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SUMMARY

The dynamics and coordination between autophagy
machinery and selective receptors during mitophagy
are unknown. Also unknown is whether mitophagy
depends on pre-existing membranes or is triggered
on the surface of damaged mitochondria. Using a
ubiquitin-dependent mitophagy inducer, the lactone
ivermectin, we have combined genetic and imaging
experiments to address these questions. Ubiquitina-
tion of mitochondrial fragments is required the
earliest, followed by auto-phosphorylation of TBK1.
Next, early essential autophagy proteins FIP200 and
ATG13 act at different steps, whereas ULK1 and
ULK2 are dispensable. Receptors act temporally
and mechanistically upstream of ATG13 but down-
stream of FIP200. The VPS34 complex functions at
the omegasome step. ATG13 and optineurin target
mitochondria in a discontinuous oscillatory way, sug-
gesting multiple initiation events. Targeted ubiquiti-
natedmitochondria are cradled by endoplasmic retic-
ulum (ER) strands even without functional autophagy
machinery andmitophagy adaptors. We propose that
damagedmitochondria are ubiquitinated and dynam-
ically encased in ER strands, providing platforms for
formation of the mitophagosomes.

INTRODUCTION

Autophagy is a conserved pathway for nutrient supply during

periods of starvation, classified as non-selective autophagy, or

for degradation of intracellular large structures that are pathogenic

or havebecomedamaged, classified as selective autophagy (Miz-

ushima and Komatsu, 2011; Mizushima et al., 2011; Ktistakis and

Tooze, 2016). In both pathways, a novel doublemembrane organ-
Developmental Cell 50, 1–17, Se
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elle termed autophagosome is formed in the cytosol that then

engulfs its cargo for eventual delivery to the lysosomes and

degradation (Feng et al., 2014; Ohsumi, 2014). For non-selective

autophagy, the cargo is total cytosol, and its degradation in the

lysosomes generates nutrients essential during starvation (Dunlop

and Tee, 2014; Mony et al., 2016). In contrast, specific elimination

of large membrane structures—damaged mitochondria, endo-

plasmic reticulum (ER) fragments, or bacterial pathogens—is the

purview of selective autophagy and constitutes an essential qual-

ity control system (Okamoto, 2014; Stolz et al., 2014; Randowand

Youle, 2014; Anding and Baehrecke, 2017).

The pathway of autophagosome formation in response to star-

vation is now well understood, although the exact origin of the

autophagosomal membrane is still a matter of debate (Lamb

et al., 2013; Bento et al., 2016). For autophagosomes that origi-

nate fromwithin PI3P-enriched regions of the ER termed omega-

somes, the pathway starts by inactivation of the protein kinase

complex mTORC1 and the concomitant activation of the auto-

phagy-specific ULK protein kinase complex composed of the

protein kinase ULK1 (or its homolog ULK2) and the adaptors

FIP200, ATG13, and ATG101 (Saxton and Sabatini, 2017;

Wong et al., 2013). Activated ULK complex translocates to tubu-

lovesicular regions of the ER marked by ATG9 vesicles, and

these sites attract the lipid kinase complex termed VPS34 com-

plex I, which produces PI3P and forms omegasomes (Walker

et al., 2008; Karanasios et al., 2016). PI3P within the omegasome

membrane attracts members of the WIPI family of proteins that

in turn bind to the protein ATG16 andmediate the covalent modi-

fication of the LC3 andGABARAPproteins with phosphatidyleth-

anolamine, which is an important requirement for the formation

of autophagosomes (Wilson et al., 2014; Yu et al., 2018).

The process of selective autophagy requires a set of proteins

connecting the targeted cargo to the autophagic machinery and

a signal on the cargo to mark it for sequestration (Johansen

and Lamark, 2011; Rogov et al., 2014). Selective autophagy

receptors are responsible for bridging cargo with the forming

autophagosome. In yeast, they include Atg32 for mitochondrial

autophagy (mitophagy, Okamoto et al., 2009; Kanki et al.,
ptember 9, 2019 ª 2019 The Authors. Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Inducers of Mitophagy in Mammalian Cells and IVM Action

(A–C) HEK293 cells treated for 2 h with 15 mM IVM, for 8 h with 10 mMoligomycin and 10 mMantimycin A (OA), or for 8 h with 4 mMCCCP and stained for LC3 (A) or

immunoblotted for LC3. (B) Cells treated as above, stained for TOMM20 (MITO) and WIPI2.

(legend continued on next page)
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2009), Atg36 and Atg30 for autophagy of peroxisomes (pexoph-

agy, Motley et al., 2012; Nazarko et al., 2014), Atg39 and Atg40

for autophagy of ER membranes (Mochida et al., 2015), and

Atg19/Atg34 for the Cvt pathway (Scott et al., 2001; Suzuki

et al., 2010; Watanabe et al., 2010). Equivalent and homologous

proteins exist for mammals and for many types of cargo (Khami-

nets et al., 2016). Receptors interact with the autophagic ma-

chinery via LC3 and GABARAP-interacting regions that bridge

autophagosomal membranes with targeted cargo, and such a

simple bi-valent interaction could, in principle, enable engulf-

ment (Birgisdottir et al., 2013). However, the autophagic machin-

ery must also be involved in this process since it is responsible

for generating lipidated LC3 andGABARAP residing on autopha-

gosomal membranes. The current work aims to identify the dy-

namics and hierarchical coordination between the autophagic

machinery and the selective autophagy receptors.

The pathway of mitophagy has been extensively studied since

it was first described (Lemasters, 2005). The ‘‘eat me’’ signals on

damaged mitochondria initiating this process (Randow and

Youle, 2014) can be divided into ubiquitin-dependent and ubiqui-

tin-independent (Khaminets et al., 2016; Yamano et al., 2016).

The former rely on ubiquitination of mitochondrial outer mem-

brane proteins in response to damage that is then recognized

by mitophagy receptors for recruitment of the LC3 and

GABARAP proteins (Dikic, 2017; Kwon and Ciechanover, 2017).

A paradigm is the mitophagy pathway regulated by the PINK1

and Parkin proteins (Narendra et al., 2008; Nguyen et al., 2016)

where several receptors such as optineurin, NDP-52, Tax1BP1,

and p62 translocate to damaged mitochondria (Lazarou et al.,

2015). Mitophagy ‘‘eat me’’ signals independent of ubiquitination

rely on specific mitochondrial proteins acting as mitophagy re-

ceptors (Khaminets et al., 2016; Roberts et al., 2016).

Although mitophagy plays an essential role for mitochondrial

homeostasis in vivo, the exact signals that trigger it at the organ-

ismal level are still relatively obscure (Whitworth and Pallanck,

2017; Rodger et al., 2018). In contrast, at least 14 different phar-

macological agents induce mitophagy in tissue culture cells

(Georgakopoulos et al., 2017). Taking advantage of our experi-

mental models previously used to follow the dynamics of non-

selective autophagy in mammalian cells, we have now examined

the dynamics of mitophagy including the origin of the membrane

used for mitophagy and the coordination between autophagy

and mitophagy machineries during the engulfment step.
(D) Live-cell imaging of HEK293 cells expressing CFP-LC3 and mCherry-MITO

mitochondrial fragments targeted by LC3. See Video S1 for the whole sequence

(E–G) OCR of HEK293 cells treated with IVM. Time course and percent inhibition

(H) HEK293 cells treated with 15 mM IVM and 40 mm mdiv-1 as indicated for 4

experiments done in duplicate are shown.

(I and J) HEK293 cells treated with siRNA against DNM1L or with a non-targeting

ubiquitin and puncta per cell were determined. Means of two experiments done

(K) HEK-293 cells untreated or treated with 15 mM IVM for 45 min, lysed, and im

spectrometry and the top 11 hits enriched after IVM treatment are shown.

