that ARAP3-deficient neutrophils adhered
more strongly than controls to monolayers of activated endothelial
cells (Fig. 5A). Furthermore, ARAP3-deficient neutrophils were
characterized by impaired migration to chemoattractant in a model for
transendothelial migration, where transwells supported a monolayer of

FIGURE 3. A negative feedback loop involving integrin, PI3K, and ARAP3. Neutrophils were prepared from bone marrow of mock (+/+) and tamoxifen-

induced (2/2) inducible Arap3-knockout mice and (A–D) preincubated with PI3K inhibitors or vehicle controls as indicated. (A) ROS production and (B)

gelatinase release were analyzed with neutrophils that had been plated onto 20 mg/ml fibronectin in the presence or absence of 20 ng/ml TNF-a. Graphs

combine results from four separate experiments. (C) Neutrophils were allowed to adhere for 20 min to 5 mg/ml fibronectin-coated tissue culture plastic in

the presence or absence of 20 ng/ml TNF-a for analysis of spreading. Results obtained in three separate experiments are integrated in this graph. (D)

Neutrophil adhesion under flow. Neutrophils were perfused at constant shear stress through ICAM-1–, P-selectin–, and CXCL1-coated flow chambers as

detailed in Materials and Methods. Results obtained in at least five separate experiments are combined in the graph shown. (E and F) Neutrophils were

allowed to adhere to tissue culture dishes that had been coated with heat-inactivated FCS (HI-FCS) or a synthetic pan-integrin ligand, poly-RGD (pRGD)

for 15 min at 37˚C. (G and H) Suspension neutrophils were stimulated with 1 mM fMLF for the indicated length of time. Lysates were subjected to

SDS-PAGE and Western blots for probing with a phosphospecific Akt/PKB Ab (T308) as well as a loading control (Syk). Representative blots are shown

(D and F), and results obtained from four separately performed experiments are plotted (E and G). All graphs show mean6 SEM. (A)–(C) were analyzed by

one-way ANOVAwith multiple-comparison post hoc tests; (D) and (H) were analyzed by two-way ANOVAwith Bonferroni multiple-comparison tests. Pairwise

comparisons (F) were calculated from raw data by unpaired two-tailed Student t tests. (A, F, and H) Analyses were performed on the raw data. Symbols in

graphs (A)–(D) refer to differences between control and ARAP3-deficient neutrophils (in the absence of inhibitor treatment). No significant differences

between genotypes were identified in (H). *p , 0.05, **p , 0.01, ***p , 0.001.
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TNF-a–stimulated endothelial cells (Fig. 5B). In contrast, ARAP3-
deficient neutrophils were not defective in transwell chemotaxis
(Fig. 5C), in line with our previous findings. Together this suggested
that ARAP3-dependent integrin inactivation might be relevant for
neutrophil recruitment in vivo.
We therefore analyzed neutrophil recruitment in response to

LPS-induced ALI in control and ARAP3-deficient mice. We noted
significantly reduced neutrophil numbers in BAL from ARAP3-
deficient mice compared with controls (Fig. 6A). This held true
with bone marrow chimeras, identifying the recruitment defect as
neutrophil-autonomous (Fig. 6B).
To reach the alveolar space, neutrophils have to breach two

barriers, the capillary wall and the alveolar epithelium. To dif-
ferentiate between neutrophils that were firmly adherent to the
luminal side of the vessel wall or undergoing transendothelial

migration and those that were interstitial (i.e., that had extravasated
but not yet breached the epithelial barrier), we generated precision
slices of agarose-perfused, inflamed lung tissue, labeling endo-
thelium and neutrophils. Microscopic analysis of such lung slices
suggested that larger numbers of ARAP3-deficient neutrophils
had adhered to the lung vasculature and/or were in the process
of transmigrating in ARAP3-deficient lungs (Fig. 6C, 6D). We also
used flow cytometry for a separate, higher-powered quantitative ap-
proach to the same question. Mice were administered a fluorescently
conjugated anti-CD45 Ab i.v., labeling fully or partially intravascu-
lar leukocytes immediately prior to harvesting PBS-perfused, LPS-
inflamed lungs for analysis of tissue homogenates. This identified
significantly increased numbers of ARAP3-deficient neutrophils (but
not macrophages) that had firmly adhered to the vessel wall or were
actively transmigrating at the time of perfusion (Fig. 6E, Supplemental

