
Human pancreatic islet 3D chromatin architecture provides 
insights into the genetics of type 2 diabetes

Irene Miguel-Escalada#1,2,3,4, Silvia Bonàs-Guarch#1,2,3,4, Inês Cebola#1, Joan Ponsa-
Cobas1, Julen Mendieta-Esteban5, Goutham Atla1,2,3,4, Biola M. Javierre6,7, Delphine M.Y. 
Rolando1, Irene Farabella5, Claire C. Morgan1,2, Javier García-Hurtado2,3,4, Anthony 
Beucher1, Ignasi Morán1,16, Lorenzo Pasquali4,7,8, Mireia Ramos-Rodríguez8, Emil V.R. 
Appel9, Allan Linneberg10,11, Anette P. Gjesing9, Daniel R. Witte12,13, Oluf Pedersen9, Niels 
Grarup9, Philippe Ravassard14, David Torrents15,16, Josep M. Mercader16,17,18, Lorenzo 
Piemonti19,20, Thierry Berney21, Eelco J.P. de Koning22,23, Julie Kerr-Conte24, François 
Pattou24, Iryna O. Fedko25,26, Leif Groop27, Inga Prokopenko28,29, Torben Hansen9, Marc A. 
Marti-Renom5,15,30,31, Peter Fraser6,32, and Jorge Ferrer1,2,4,*

1Section of Epigenomics and Disease, Department of Medicine, and National Institute for Health 
Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London W12 
0NN, UK 2Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and 
Technology, Dr. Aiguader 88, Barcelona 08003, Spain 3Genomic Programming of Beta-cells 
Laboratory, Institut d’Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain 
4CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Spain 5CNAG-CRG, Centre for 
Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 
4, Barcelona 08028, Spain 6Nuclear Dynamics Programme, The Babraham Institute, Babraham 
Research Campus, Cambridge CB22 3AT, UK 7Josep Carreras Leukaemia Research Institute, 
Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n, Badalona, 
08916, Spain 8Endocrine Regulatory Genomics Lab, Germans Trias i Pujol University Hospital 
and Research Institute, 08916 Badalona, Spain 9Novo Nordisk Foundation Center for Basic 
Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 
Copenhagen, Denmark 10Center for Clinical Research and Disease Prevention, Bispebjerg and 
Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark 11Department of Clinical 
Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 
Denmark 12Department of Public Health, Aarhus University, Aarhus, Denmark 13Danish Diabetes 
Academy, Odense, Denmark 14Université Sorbonne, UPMC Univ Paris 06, Inserm, CNRS, Institut 
du cerveau et de la moelle (ICM) – Hôpital Pitié-Salpêtrière, Boulevard de l’Hôpital, Paris 

* j.ferrer@imperial.ac.uk. 

Author contributions
I.M.-E., I.C., and B.M.J. performed and analyzed experiments. I.M.-E. and J.G-H. processed human islet samples. I.M-E., S.B-G., 
I.C., J.P-C., D.M.Y.R., G.A., C.C.M and I.M. performed computational analysis. J.M-E. and I.F. modeled and analyzed 3D data. L.Pi., 
T.B., E.J.P.d.K., J.K-C., F.P. and P.R. provided material and reagents. E.V.R.A., A.L., A.P.G., D.R.W., O.P., N.G., J.M.M., D.T., I.O.F., 
T.H., I.P., and L.G. provided genetics data. M.R. and L.Pa. created software resources. I.C. and A.B. developed genome-editing 
methods. M.M.-R., P.F. and J.F. supervised analysis. I.M.-E., I.C., S.B-G., J.P-C., D.M.Y.R. and J.F. conceived the project. I.M-E., 
S.B-G., I.C., and J.F. wrote and edited the manuscript, which all authors have approved.

Competing Interests Statement
P. R. is a shareholder and consultant for Endocells/Unicercell Biosolutions.

Europe PMC Funders Group
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2019 July 19.