(L) Samples as in (K) were blotted for CIAP1, TRAF2, or b-COP (a loading contro

(M) HEK293 cells treated with siRNA against TRAF2 or NT control for 72 h were

(N) HEK-293 cells treated with siRNA against CIAP1, CIAP2 and TRAF2 or with

puncta per cell were determined. Means of three experiments done in duplicate

(O) Parallel samples were lysed and blotted for CIAP1, TRAF2 or b-COP.

(P) Cells downregulated for CIAP1, CIAP2, and TRAF2 as in (N) and (O) above w

MITOFUSIN 2 were determined by immunoblots and quantitated.
RESULTS

IVM Characterization
We searched for mitophagy inducers not requiring overexpres-

sion of Parkin (or of any other protein) so as to avoid extremely

strong, potentially non-physiological activation of this pathway.

The protonophore CCCP (Narendra et al., 2008) and, more

recently, a combination of oligomycin and antimycin A (OA, Laz-

arou et al., 2015) induce canonical PINK1-Parkin-dependent

mitophagy upon Parkin overexpression. In mouse embryonic

fibroblasts (MEFs) with undetectable expression of Parkin, we

did not observe mitophagy with these compounds (data not

shown). In contrast, HEK293 cells with moderate endogenous

Parkin expression showed a mitophagy response after 8 h of

treatment. Another compound that induced this pathway within

2 h of treatment was the heterocyclic lactone ivermectin (IVM).

In all three cases, we observed translocation of LC3 to autophagy

puncta (Figure 1A) and detected formation of LC3 type II—a lipi-

dated form of LC3 diagnostic of autophagy induction—by immu-

noblots (Figure 1B). In addition, early autophagy components,

such as WIPI2, working downstream of the PI3P-dependent

step (Polson et al., 2010), translocated to puncta and co-localized

with mitochondrial fragments (Figure 1C). To verify that these

puncta were mitochondria targeted by the autophagy machinery

we used live imaging (Figure 1D; Video S1). Upon IVM treatment,

mitochondria fragmented within 10 min and LC3 puncta that

appeared 15min later associatedwith these fragments (Figure 1D

arrows). The other two compounds also induced similar dy-

namics (see later sections for OA treatment) but less frequently.

Of note, IVM induced this response within 30 min of treatment,

which provides a convenient tool for live-imaging studies.

We carried out additional experiments to characterize IVM,

which is a well-known anti-parasitic compound (Campbell

et al., 1984; Crump and �Omura, 2011), in the mitophagy pathway

(Figure S1). HEK293 cells treated with IVM showed translocation

of LC3 to punctate structures by immunofluorescence (Fig-

ure S1B) and formation of LC3 type II comparable to autophagy

induction with the mTOR inhibitor PP242 (Figures S1C and

S1D). The IVM-induced response did not depend onmTOR inac-

tivation (Figure S1E) but was sensitive to the VPS34 inhibitor

wortmannin (Figure S1F) and used an omegasome intermediate

(Figure S1G). Mitophagy induced by IVM showed the hallmarks

of the response by electron microscopy (EM) (formation of
and treated with 15 mM IVM. Shown are selected time points; arrows mark

. Scale bar, 10 mm.

are plotted as shown.

5 min, stained for ubiquitin, and puncta per cell determined. Means of two

(NT) control for 72 h. After incubation with 15 mM IVM, cells were stained for

in duplicate are shown.

munoprecipitated with ubiquitin antibodies. Samples were analyzed by mass

l).

treated as in (K) and immunoblotted for TRAF2.

NT control for 96 h. After treatment with 15 mM IVM and staining for ubiquitin,

are shown.

ere incubated with IVM and the levels of mitochondrial proteins TOMM20 and
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Figure 2. Response of Mitophagy Components to IVM in MEFs and Hierarchy of Steps

(A) MEFs treated for 90 min with 15 mM IVM or with 1 mM PP242 and immunolabeled for ubiquitin and P-TBK1 (left panels) or WIPI2 and optineurin (right panels).

(B) MEFs treated for 90 min with 15 mM IVM and 30 mM PYR-41 and immunostained as above. Puncta were quantitated (graphs to the right).

(legend continued on next page)
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mitophagosomes surrounding mitochondria, Figure S1H) and

caused significant degradation of mitochondrial proteins (Fig-

ure S1I). However, this mitophagy response did not require

PINK1 and Parkin (Figures S1J–S1M). In further characterization,

we showed that IVM did not cause extensive mitochondrial per-

meabilization (Figures S2A and S2B) but enhanced cytosolic

ubiquitin puncta (Figure S2C). Of note, inhibition of ubiquitination

with the broad inhibitor PYR-41 (Yang et al., 2007), reduced the

effects of IVM on LC3 type II formation (Figures S2D and S2E).

Because treatment with IVM causes fragmentation of mito-

chondria and induces ubiquitination, we determined if its

mechanism of action was similar to other known mitophagy in-

ducers such as OA that modulate mitochondrial respiration dur-

ing mitophagy. Indeed, oxygen consumption rate (OCR) was

significantly reduced by IVM at the concentration range used in

our assays (Figures 1E–1G). We also determined whether frag-

mentation of mitochondria upon IVM addition was a prerequisite

for their ubiquitination by using either a specific chemical inhib-

itor of the DNM1L GTPase (Mdiv) involved in mitochondrial

fission or siRNA against the DNM1L enzyme. Both inhibited

ubiquitination (Figures 1I and 1J). Thus, IVM causes ubiquitin-

dependent mitophagy without relying on the PINK1 and Parkin

ubiquitination system. To identify candidate target proteins and

the ubiquitin E3 ligases involved, we isolated and identified ubiq-

uitinated proteins enriched in IVM-treated cells versus untreated

cells (Figure 1K). Of the top 11 proteins differentially enriched by

mass spectrometry, we verified that CIAP1 (also known as

BIRC2) and TRAF2 were substantially enriched on anti-ubiquitin

columns upon IVM treatment (Figures 1L and 1M), and slower

migrating forms of CIAP1 (Figure 1L, blue bracket) or TRAF2 (Fig-

ure 1M, arrow) were enriched in those columns. Although we did

not find specific antibodies for CIAP2, we assume that it is also

present in the columns based on its interaction with CIAP1 and

the proteomics data. To examine if CIAP1, TRAF2, and CIAP2

were functionally involved in IVM action, we downregulated all

three by siRNA and measured IVM-induced ubiquitin puncta in

cells (Figures 1N and 1O) and IVM-induced degradation of

TOMM20 and MITOFUSIN 2 (Figure 1P). Reduction of the three

proteins inhibited ubiquitination and degradation by 50%, indi-

cating that the three proteins are at least partially involved in

IVM action. Of note, both TRAF2 and CIAP1 have recently

been implicated in autophagy and mitophagy responses (Meng

et al., 2010; Tang et al., 2013; Hu et al., 2017) with TRAF2 func-

tioning downstream of the drug celastrol for ubiquitination and

mitophagy (Hu et al., 2017).

Genetic Studies
To delineate the mechanism of mitophagy, we used inhibitors

and MEFs deleted in various autophagy and mitophagy

genes. A set of antibodies to endogenous reporter proteins

allowed differentiation of mitophagy induction from non-selec-

tive autophagy (Figure 2A). These were anti-ubiquitin, anti-phos-

pho(S172)-TBK1 (P-TBK1, a kinase involved in selective
(C) Cells analyzed as in (B) but treated with 15 mM IVM and 5 mM BX-795.

(D) Cells treated with IVM alone or with IVM and BX-795 were immunoblotted fo

(E) Cells analyzed as in (B) but treated with 15 mM IVM and 4 mM VPS34-IN1.

Scale bar, 15 mm.