FIGURE 4. Integrin–PI3K–ARAP3 negative feed-

back signaling improves neutrophil polarization. Neu-

trophils were prepared from bone marrow of mock (+/+)

and tamoxifen-induced (2/2) inducible Arap3-knockout

mice expressing a GFP–PKB–PH PIP3 reporter. Cells

were allowed to settle on a glass coverslip and then

subjected to a point source of chemoattractant (mi-

cropipette). Cells were imaged using a Perkin Elmer

spinning disk Nikon Eclipse TE2000E confocal mi-

croscope using a 1003 oil immersion objective. Im-

ages were acquired every second for 5 min using a

Hamamatsu cooled charge-coupled device camera. (A)

Stills taken from a representative control and ARAP3-

deficient neutrophil. Yellow asterisk symbols indicate

polarization. (B) The distribution of the PIP3 probe

along the edge of each frame of the video was analyzed

using QuimP software, measuring the image intensity

at 100 nodes around the plasma membrane. The signal

intensity along the membrane was normalized to that

within the cell body. Intensity measurements were

plotted using Anagraph, with each frame mapped onto

a concentric ring and signal intensity represented

by color-coding to generate polar plots. The images

shown represent overlays of polar plots generated with

25 control, and 24 ARAP3-deficient neutrophils orig-

inating from six individual animals per genotype.

FIGURE 5. ARAP3-regulated integrin inactivation promotes transendothelial migration in vitro. Neutrophils were prepared from bone marrow of mock

(+/+) and tamoxifen-induced (2/2) inducible Arap3-knockout mice. Neutrophil adhesion (A) to activated mouse endothelial (bEND5) cells. Neutrophil

transendothelial migration and chemotaxis (B and C) toward the indicated concentrations of chemoattractant in transwells that did (B) or did not (C) support

a monolayer of activated bEND5 cells. Graphs integrate data obtained from three to four separate experiments. All bar graphs show mean6 SEM. Pairwise

comparisons were analyzed by unpaired two-tailed Student t tests. *p , 0.05, **p , 0.01.
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Fig. 3B, 3C). We concluded that ARAP3-mediated neutrophil integrin
inactivation enables efficient transendothelial migration, promoting
neutrophil recruitment in vivo (Fig. 7).

Discussion
The present work identifies ARAP3 as a regulator of integrin in-
activation in the neutrophil and elsewhere. Our findings place

ARAP3 downstream of PI3K in a negative feedback loop that
promotes integrin inactivation (Fig. 7). This mechanism en-
ables rapid switching-off of integrins following ligand bind-
ing–induced outside-in signaling. This feedback loop operates
in adherent neutrophils, in which ARAP3-dependent neutrophil
activities are entirely dependent upon outside-in signaling-induced
upstream PI3K activity. ARAP3 deficiency results in increased
integrin activity, which in turn causes increased integrin-induced
PI3K activation and downstream events.
We used integrin-dependent neutrophil chemotaxis as an ex-

perimental system in which to analyze the integrin–PI3K–ARAP3–
integrin negative feedback loop in a spatiotemporal fashion.
ARAP3-deficient neutrophils that chemotaxed on glass toward a
point source of chemoattractant polarized PIP3 and generated
pseudopods, but these were not persistently directed toward
the source of chemoattractant; ARAP3-deficient neutrophils fre-
quently displayed two (or more) poles. This is consistent with the
poor integrin-dependent chemotactic migration of these cells (16).
In chemotaxis on a two-dimensional matrix, class I PI3Ks are
activated downstream of chemoattractant-induced GPCR signal-
ing but also by integrin outside-in signaling. Our results suggest
that ARAP3 signaling is engaged to regulate integrin inactivation
in response to integrin (but not GPCR) stimulation downstream
of PI3K. Our observations are consistent with the possibility
that ARAP3 might simply be recruited to PIP3 in the polarized
neutrophil to inactivate integrin signaling in a spatiotempo-
rally controlled fashion, limiting further integrin-dependent
localized activation of PI3K and enabling pseudopod exten-
sion. Alternatively, further players, such as PIP3 metabolizing
enzymes, might also be recruited to the pseudopod to actively
dephosphorylate PIP3. The functions of two PIP3 phospha-
tases, PTEN and SHIP1, have been analyzed in chemotaxis
(29, 30, 32, 33). SHIP1 is activated and functions in adherent
neutrophils, in which it regulates neutrophil spreading, che-
motaxis, and PIP3 polarization, whereas PTEN is thought to
regulate other features.