Published in final edited form as:
Nat Genet. 2019 July 01; 51(7): 1137–1148. doi:10.1038/s41588-019-0457-0.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



F-75013, France 15ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain 16Barcelona 
Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational 
Biology, 08034 Barcelona, Spain 17Programs in Metabolism and Medical & Population Genetics, 
Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA 18Diabetes Unit and Center for 
Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA 19Diabetes 
Research Institute (SR-DRI), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 
Milan, Italy 20Vita-Salute San Raffaele University, Milan 21Cell Isolation and Transplantation 
Center, University of Geneva, 1211 Geneva 4, Switzerland 22Department of Medicine, Leiden 
University Medical Center, Box 9600, 2300 RC Leiden, Netherlands 23Hubrecht Institute/KNAW, 
85164 3508 AD Utrecht, the Netherlands 24European Genomic Institute for Diabetes, Inserm 
UMR 1190, Lille 59800, France 25Department of Biological Psychology, Vrije Universiteit 
Amsterdam, The Netherlands 26Amsterdam Public Health research institute, The Netherlands 
27Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Clinical Research 
Centre, Lund University, Malmö, Sweden 28Section of Genomics of Common Disease, 
Department of Medicine, Imperial College London, London W12 0NN, UK 29Department of 
Clinical and Experimental Medicine, University of Surrey, Guildford, GU2 7XH, UK 30Universitat 
Pompeu Fabra (UPF), Barcelona, Spain 31Gene Regulation, Stem Cells and Cancer, Centre for 
Genomic Regulation The Barcelona Institute of Science and Technology Barcelona Spain 
32Department of Biological Science, Florida State University, Tallahassee, Florida 32303, USA

# These authors contributed equally to this work.

Abstract

Genetic studies promise to provide insight into the molecular mechanisms underlying type 2 

diabetes (T2D). Variants associated with T2D are often located in tissue-specific enhancer clusters 

or super-enhancers. So far, such domains have been defined through clustering of enhancers in 

linear genome maps rather than in 3D space. Furthermore, their target genes are often unknown. 

We have now created promoter capture Hi-C maps in human pancreatic islets. This linked 

diabetes-associated enhancers with their target genes, often located hundreds of kilobases away. It 

also revealed >1300 groups of islet enhancers, super-enhancers and active promoters that form 3D 

hubs, some of which show coordinated glucose-dependent activity. We demonstrate that genetic 

variation in hubs impacts insulin secretion heritability, and show that hub annotations can be used 

for polygenic scores that predict T2D risk driven by islet regulatory variants. Human islet 3D 

chromatin architecture, therefore, provides a framework for interpretation of T2D GWAS signals.

Introduction

Type 2 diabetes (T2D) affects more than 400 million people worldwide 1, and is a classic 

example of a polygenic disease in which the genetic susceptibility is largely driven by DNA 

variants located in the non-coding genome 2,3. T2D susceptibility variants are enriched in 

active islet enhancers that cluster in linear genome maps – variably defined as super-

enhancers, clusters of open regulatory elements (COREs), enhancer clusters, or stretch 

enhancers 4–7. Enhancer clusters from other tissues or cell types are similarly enriched in 

risk variants for various common diseases5,7–11. So far, however, genome-wide maps of 
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enhancer clusters have been largely defined with unidimensional epigenome maps, which do 

not necessarily reflect the capacity of enhancers to cluster in three-dimensional (3D) space, 

as shown for well characterized loci such as Hbb (β-globin) and Hoxd12,13. Linear maps also 

do not reveal the target genes of enhancers, which are often separated by hundreds of 

thousands of base pairs. This poses a need to obtain accurate representations or enhancer 

domains, and to connect them to the target genes that underpin disease mechanisms.

Here, we used promoter capture Hi-C (pcHi-C) 14 to generate a genome-scale map of 

interactions between gene promoters and their regulatory elements in human pancreatic 

islets. This uncovered ~1300 hubs of islet enhancers that cluster in 3D space. We show that 

islet enhancer hubs are connected with key islet gene promoters, and exhibit properties of 

regulatory domains. We use genome/epigenome editing to demonstrate the functional 

connectivity of hubs, and validate functional interactions between enhancers bearing T2D 

risk variants and their target genes. Finally, we show that islet hubs are not only enriched for 

T2D association signals, but can be used to partition polygenic scores to identify T2D 

genetic susceptibility driven by pancreatic islet regulatory variation.