(F) Hierarchy of translocation of the 4 autophagy/mitophagy components (ubiqu
autophagy [Wild et al., 2011; Heo et al., 2015]), anti-optineurin

(a mitophagy adaptor), and anti-WIPI2. Untreated cells showed

a diffuse signal with all four antibodies. Cells induced for auto-

phagy with PP242 showed a punctate signal for WIPI2 but

diffuse signal for the other three reporters. In contrast, IVM treat-

ment caused the translocation of all four reporters to punctate

signals that co-localized with each other (Figure 2A). Thus,

WIPI2 puncta that do not correspond to optineurin puncta are

likely to be specific for non-selective-autophagy, whereas

P-TBK1 and ubiquitin puncta formed when optineurin and

WIPI2 puncta also appear, are likely to be mitophagy specific.

To ensure that IVM-induced puncta were related to mitophagy,

we stained these cells with antibodies to a mitochondrial protein

and either P-TBK1 or WIPI2. These puncta co-localized with

mitochondrial fragments (data not shown). With those markers,

we then determined the hierarchical relationship between ubiq-

uitination (using the PYR-41 inhibitor), TBK1 auto-phosphoryla-

tion (using the BX-795 inhibitor [Feldman et al., 2005]) and

VPS34 activation (using the VPS34-IN1 inhibitor [Bago et al.,

2014; Dowdle et al., 2014]). PYR-41 inhibited translocation of

all four reporters to puncta, indicating that ubiquitination is the

most upstream (Figure 2B). Inhibition of TBK1 phosphorylation

reduced puncta of P-TBK1, WIPI2, and optineurin, but not of

ubiquitin, indicating that TBK1 activation is downstream of ubiq-

uitination but upstream of activation of the receptors and of the

autophagy machinery at the VPS34 step (Figure 2C). Of note,

BX-795 inhibited IVM-induced phosphorylation of TBK1 and

the IVM-dependent mobility shift of optineurin (Figure 2D).

Finally, inhibition of VPS34 did not affect translocation of ubiqui-

tin, P-TBK1, and optineurin to IVM-induced puncta but inhibited

translocation ofWIPI2 to puncta (Figure 2E). From these data, we

delineated an initial sequence of steps for mitophagy (shown in

Figure 2F).

We then usedMEFs deleted in early autophagy genes to delin-

eate this pathway with respect to the autophagic machinery. In

the absence of FIP200, a component of the ULK complex, trans-

location of ubiquitin and phospho-TBK1 was evident, but that of

optineurin andWIPI2 was inhibited (Figure 3A, left column). In the

absence of ATG13, another component of the ULK complex,

ubiquitin, P-TBK1, and optineurin translocated to punctate

structures upon IVM treatment, but WIPI2 did not (Figure 3A,

middle column). Unexpectedly, the absence of both ULK1 and

ULK2 (the kinases of the ULK complex) did not inhibit transloca-

tion of any of the four components, indicating that early steps of

mitophagy could proceed normally (Figure 3A, right column). For

all experiments, we included samples treated with PP242. This

was important in all cases but especially for the ULK1/ULK2

knockout (KO) samples where we could show that non-selective

autophagy (induced by PP242) was still dependent on those two

kinases, unlike mitophagy. An unanticipated conclusion from

these results was that IVM-inducedmitophagy exhibited a differ-

ential requirement for two of the ULK complex proteins with

FIP200 acting before ATG13. With respect to FIP200, we
r optineurin, P-TBK1, and TBK1.

itin, P-TBK1, optineurin, and WIPI2).
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Figure 3. Requirement of Autophagy Proteins FIP200, ATG13, and ULK1/2 in IVM-Induced Mitophagy

(A) Wild-type MEFs or matched FIP200 KO (left column graphs), ATG13 KO (middle column graphs), or ULK1/2 KO (right column graphs) treated for 90 min with

15 mM IVM or with 1 mMPP242 and immunolabeled for ubiquitin, P-TBK1, optineurin, andWIPI2. The number of puncta for each condition is shown in the graphs.

Blots show absence of the relevant protein (for FIP200 KO MEFs see C).

(legend continued on next page)
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showed, in addition, that FIP200 KO cells showed elevated

amounts of P-TBK1 by immunoblots whereas IVM treatment still

increased those levels further (Figure 3B). Formation of the phos-

phorylated, lower mobility form of optineurin in the FIP200 KO

cells was significantly suppressed (Figure 3B), in agreement

with the immunofluorescence results (Figure 3A, left column)

that indicate that optineurin puncta do not form in response to

IVM treatment. Although the FIP200 KO cells showed elevated

levels of P-TBK1 puncta, this was still sensitive to the BX-795 in-

hibitor indicating that this basal elevated state was reversible

(Figure 3C). Our data implied that without ATG13, FIP200 could

still translocate to puncta in response to IVM, and this was the

case for both ATG13KOMEFs andHEK293 cells carrying a dele-

tion of the ATG13 gene (Figure 3D). Analysis of the IVM response

in ATG9 KO cells showed translocation of all four proteins but

both optineurin and WIPI2 puncta were half of the levels of the

corresponding wild-type cells (Figure S3A), indicating that

ATG9 has an important but not essential role. To better explore

if ATG9 can target mitophagy structures separately from the

rest of the autophagy machinery we examined its localization

upon IVM treatment in FIP200 KO cells. In these cells, which

are severely inhibited for mitophagy and only the ubiquitination

and TBK1 activation steps are evident, ATG9 was still able to

target ubiquitin-enriched mitophagy puncta (Figure S3B).

Based on the MEF data, we derived the preliminary pathway

shown in Figure 3E for the early steps of mitophagy. Core steps

targeting mitochondria are ubiquitination, auto-phosphorylation

of TBK1, and mobilization of receptors such as optineurin, in

this order (Figure 3E, components in orange box). The early auto-

phagymachinery engageswith this sequence at 3 stages: FIP200

is essential downstream of TBK1 activation, ATG13 works down-

stream of receptor activation, whereas ATG9 is not essential but

enhances the response at the FIP200 and ATG13 steps. The rest

of the autophagy machinery, including activated VPS34 and the

PI3P effectorsWIPI2 andDFCP1, translocates tomitophagy sites

downstream of the ATG13 step. One prediction of this model is

that autophagy proteins involved in lipidation will all function

downstream of this core sequence, and we found this to be the

case for ATG5, ATG3, and ATG7 KO MEFs (data not shown).

For PINK1-Parkin-dependent mitophagy, only optineurin and

NDP-52 among the receptors are essential for engulfment and

delivery (Lazarou et al., 2015). MEFs express a homolog of

NDP-52, non-functional for selective autophagy, so we exam-

ined if IVM-dependent mitophagy was reliant on optineurin

alone. In MEFs deleted for optineurin, the response to IVM was

suppressed but not eliminated (Figure S3C). In cells both car-

rying a deletion for optineurin and treated with Tax1BP1 siRNA,

IVM-induced translocation of WIPI2 was significantly inhibited

(Figures S3D and S3E). Of note, those cells still showed a

response of WIPI2 to PP242, suggesting that the reduced

response to IVMwas specific for mitophagy and not an inhibition
(B) Wild-type or FIP200 KO MEFs were treated with 15 mM IVM and 5 mM BX-795

optineurin as indicated.

(C) Wild-type and FIP200 KO MEFs treated with 15 mM IVM and 5 mM BX-795, a

graphs.

(D) ATG13 KO MEFs (left graph) or ATG13 KO HEK293 cells (right graph) were t

is shown.

(E) Hierarchical involvement of mitophagy and autophagy components after IVM
of general non-selective autophagy. We concluded from these

results that mitophagy in MEFs requires the presence of opti-

neurin and Tax1BP1, with the former having a more impor-

tant role.

Dynamics of Mitophagy
We next examined the dynamics of the mitophagy response us-

ing a combination of live imaging, super resolution, and EM and

related this to the genetic and pharmacological analysis above.