FIGURE 6. ARAP3 promotes neutrophil recruitment and transendothelial

migration in a model of acute lung injury. Cre was induced by repeated ta-

moxifen dosing of inducible Arap3-knockout (2/2) and inducible Cre mice

(+/+) or their bone marrow chimeras as indicated. (A and B) ALI was induced

in control and ARAP3-deficient mice (A) or their bone marrow chimeras (B)

by intratracheal administration of LPS. Neutrophil numbers retrieved from

BAL are plotted. (C and D) Agarose-perfused, LPS-inflamed lungs were fixed

and precision-sliced, and endothelium, neutrophils, and nuclei were labeled.

Representative examples of rendered confocal image stacks are presented (C).

Solid arrowheads represent alveolar neutrophils; unfilled arrowheads represent

transendothelial/vascular firmly adherent neutrophils. Scale bar, 100 mm. (D)

Images taken from two mice per genotype were analyzed, and neutrophils that

were adhering to the vasculature or actively transmigrating were counted.

Plotted numbers are normalized to the area of vasculature in the respective

images. (E) Mice were i.v. administered fluorescently coupled anti-CD45 prior

to lavaging of perfused lungs. Vessel-associated, CD45-labeled neutrophils in

lung digests are plotted. (A, B, and E) Each symbol is representative of one

mouse; graphs combine data obtained on at least two separate occasions. All

bar graphs show mean 6 SEM. The p values were calculated by unpaired

two-tailed Student t tests. *p , 0.05, **p , 0.01.

FIGURE 7. ARAP3 boosts integrin inactivation in a feedback loop

downstream of PI3K in the neutrophil. Schematic depicting how integrin-

mediated outside-in signaling activates PI3K to activate ARAP3, which in

turn regulates integrin inactivation by negative inside-out signaling in a

negative feedback loop.
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Physiologically, interstitial neutrophil migration is thought to
be integrin-independent, whereas transendothelial migration is
integrin-dependent, with some variability depending on capillary
bed and stimulus (1, 2, 34). Our work suggests that in these sit-
uations, ARAP3-dependent neutrophil integrin inactivation reg-
ulates efficient neutrophil recruitment to inflammatory sites by
promoting neutrophil extravasation. This identifies that neutrophil
extravasation not only requires activation of integrins but, more-
over, relies on their subsequent inactivation. The existence of an
integrin inactivation step that regulates efficient immune responses
had been predicted by an earlier report, in which rendering aLb2
constitutively active genetically delayed T cell recruitment (9).
Similarly, rendering aMb2 constitutively active using a small
molecule interfered with efficient neutrophil recruitment to in-
flammatory sites (8). Given that ARAP3 is highly expressed in
neutrophils but not in lymphocytes (11), we speculate that integrin
inactivation in lymphocytes is controlled by alternative mecha-
nisms. ARAP1/2 are already implicated in the control of adhesion-
dependent processes elsewhere (35, 36) and are expressed
in lymphocytes (37), suggesting that other ARAP family mem-
ber(s) might be involved in these cells.
In addition to demonstrating ARAP3-dependent inactivation of

neutrophil b1 integrins, our work shows indirectly that ARAP3
also regulates neutrophil integrins that bind to substrates other
than fibronectin (e.g., vitronectin, fibrinogen, and ICAM-1; data
not shown and Ref. 16). ARAP3, moreover, inactivated heterol-
ogous human aIIbb3 as well as endogenous hamster integrins in
CHO cells, again in a PI3K-dependent fashion. Given that ARAP3
is expressed in CHO cells but not in platelets [which express
ARAP1; (37)], aIIbb3 is not a likely bona fide ARAP3 substrate.
Rather, these observations suggest a more general function of
ARAP3 downstream of PI3K in integrin inactivation. This is in-
teresting given ARAP3’s crucial function in developmental
sprouting angiogenesis and lymphangiogenesis (23, 38), processes
that are not only absolutely dependent upon integrins (39) but also
heavily reliant on chemotaxis, with endothelial cells migrating
collectively toward VEGF. It would be interesting to test to what
extent the crucial role of ARAP3 downstream of PI3K in
sprouting angiogenesis is linked to integrin inactivation.
Integrin inactivation remains incompletely understood. Several

scaffold proteins were shown to compete with talin for binding to
integrin cytoplasmic tails in what appears to be a cell type–specific
fashion. DOK-1 (40, 41) and Filamin-A (42, 43) binding to the b2
cytoplasmic tail interfered with b2 integrin activation, affecting
neutrophil chemotaxis and recruitment. Similarly, SHARPIN
binding to b2 in lymphocytes interfered with aLb2 adopting high-
affinity or intermediate ligand binding conformations, with its loss
reducing adhesion turnover and in vitro migration and delaying
homing in vivo (44). Further studies will be required to determine
which, if any, of these scaffold proteins are involved in PI3K–
ARAP3–mediated integrin inactivation.
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