Results

The promoter interactome of human islets

To create a genome-wide, high resolution map of long-range interactions between gene 

promoters and distant regulatory elements in human pancreatic islets, we prepared Hi-C 

libraries from four human islet samples, and then performed hybridization capture of 31,253 

promoter-containing HindIII fragment baits and their ligated DNA fragments. These were 

then sequenced and processed with the CHiCAGO algorithm to define 175,784 high-

confidence interactions (CHiCAGO score > 5) between annotated promoters and distal 

promoter-interacting DNA fragments 14,15 (Figure 1a,b and Supplementary Figure 1). These 

high-confidence interactions were called with pooled samples, but for 89% of interactions 

all individual samples showed CHiCAGO scores above the 95% confidence interval of 

random distance-matched regions (Supplementary Figure 1d-g). We also validated pcHi-C 

landscapes by 4C-seq analysis in the EndoC-βH1 human β cell line in two selected loci 

(Supplementary Figure 1h,i).

To define the chromatin landscape of interacting regions, we refined existing human islet 

epigenome annotations by generating human islet ATAC-seq maps and 30 new ChIP-seq 

datasets (Figure 1b-d, Supplementary Table 1). This enabled a subclassification of active 

enhancers according to Mediator, cohesin, and H3K27ac occupancy patterns (Figure 1b-d, 

Supplementary Data Set 1). Expectedly, promoter-interacting genomic regions were 

enriched in active enhancers, promoters, and CTCF-bound regions (Figure 1e, 

Supplementary Figure 2a-c). pcHi-C interactions observed in pcHi-C maps from distant cell 

types were enriched in CTCF binding sites and active promoters, whereas islet-selective 

interacting regions were enriched in active enhancers (particularly those with strongest 

Mediator occupancy, which we term class I enhancers) and were connected with genes 

showing islet-specific expression (Supplementary Figure 2d-f). This genome-scale map of 

the human pancreatic islet promoter interactome is accessible for visualization along with 
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pcHi-C maps of other human tissues (www.chicp.org) 16, or as virtual 4C representations of 

all genes along with islet regulatory annotations (isletregulome.org) 17.

Identification of target genes for islet enhancers

Long-range chromatin interactions are largely constrained within topologically associating 

domains (TADs), which typically span hundreds of kilobases and are often invariant across 

tissues (Supplementary Figure 3a-e) 18,19. TADs, however, define broad genomic intervals 

that do not necessarily inform on the specific interactions that take place in each tissue 

between individual cis-regulatory elements and their target genes. Human islet pcHi-C maps 

identified high-confidence pcHi-C interactions (CHiCAGO score > 5) between gene 

promoters and 18,031 different islet enhancers (Figure 2a). Remarkably, 42.2% of enhancers 

that showed interactions with gene promoters had high-confidence interactions with more 

than one gene, thereby illustrating an unexpected complexity of islet enhancer-promoter 

interactions (Supplementary Figure 3f).

We used pcHi-C maps to further expand the number of enhancers that could be assigned to 

target genes. We reasoned that interactions between enhancers and their target genes can be 

missed due the stringency of detection thresholds, the strong bias of Hi-C methods against 

proximal interactions, or their dependence on specific environmental conditions. To impute 

additional enhancer-promoter assignments, we considered promoter-associated three-

dimensional spaces (PATs). A PAT was defined as the space containing all pcHi-C 

interactions that stem from a promoter bait (Supplementary Figure 3g,h). We observed that 

PATs that had one high-confidence enhancer-promoter interaction were more likely to show 

other enhancer-promoter interactions, and exhibited chromatin features that distinguished 

them from other PATs (Supplementary Figure 3 i-k). This prompted us to leverage PAT 

features to impute plausible target promoter(s) of an additional 18,633 islet enhancers that 

did not show high-confidence interactions (Figure 2a; see Supplementary Figure 3l and 

Methods for a detailed description of the imputation pipeline). Imputed promoter-enhancer 

pairs showed higher CHiCAGO scores than distance-matched regions (Kruskall-Wallis P < 

10-16), suggesting that many imputed assignments represent physical interactions that do not 

reach our stringent significance thresholds (Supplementary Figure 3m). In total, we used 

high-confidence interactions and imputations to assign 36,664 human islet active enhancers 

(80% of all enhancers) to at least one target gene (Figure 2a, Supplementary Data Set 2).