To assess engulfment, we imaged cells expressing the omega-

some reporter DFCP1, the autophagy protein LC3, and a

mitochondrial marker. Complete engulfment of mitochondria

fragments by LC3 was seen in those cells, accompanied by

translocation of DFCP1 and dynamic interaction with LC3 during

the process (Figure 4A; Video S2A). Of note, whereas LC3

engulfment was smooth and continuous, the engagement

of omegasomes with mitochondria was more intricate with

frequent changes of direction and a discontinuous rate. In-

stances were also noted where multiple omegasomes formed

on the mitochondria accompanied by multiple LC3-positive

structures, before all coalesced into a single structure that en-

gulfed its target (Figure 4B; Video S2B). The ATG13 protein—

as part of the ULK complex—translocated to the forming

mitophagy structures not smoothly but discontinuously, appear-

ing to oscillate on and off as it moved around the targeted mito-

chondria (Figure 4C, green channel, and Video S3A). Importantly,

the LC3 structure that surrounded the same mitochondrial frag-

ment did so smoothly, initiating from one region of the spherical

mitochondrial piece and going around it (Figure 4C, red channel).

These videos were filmed at one frame every 10 s, and it is

possible that the ATG13 movements were too fast to be

captured accurately. When we captured frames every 1s (Fig-

ure 4D; Video S3B), we saw that ATG13 structures targeted

the mitochondrial fragments in multiple waves, with each wave

lasting 30–60 s and initiating from different regions of the frag-

ments. Thus, the discontinuous ATG13 dynamics of the slower

video in panel C are likely due to this oscillatory behavior. To

estimate the frequency of these oscillatory recruitments, we

counted all events where we could distinguish an ATG13 signal

partially (or fully) surrounding a mitochondrial fragment at some

point during the time course. In this way, we excluded events

showing an interaction between ATG13 and a mitochondrial

membrane without the former surrounding the latter that could

be due to nucleation of an autophagosome for non-selective

autophagy near a mitochondrion. Under those conditions,

100% of events implicated in mitophagy showed oscillatory

behavior of ATG13. These data have been used to derive a

model for this early step in the pathway (Dalle Pezze et al., per-

sonal communiation).

The initial dynamics of optineurin translocation to formingmito-

phagosomes resembled those of ATG13 in being discontinuous
as indicated before lysis and immunoblotting for FIP200, P-TBK1, TBK1, and

nd immunolabeled for ubiquitin or P-TBK1. Number of puncta is shown in the

reated with 15 mM IVM and immunolabeled for FIP200. The number of puncta

addition.
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Figure 4. Dynamics of Omegasomes and ATG13 during Mitophagy

(A) Live-cell imaging of HEK293 cells expressing GFP-DFCP1, CFP-LC3, and mCherry-MITO, treated with IVM. A mitochondrial fragment is engulfed by DFCP1

and LC3 (white arrows). Whole sequence in Video S2A.

(legend continued on next page)
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and jerky, although eventually the optineurin structures com-

pletely engulfed the mitochondrial fragments and stayed associ-

ated with them (Figure S4A; Video S4A). Interestingly, the initial

movements of optineurin around the targeted structures were

not synchronous and did not coincide spatially with ATG13 (Fig-

ure S4A), though both ATG13 and optineurin first engaged with

their targets synchronously. In contrast, engagement of opti-

neurin with its target preceded the engagement of LC3 by almost

10 min (Figure S4B; Video S4B). The temporal order of engage-

ment as revealed by these videos (first optineurin, then ATG13,

then DFCP1 and LC3) is consistent with the hierarchical scheme

in Figure 3D. Given that the whole process initiates with a ubiqui-

tinated mitochondrial fragment, we then used live imaging to

verify that the ATG13 jerky movements around the targeted mito-

chondriawereonstructures fully outlinedbyubiquitin (FigureS4C;

Video S5).

The Role of the ER
For non-selective autophagy via omegasome intermediates, the

ER provides a cradle for assembly of autophagosomal mem-

branes. For selective autophagy, the role of the ER is unknown.

We observed that ATG13-enriched autophagosomal structures

engulfing mitochondrial fragments showed a strong coincidence

with theunderlyingER (Figure5A;VideoS6) for longperiodsduring

engulfment that was maintained as the targeted mitochondria

moved around the cell. When mitochondria were surrounded by

the ER, the ATG13 dynamics were always seen in association

with thestrands (Figure5B,short sequence leading to theengulfed

structuremarkedwith arrows, and Figure 5C). Close apposition of

targeted mitochondria to ER domains was also seen by super-

resolution microscopy. SIM imaging of cells treated with IVM

and stained for ATG13, WIPI2 (or, instead, P-TBK1 or optineurin),

mitochondria, and ER showed that the engulfed mitochondrial

fragments were encased within ER strands where the autophagy

and mitophagy machinery was also assembled (Figures 5D and

S5A). To address the possibility that such structures were formed

onlywhenmitophagy proceeded to completion, we usedHEK293

cells lacking ATG13. In these cells, FIP200 and ubiquitin still

respond to IVM (see for example Figure 3D) but downstream

events are blocked (see Figure 3E). SIM analysis of those cells

showed that FIP200andNDP52were still capable of translocating

to ubiquitin-marked mitochondrial fragments associating with

ER (Figure S5B), although these structures did not appear fully

formed.We obtained similar results with all of the KO lines that re-

sponded either partially or fully to IVM: the formed structureswere

associated with fragmented mitochondria.

Examples of tight association between the ER and forming mi-

tophagosomes are evident in some previous publications using

Parkin overexpression (see Figure 2A in Yoshii et al., 2011), sug-

gesting a generalized ER involvement for mitophagy. To explore

this further, we used live imaging after OA treatment (shown to

induce canonical PINK1-Parkin-dependent mitophagy, Lazarou
(B) Cells as in (A) but with a larger mitochondrial fragment (white arrows) targeted

sequence in Video S2B. Scale bar, 2 mm.

(C) Imaging of HEK293 cells expressing GFP-ATG13, CFP-LC3, and mCherry-MI

fragment (white arrows) followed by LC3 (yellow arrows). Whole sequence in Vid

(D) HEK293 cells expressing GFP-ATG13 andmCherry-MITO, treated with IVM. O

Video S3B. Scale bar, 1 mm.
et al., 2015, and first introduced in Figure 1). Under this alterna-

tive mitophagy induction, we showed that ATG13 structures

translocated and rotated on mitochondrial fragments akin to

the IVM response (Figure S6A). Importantly, translocation of

ATG13 to forming mitophagosomes was on ER regions and

the full engulfment by ATG13 was on fragments encased by

the ER (Figures 6B and 6C, note regions marked by arrows).

These results suggest that the basic characteristics of the

mitophagy pathway we have described are maintained across

more than one induction protocol.

To examine the spatial relationship betweenmitophagosomes

and the ER at higher resolution, we used a combination of livemi-

croscopy followed by EM (Figure 6) first described for our auto-

phagy work (Walker et al., 2017). Cells expressing ATG13 and a

mitochondrial marker were treated with IVM during live imaging,

fixed on stage, and prepared for EM serial sectioning or tomog-

raphy. We found examples where ATG13 structures surrounding

mitochondria (Figures 6B–6D and S7) were recognized after EM

preparation in the form of double membrane phagophores (Fig-

ures 6A, 6E–6G, and S7). The double membrane phagophore

surrounded the mitochondrion very tightly (Figures 6A and 6E–

6G). In this particular example, three separate phagophores

are evident (green in Figures 6E–6G), and interestingly, the space

devoid of phagophores was tightly occupied by a membrane

cistern resembling ER (yellow in Figures 6E–6G). A reconstruc-

tion of this event shows a very tight association between the

ER, the phagophore, and the targeted mitochondrion (Figures

6H–6L; Video S7). Additional examples of the engulfment pro-

cess are shown in Figure S7. In addition to proximity to the ER

and phagophore (especially Figures S7B and S7C), other vesi-

cles can be seen in the surrounding region, and in one example,

a mitochondrion is targeted by ER strands without the double-

membrane phagophore being visible (Figure 7Aiii). This is a

particularly informative event because the ATG13-positive struc-

ture was very early based on live imaging, and it is likely that a

double-membrane phagophore had not yet formed. Another

such example is shown in Figures 6M–6P in more detail. The

ATG13 particle formed around the mitochondrial fragment was

clearly identified in the live imaging, but no phagophore was

apparent in the EM tomogram. Instead, the targeted mitochon-

drion was surrounded by ER strands and a few vesicles. We

hypothesize that this may be one of the earliest visible interme-

diates in the engulfment process where elements of the early

autophagy machinery, such as proteins of the ULK complex

and ATG9 vesicles, associate with the targeted mitochondrion

and with the ER before a proper phagophore begins to form.

With respect to the ubiquitination step, super-resolution mi-

croscopy revealed a close association of the ubiquitin signal

with the targeted mitochondria and with both autophagy and mi-

tophagy components (Figure 7A, top two rows). The ubiquitin

layer on the targeted mitochondria was also in tight apposition

to the ER (Figure 7A, last three rows). The temporal relationship
by 3 separate DFCP1- and LC3-positive phagophores (yellow arrows). Whole

TO, treated with IVM. Engagement of an ATG13 structure with a mitochondrial

eo S3A.

scillation of ATG13 around a single mitochondrial fragment. Whole sequence in
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Figure 5. The ER during Mitophagy

(A) Imaging of HEK293 cells expressing GFP-ATG13, CFP-ER, and mCherry-MITO, treated with IVM. Arrows point to instances where ATG13 and ER coincide.

Whole sequence in Video S6.

(legend continued on next page)
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of the ubiquitinated mitochondrial fragments with the ER was

complicated. When fragments first became ubiquitinated (with

instantaneous timing and without discernible intermediate

stages of engulfment), they interacted with ER strands but

were not encased by them (Figure 7B). Several minutes later,

the ubiquitin and the ER signal overlapped significantly, with

the ER surrounding the ubiquitinated structures (Figure 7B, white

arrows in the last two frames). Once such an overlap was estab-

lished, it lasted for over 10 min, and it was evident as the mito-

chondrial fragments moved around the cell (Figure 7C, white

arrows). Association of ubiquitinated mitochondria with the ER

could take place in the presence of a mitophagy signal but in

the absence of functional autophagy and mitophagy machin-

eries: MEFs deleted for FIP200 and treated with BX-795, the

TBK1 inhibitor, still showed that the ubiquitinated mitochondria

were encased in ER strands (Figure 7D white arrows, for three

separate examples). Longer IVM treatments produced more

examples of ER-encased ubiquitinated structures, consistent

with the rest of our work showing that the interaction with the

ER is a relatively later step after ubiquitination.

DISCUSSION

During ubiquitin-dependent mitophagy, several protein com-

plexes participate in the targeting of damaged mitochondria for

degradation: ubiquitination machinery, receptors that recognize

damaged mitochondria, and the autophagic machinery creating

the double membrane to engulf them (Yoshii and Mizushima,

2015; Yamano et al., 2016). How these machineries are coordi-

nated is unknown. An additional unknown is whether this pro-

cess depends on a pre-existing membrane, as is the case for

the ER during non-selective autophagy, or is it exclusively trig-

gered on the surface of the damaged mitochondria (discussed

by Randow and Youle, 2014). In this work, we have provided

an integrated view of the sequence of steps involved in making

a mitophagosome together with the dynamics of the pathway

as seen by live imaging (Figure S5C).

Mechanistically, IVM reduces oxygen consumption in agree-

ment with previous work (Zhu et al., 2017) and fragments

mitochondria prior to the induction of mitophagy. Following frag-

mentation, mitochondria become ubiquitinated, and this was in-

hibited by inactivation of the DNM1L GTPase that is responsible

for mitochondrial fission. Ubiquitination does not involve the

PINK1/Parkin proteins but depends on the ubiquitin E3 ligases

CIAP1, CIAP2, and TRAF2. These proteins are frequently found

in complex (Vince et al., 2008; Zheng et al., 2010) and have

been linked to some form of autophagy in the past (Meng

et al., 2010; Tang et al., 2013; Hu et al., 2017). In analogy to

the function of TRAF2 downstream of celastrol-induced mitoph-

agy (Hu et al., 2017), a plausible pathway for the IVM response is

that TRAF2 is activated and ubiquitinates CIAP1 and CIAP2 at

the earliest steps, providing the ‘‘eat me’’ signal for mitophagy.

Whereas all mitochondria undergo fragmentation very soon after
(B) Imaging as in (A) of all frames culminating in complete encasing of the mitoch

(C) Additional example as in (B).

(D) Four-color SIM images of mitochondrial fragments (blue) during IVM-induced

and ER (red) shown as indicated. Extensive panels shown in Figure S5A.

Scale bar, 2 mm.
IVM treatment, only the ubiquitin-positive fraction (less than 5%

at any given time) become targets for mitophagy. This is similar

to PINK1/Parkin-dependent mitophagy: although all mitochon-

dria are covered by overexpressed Parkin, only some become

mitophagy substrates at any given time (data not shown). It

was technically difficult to determine if the localized loss of mito-

chondrial potential is a possible signal for ubiquitination.

The ubiquitination step is devoid of any discernible dynamics

during live imaging: fragments appear ubiquitin-free and, within

10 s, become ubiquitin positive. Ubiquitinated mitochondrial

fragments move in association with ER strands but are not

restricted by them until they appear to become entrapped within

the strands. This step does not require any of the known down-

stream machinery such as mitophagy receptors or autophagy

proteins.

After ubiquitinated mitochondria are ER restricted, we

observed auto-phosphorylation of TBK1 and translocation to

the mitochondria-ER site. In MEFs, this occurs before recruit-

ment of the autophagymachinery or of optineurin, themitophagy

receptor. Recent work in PINK1/Parkin-dependent mitophagy

also showed TBK1 activation to be an early event, but in that

case, optineurin function was required for TBK1 activation in a

positive feedback loop (Heo et al., 2015). The importance of

TBK1 early in this pathway is also consistent with other work

showing co-recruitment of TBK1 with optineurin (Moore and

Holzbaur, 2016). The difference of the IVM pathway, which

partially uncouples TBK1 from optineurin at the earliest stages,

may be that a few molecules of optineurin, not enough to give

a fluorescent signal in wide-field conditions but enough to induce

the initial TBK1 activation by oligomerization, are involved early.

Of note, TBK1 is also important during initial stages of bacterial-

targeted autophagy (Thurston et al., 2016).

Downstream of TBK1 activation, we mapped the activity of

FIP200 that was genetically uncoupled from ATG13 and ULK1

and ULK2, two other components of the ULK complex. In the

absence of FIP200, only P-TBK1 puncta were visible upon IVM

induction, but mitophagy adaptors such as optineurin and other

autophagy proteins such as WIPI2 did not translocate to the mi-

tophagy sites. In contrast, without ATG13, optineurin-positive

puncta still formed. Consistent with this, FIP200 puncta were

formed during IVM induction in the ATG13 knockouts. The pri-

macy of FIP200 in the mitophagic response was noted before,

and ATG9-positive structures were seen to translocate to ‘‘auto-

phagosome formation sites for mitophagy’’ (Itakura et al., 2012).

Based on our finding that ATG9 punctate structures still co-

localize with ubiquitin puncta during mitophagy in the absence

of FIP200, we suggest that these ‘‘autophagosome formation

sites for mitophagy’’ are formed by ubiquitinated mitochondria

as they become entrapped by the ER. Activation of the mitoph-

agy receptors such as optineurin was next in our hierarchical

analysis, consistent with previous work showing that activated

TBK1 phosphorylates optineurin (as well as NDP-52, Tax1BP1,

and p62) and causes their translocation during mitophagy
ondrial fragment by the ER (arrow in last frame).

mitophagy. ATG13 (green), optineurin (purple), WIPI2 (purple), P-TBK1 (purple),
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Figure 6. Ultrastructure of the Forming Phagophore during Mitophagy by Correlative Light-Electron Microscopy

Two examples are shown (A–L and M–P) with the color code for all images indicated in (P).

(A) Low-magnification electron micrograph of a cell of interest expressing GFP-ATG13 and dsRED MITO, imaged during IVM treatment.

(legend continued on next page)
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(Richter et al., 2016). The position of optineurin upstream of the

rest of the autophagy machinery excluding FIP200 and possibly

ATG9, is in line with previous work showing sequential transloca-

tion first of optineurin and then the omegasome machinery

during mitophagy (Wong and Holzbaur, 2014). In our analysis,

translocation of ATG13 to the targeted mitochondria was frac-

tionally later than the optineurin translocation, and both opti-

neurin and ATG13 significantly preceded the omegasome step.

This is reminiscent of the temporal order of translocation of the

ULK and omegasome components to forming autophagosomes

during non-selective autophagy (Itakura and Mizushima, 2010;

Karanasios et al., 2013). The uncoupling of ATG13 from ULK1

and ULK2, and the non-essential role of the latter in the early

steps were surprising, especially since ULK1 translocates to

the forming mitophagosome (Lazarou et al., 2015 and data not

shown). However, there are now other examples of autophagic

processes that separate the function of ATG13 (and FIP200)

from ULK1 (Alers et al., 2011; Hieke et al., 2015), and older pub-

lications reporting an essential role of the ‘‘ULK complex’’ in se-

lective autophagy did not consider the proteins of the complex

separately. It is therefore likely that other types of non-selective

and selective autophagy may not rely on the ULK1 function for

the early step but rather on FIP200 and ATG13 nucleation. Inter-

estingly, even some non-autophagic functions of ATG13 are

coupled to FIP200 but uncoupled from ULK1/2 (Kaizuka and

Mizushima, 2016).

The dynamics of the engulfment process were extensively

studied here, and some were unexpected (Figure S5C). Interac-

tion of optineurin and ATG13 with the targeted mitochondria was

not continuous but oscillatory, although for both ATG13 and op-

tineurin, the dynamics of the LC3 structures on the same target

were smooth and continuous. The dynamics of the omegasome

structures on the targeted mitochondrial fragments were tempo-

rally ahead of the LC3 structures and did not exhibit oscillatory

behavior. Their movements were more elaborate than the corre-

sponding LC3 movements, and they appeared to ‘‘guide’’ where

the LC3 signal was deposited. Thus, the PI3P-dependent step

in this process is in line with what we have described for non-

selective autophagy (Karanasios et al., 2013). The ATG13 and

optineurin discontinuous translocations on the forming mitopha-

gosomemay indicate that multiple phagophores form during this

process, consistent with our live imaging and EM analysis and in

line with some previous work (Yoshii et al., 2011). It is also

possible that the covering of large structures with a double

membrane creates a lag time between translocation of the early

components and the lipidation machinery such that early com-

ponents come on and off giving time to the lipidation machinery

to catch up. We are exploring these possibilities by mathemat-

ical modeling (Dalle Pezze et al., personal communication). The
(B) The corresponding (correlated) fluorescent image.

(C and D) last two frames form live imaging of the cropped region indicated by w

(E–G) Images from three sequential serial sections of the same mitophagy event.

and brown membrane is the engulfed mitochondrion.

(H–L) Five views of a 3Dmodel of a mitophagosomewith ER alone (H), ER plus pha

(K) and phagophore plus mitochondria (L); see also Video S7.

(M) Correlation of a low-magnification EM image and the fluorescent image obta

(N) One 2 nm slice through the tomogram of the event indicated by the white arr

(O) Same area as in (N), with a 3D model included.

(P) The segmented model of the event shown in (N) and (O).
remarkable outcome of this mechanism is that mitochondrial

fragments are precisely engulfed in each mitophagosome with

very little empty space evident (our work but see also Sawa-

Makarska, and Martens, 2014; Nakatogawa and Ohsumi, 2014).

What ensures such tight fit and efficiency? We have docu-

mented using live imaging, super-resolution microscopy, and

EM that the ER is intimately associated with the formation of

themitophagosome. Importantly, we did not observe ER strands

threading in and out of the autophagic structure—as is the case

for non-selective autophagy—but rather, ER strands appeared

as a continuation and a cradle for the forming mitophagosomes

(Figure S5C). This ER association may supply lipids and provide

an anchor point akin to what happens in non-selective auto-

phagy for the ULK and VPS34 complexes to coordinate the

translocation events (Ktistakis and Tooze, 2016; Hurley and

Young, 2017). The physical proximity of the ubiquitinated

mitochondria with the ER (evident even when the rest of the mi-

tophagic machinery is inhibited) may also enable the mitophagy

receptors to cluster around their target. Why is this necessary,

and why the mitochondrial fragments could not, on their own,

provide all the spatial clues necessary for the formation of the

mitophagosome? This likely happens for a ‘‘kiss and run’’ mech-

anism whereby the autophagy machinery takes away a piece of

damaged mitochondrion leaving the rest intact (Soubannier

et al., 2012; Yang and Yang, 2013; Yamashita et al., 2016). For

a response such as the one investigated here, the key may be

the dynamic behavior of the optineurin and ATG13 components.

These proteins do not stay on the targeted mitochondrial frag-

ments continuously, but they come on and off several times dur-

ing the engulfment process. At the same time, mitochondrial

fragments themselves are not stationary but can move long dis-

tances around the cell while being engulfed. An ER enclosure

may restrict diffusion and allow more efficient targeting of an

oscillating machinery to a moving target.
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Figure 7. Ubiquitinated Mitochondria Associate with the ER during Mitophagy

(A) Four-color SIM images of mitochondrial fragments (blue) during IVM-induced mitophagy with ATG13 or FIP200 (green), mitophagy adaptors (P-TBK1,

NDP-52, and ubiquitin as indicated), and the ER.

(legend continued on next page)
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Birgisdottir, Å.B., Lamark, T., and Johansen, T. (2013). The LIR motif - crucial

for selective autophagy. J. Cell Sci. 126, 3237–3247.

Campbell, W.C., Burg, R.W., Fisher, M.H., and Dybas, R.A. (1984). The discov-

ery of ivermectin and other avermectins. In ‘‘Pesticide Synthesis Through

Rational Approaches’’ Chapter 1, pp 5–20. ACS Symposium Series 255, 5–20.

Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S.,

Longair, M., Tomancak, P., Hartenstein, V., and Douglas, R.J. (2012).

TrakEM2 software for neural circuit reconstruction. PLoS One 7, e38011.

Chew, T.S., O’Shea, N.R., Sewell, G.W., Oehlers, S.H., Mulvey, C.M., Crosier,

P.S., Godovac-Zimmermann, J., Bloom, S.L., Smith, A.M., and Segal, A.W.

(2015). Optineurin deficiency in mice contributes to impaired cytokine secre-

tion and neutrophil recruitment in bacteria-driven colitis. Dis. Models Mech.

8, 817–829.

Crump, A., and �Omura, S. (2011). Ivermectin, ’wonder drug’ from Japan: the

human use perspective. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 87, 13–28.

Dikic, I. (2017). Proteasomal and autophagic degradation systems. Annu. Rev.

Biochem. 86, 193–224.

Dowdle, W.E., Nyfeler, B., Nagel, J., Elling, R.A., Liu, S., Triantafellow, E.,

Menon, S., Wang, Z., Honda, A., Pardee, G., et al. (2014). Selective VPS34 in-

hibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation

and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069–1079.

Dunlop, E.A., and Tee, A.R. (2014). mTOR and autophagy: a dynamic relation-

ship governed by nutrients and energy. Semin. Cell Dev. Biol. 36, 121–129.

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C.,

Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., et al. (2012). 3D

Slicer as an image computing platform for the Quantitative Imaging

Network. Magn. Reson. Imaging 30, 1323–1341.

Feldman, R.I., Wu, J.M., Polokoff, M.A., Kochanny, M.J., Dinter, H., Zhu, D.,

Biroc, S.L., Alicke, B., Bryant, J., Yuan, S., et al. (2005). Novel small molecule

inhibitors of 3-phosphoinositide-dependent kinase-1. J. Biol. Chem. 280,

19867–19874.

Feng, Y., He, D., Yao, Z., and Klionsky, D.J. (2014). The machinery of macro-

autophagy. Cell Res. 24, 24–41.

Georgakopoulos, N.D., Wells, G., and Campanella, M. (2017). The pharmaco-

logical regulation of cellular mitophagy. Nat. Chem. Biol. 13, 136–146.

Heo, J.M., Ordureau, A., Paulo, J.A., Rinehart, J., and Harper, J.W. (2015). The

PINK1-Parkin mitochondrial ubiquitylation pathway drives a program of

OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol.

Cell 60, 7–20.

Hieke, N., Löffler, A.S., Kaizuka, T., Berleth, N., Böhler, P., Drießen, S.,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Embryonic Fibroblasts (MEFs, sex unknown) were generously donated by the following colleagues: ATG5 KO and ATG13 KO,

Professor Noboru Mizushima; ATG3 and ATG7 KO, Professor Masaaki Komatsu; ULK1/ULK2 KO and ATG9 KO, Dr Sharon Tooze.

The OPTN knockout MEFs were developed from OPTN deficient mice (Chew et al., 2015) as previously described (Tumbarello et al)

and immortalized with the SV40 large T-antigen (Kuma et al., 2004). HEK-293 cells (sex, Female) deficient for ATG13 (kindly donated

by Dr Elise Jacquin and Dr Oliver Florey) were derived as recently described (Jacquin et al., 2017). HEK-293 cells stably expressing

GFP-ATG13 and GFP-DFCP1 have been described before and were isolated after selection in geneticin (Karanasios et al., 2013).

METHOD DETAILS

Compounds
PP242, IVM, PYR-41, and antimycin A were purchased from Sigma-Aldrich (now Merck). BX-795, oligomycin, and CCCP were pur-

chased from Tocris Biosciences. VPS34 INH1 was a kind gift of Dr. Ian Ganley. All compounds were dissolved in DMSO as 1000X

stocks and were used at these final concentrations: PP242 1mM; IVM 20 mM (in the original screen it was used at 10 mM); PYR-41

30 mM; BX-795 5 mM, CCCP 4 mM, oligomycin 10 mM, antimycin A 10 mM.

Immunofluorescence Microscopy
Protocols have been extensively described recently (Lucocq et al., 2001; Karanasios, and Ktistakis, 2015). In brief, cells on coverslips

were fixed in 3.7% Formaldehyde, permeabilized in 0.1%NP40 and stained in a blocking solution containing fish gelation and 0.05%

NP40. Antibodies used and their final dilution are as follows: rabbit anti-OPTN (Cayman Chemicals), 1:100; mouse anti-WIPI2

(Bio-Rad), 1:200; rabbit anti-phospho(S172)TBK1 (Cell Signalling), 1:50; mouse anti-Ubiquitin FK2 (Enzo), 1:100; rabbit anti-

FIP200 (ProteinTech), 1:100; rabbit anti-ATG9 (Cell Signalling), 1:100; mouse anti-TOMM20 (Abcam), 1:100; rabbit anti-ATG13

(Sigma), 1:100; rabbit anti-LC3 (Sigma), 1:150; rabbit anti-NDP52 (GeneTex), 1:100; rabbit anti-Tax1BP1 (ProteinTech), 1:100; rabbit

anti-VAPA (Sigma), 1:200; rabbit anti-VAPB (Sigma), 1:200; mouse anti-EEA1 (BD Biosciences), 1:70; mouse anti-LAMP2 (Develop-

mental Studies HybridomaData Bank), 1:200;mouse anti-TUBULIN (Sigma), 1:300; mouse anti-cytochromeC (Abcam), 1:200; rabbit

anti-phospho(S351)p62 (kind gift from Dr Masaaki Komatsu), 1:100; rabbit anti-TRAF2 (Abcam) 1:100.

Super Resolution Microscopy
A Nikon N-SIM system was used, comprising Nikon Ti-E microscope, Nikon 1.49 N.A. objective, Andor iXon 897 EM-CCD camera,

Nikon SIM illuminator, Nikon LU5A laser bed and controlled using Nikon Elements software. Raw 3D-SIM images were acquired

(15 images representing 5 phases and 3 rotations at each focal plane) typically using 100 ms exposure, 5.1 conversion gain and

150 EM gain. Image stacks were acquired with a 120 nm step interval and reconstructed into super resolved images using the

volumetric reconstruction algorithm in the Nikon software. Excitation/emission for the different fluorescent labels was as follows:

mTurquoise 405 nm ex, 447/60 em; GFP 488 nm ex, 525/50 em; mCherry 561 nm exn 607/36 em; Alexa Fluor 647 643 nm ex,

692/40 em.

Live Imaging
Two wide-field imaging systems were used to capture images of live cells: a Nikon Ti-E-based system and an Olympus cellSens.

Details of our live imaging protocols were described in Karanasios et al (2013); Karanasios et al (2016). Briefly, cells were plated

onto 60mmdishes and transiently transfectedwith the relevant plasmids. After 24 hr, cells were replated onto 22-mm-diameter glass

coverslips and used for imaging on the following morning. Throughout live imaging, cells were maintained at 37�C in a full enclosure

incubation system. The Nikon Ti-E-based system comprised a Nikon Ti-E microscope, 100x 1.4 N.A. objective (Nikon), SpecraX LED

illuminator (Lumencor), 410/504/582/669-Di01 and Di01-R442/514/561 dichroic mirrors (Semrock), Hamamatsu Flash 4.0 sCMOS

camera, emission filter wheel (Sutter Instruments) and was controlled using Nikon Elements software. The Olympus cellSens system

comprised of Olympus IX83microscope, 100x 1.49 N.A. objective (Olympus), pE-4000 LED illuminator (CoolLED), Hamamatsu Flash

4.0 sCMOS camera, ZT440-445/488-491-594 dichroic mirror (Chroma), Olympus filter wheels on excitation and emission paths and

was controlled using Olympus cellSens software.

Correlative Light and Electron Microscopy (CLEM)
HEK-293 cells stably expressing GFP-ATG13 were transfected with dsRED MITO for 24 hr and were then replated onto poly lysine-

coated, 35mmgriddedMatTek glass bottom dishes to reach 50%confluency on the next day. The cells were treated with 20 mM IVM

for 35 min before imaging. After setting the samples on the stage of the Nikon Ti-E microscope at 37�C 5% CO2, they were imaged

for an additional 20 min using a 100x 1.4 NA objective and frames were acquired every 10 sec. Before the last imaging frame, 4%
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paraformaldehyde in 0.2MHepes, pH 7.4, was added tomake the final concentrations of 2%paraformaldehyde and 0.1MMHepes.

After 10min incubation, the fixative was replacedwith 0.2MHepes buffer to allow capturing a confocal z stack (100x 1.4 NA objective)

and the grid co-ordinates were imaged by 10x10 montage bright field imaging (100x 1.4 NA objective). A second round of fixation

followed in 2% glutaraldehyde (Sigma EM grade) in 0.2M Hepes (pH 7.4) for 2h. Cells were then osmicated for 1 hr at room temper-

ature with a solution containing 1% OsO4, 0.1M CH32AsO2Na (cacodylate), pH 7.4, 15mg/ml K4[Fe(CN)6. Cells were then sequen-

tially washedwith 0.1M cacodylate buffer andwater before incubatingwith 1%uranyl acetate at 4�C for 1 h. After extensivewashes in

water, samples were dehydrated stepwise in ethanol (50%, 70%, 96%, and 100%). Finally the cells were flat embedded, infiltrated in

EPON resin (TAAB 812 ref. T030) for 2 h and baked at +60�C overnight (>14h). The samples were then processed for either electron

tomography or conventional thin sectioning. Samples were sectioned at either 60 or 100 nm thickness and picked up on single slot

grids. Samples were then stained with 0.5% uranyl acetate for 30 min and 3% lead citrate for 1 min before imaging at 80 kv on a Jeol

JEM-1400 (Jeol) equipped with Gatan Orius SC 1000B bottom mounted CCD-camera (Gatan). For tomography, semi thick 230 nm

sections were prepared and picked up on single slot grids. 10 nm colloidal gold particles were added to the sections to serve as fidu-

cial markers in the tomogram alignment. Dual axis tilt series were acquired using SerialEM software (Mastronarde, 2005) on a Technai

FEG20microscope (FEI, the Netherlands) at 200 kV with 11500Xmagnification, over a tilt range of ±62 degrees. Image correlation for

correlative light-electron microscopy was done using the TrakEM2 (Cardona et al., 2012) module of Fiji by transforming the fluores-

cent image and superimposing it on top of a low-magnification EM image of the cell of interest, using mitochondria as the main fidu-

cial markers. Images from the 60 and 100 nm serial sections were aligned using the TrakEM2 module of Fiji, segmented using the

Microscope image browser (Belevich et al., 2016) and the three-dimensional models were visualized using 3D Slicer (Fedorov

et al., 2012). Tilt series were reconstructed into tomograms and then aligned using IMOD (Kremer et al., 1996), segmented using

Microscope image browser and the models visualized using 3D Slicer.

Lysates and Immunoblots
Cells were lysed on ice in 100-140 mL of lysis buffer [50 mM Tris pH 8.0, 50 mM KCl, 1mM EDTA pH 8.0, 1% IGEPAL, 0.6 mM PMSF,

Complete Mini, EDTA-free tablet (Roche)] supplemented with 10 % 50mM NaF, 0.1% 10mg/ml leupeptin and 0.5% 0.2M Sodium

orthovanadate. Lysates were collected and centrifuged for 10min at 14,000 rpm at 4�C. The supernatant was collected in fresh tubes

on ice. Protein concentration of the lysates was determined using the BCA protein assay kit (Thermo Scientific Pearce). For electro-

phoresis, samples were combined with 2 x Laemmli sample buffer [20mM Tris-Cl pH 6.8, 2% sodium dodecyl sulphate (SDS), 10%

glycerol, 0.1M dithiolthreitol (DTT)] in a 1:1 ratio. Samples were then heated for 90 seconds at 95�C before loading. Gels were wet-

transferred overnight to 0.45mm Immobilon-P transfer membranes (Millipore). Incubations with primary and secondary antibodies,

and signal development using ECL (ECLWestern Blotting Detection Reagent, GE Healthcare/AmershamBiosciences) followed stan-

dard protocols. For immunoblots, the following antibodies at the indicated dilutions were used: rabbit anti-ATG9 (Cell Signalling),

1:1500; rabbit anti-ATG13 (Sigma), 1:1000; rabbit anti-FIP200 (ProteinTech), 1:1000; mouse anti-GAPDH (Biogenesis), 1:100,000;

mouse anti-OPTN (Santa Cruz), 1:500; rabbit anti-phospho(S172)TBK1 (Cell Signalling), 1:1000; rabbit anti-phospho(S757)ULK1

(Cell Signalling), 1:1000 rabbit anti-TAX1BP1 (homemade), 1:3000; mouse anti-TBK1 (SantaCruz), 1:500, rabbit anti-TRAF2 (Abcam)

1:1000; rabbit anti-CIAP1 (Proteintech); rabbit anti-CIAP2 (Proteintech).

Isolation of Ubiquitin-Containing Proteins After IVM Treatment
HEK-293 cells were treated with 15 mM IVM for 45min and lysed in 0.3%CHAPS buffer containing 40mMHEPES-Cl pH 7.4, 120mM

NaCl, 2 mM EDTA, 10 mM pyrophosphate, 10 mM glycerophosphate, 50 mM sodium fluoride, 1.5 mM sodium vanadate and one

tablet EDTA-free protease inhibitors per 50 ml. At the same time, agarose beads crosslinked to anti-ubiquitin antibody FK2 (Caltag

D058-8) were washed in the same lysis buffer and were added to the cleared lysates for binding at 4�C for 60 min. At the end of in-

cubation, beads were washed 4 times with lysis buffer and once with PBS before mass spectrometry or SDS-PAGE and

immunoblotting.

siRNA Experiments
WT and OPTN KOMEFs were seeded in 6-well plates to reach 70%–80% confluency 24 h later. Transfections were performed using

TransMessenger transfection reagent kit (Qiagen) with SmartPool siRNA oligos against non-targetting and TAX1BP1 (Dharmacon)

for 72 hr.

Downregulation of CIAP1, CIAP2 and TRAF2 simultaneously was done as follows: Cells were plated in themorning and transfected

for the first time in the afternoon with 80 pmol of each siRNA SmartPool. The cells were re-transfected two days later with the same

amount of siRNA, and examined for the various assays two days later.

Oxygen Consumption Rate Measurement
For oxygen consumption rate (OCR) determination, experiments were carried out using a Seahorse XF24 analyzer (Agilent). HEK-293

cells were plated in a 24 well Seahorse cell culture microplate in 3.5 x 104 cells/well density 24hrs prior to the experiment. On the day

of the experiment the cells were pre-incubated in DMEM supplemented with 5-mMGlucose, 2mMGlutamine and 5mM HEPES-HCl

pH 7.4, for 60 min. IVM was titrated to 1, 5 or 10mM and equivalent volume of DMSO was added in the control samples. All the con-

ditions were in quadruplicates. OCR was measured every 6 min to determine basal respiration, ATP synthase activity and proton

leak (using 1 mM Oligomycin), and non-mitochondrial respiration (using 1 mM Rotenone and 2 mM Antimycin). For determination of
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percentage OCR inhibition rate compared to the basal, the following equation was used: [1 – [(Last rate measurement before Oligo-

mycin injection – non mitochondrial respiration rate)/(last measurement before IVM/DMSO injection – non mitochondrial respiration

rate)]] 3 100.

QUANTIFICATION AND STATISTICAL ANALYSIS

General
In a single experiment, 10 images (technical repeats) were selected for each treatment condition and quantified using the ImageJ cell

counter plugin. Valueswere then represented as puncta per cell usingGraphPad Prism. Data frombiological repeats were combined,

log-transformed, and a two-way ANOVA was performed to obtain statistical significance and finally plotted as Mean±SD. All statis-

tical analysis was checked by Dr Anne Segonds-Pichon, the statistician of the Babraham Institute.

Note on Live Imaging
The live imaging data in this manuscript are derived from over 400 videos, and what is shown has been reproducibly observed

multiple times by more than one scientist.

DATA AND CODE AVAILABILITY

The published article includes all datasets generated and analyzed during this study.
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