We validated these enhancer-to-gene assignments with complementary approaches. First, we 

calculated normalized H3K27ac signals in assigned enhancer-promoter pairs across human 

tissues and human islet samples, and found that assigned pairs had distinctly higher 

correlation values than enhancers paired with distance-matched promoters from the same 

TAD or an overlapping PAT (Figure 2b). Importantly, this was true for both high-confidence 

and imputed assignments (Figure 2b). Islet-selective expression was expectedly enriched in 

enhancer-assigned genes but not in unassigned genes from the same TAD (Supplementary 

Figure 3n). Furthermore, we determined 1,091 eQTL-genes (eGenes) from 183 human islet 

samples (Supplementary Table 2), and found that eQTLs were enriched in enhancer-to-gene 

assignments determined through either high-confident interactions or imputations, compared 
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with distance-matched regions (odds ratio 3.18 and 4.36; P = 3.05x10-09 and 9.01x10-23, 

respectively) (Figure 2c).

We further tested enhancer-promoter assignments in a dynamic perturbation model. We 

exposed human islets from 7 donors to moderately low (4 mM) or high (11 mM) glucose 72 

hours, which correspond to quasi-physiological glucose concentrations. This led to glucose-

dependent H3K27ac changes in 3,850 enhancers at adjusted P < 0.05, most of which showed 

increased activity at high glucose (Supplementary Figure 3o). This result, therefore, showed 

that changes in glucose concentrations elicit quantitative chromatin changes in a large 

number of human islet enhancers. We next reasoned that glucose-regulated enhancers should 

tend to cause glucose-regulated expression of their target genes. Indeed, we observed that 

glucose-induced enhancers were preferentially assigned to genes showing glucose-induced 

mRNA, compared with distance-matched active control genes from the same TAD (odds 

ratio 2.7 and 2.6, Fisher’s P = 4.9 x 10-16 and 6.4 x 10-12, for high-confidence or imputed 

assignments, respectively) (Figure 2d). Likewise, genes assigned to glucose-induced 

enhancers showed greater glucose-induction of promoter H3K27ac than distance-matched 

promoters in the same TAD (Figure 2e). Collectively, these studies validated pcHi-C maps 

for the identification of functional target genes of transcriptional enhancers in human 

pancreatic islets.

Genome editing of T2D-relevant enhancers

A fundamental challenge to translate GWAS data into biological knowledge lies in 

identifying the target genes of noncoding elements that carry disease-associated regulatory 

variants. To link noncoding variants to their target genes, we compiled T2D- and fasting 

glycemia (FG)-associated variants from 109 loci, most of which have been fine-mapped to a 

credible set (Supplementary Figure 4a, Supplementary Data Set 3). For fine-mapped loci, 

variants with a high posterior probability (PP > 0.1) of being causal were most enriched in 

active islet enhancers (Z = 20.9 relative to control regions in the same locus) and promoters 

(Z = 7.2)(Z < 2 for other accessible chromatin regions) (Supplementary Figure 4b). In 61 

loci we identified T2D and/or FG-associated variants overlapping islet enhancers, and 

assigned one or more candidate target genes for 53 (87%) of these (Figure 3a, 

Supplementary Table 3). Some of these target genes were expected based on their linear 

proximity to the variants (e.g. ADCY5, TCF7L2, ZFAND3, PROX1, FOXA2), but for 75% 

of loci we identified more distant candidate genes. Examples of unexpected distal target 

genes, sometimes in addition to previously nominated proximal genes, include SOX4 (in the 

CDKAL1 locus), OPTN (CDC123/CAMK1D), TRPM5 (MIR4686), PDE8B (ZBED3), 
SLC36A4 (MTNR1B), POLR3A and RPS24 (ZMIZ1), MDGA1 (ZFAND3) and PHF21A 
(CRY2) (Figure 3a, Supplementary Table 3, see isletregulome.org or www.chicp.org). 

Selected unexpected targets, including ABCB9 and STARD10, were additionally supported 

by concordant eQTLs (Supplementary Figure 4c-d).

We used genome editing to validate target genes of 10 enhancers bearing T2D or FG-

associated variants from 8 loci (Figure 3b, Supplementary Table 4). We performed these 

experiments in EndoC-βH3 cells, a glucose-responsive human β cell line20.
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In the CDC123/CAMK1D locus, only one SNP from a small set of fine-mapped T2D-

associated variants is located in an islet enhancer (Figure 3c, Supplementary Figure 5a,b, 

Supplementary Table 3). This variant was previously proposed to be a regulatory variant 

based on plasmid reporter studies21, allele-specific chromatin accessibility22 and as an eQTL 

for CAMK1D 23,24 (Supplementary Table 2). The enhancer showed moderate-confidence 

interactions (CHiCAGO = 4.42) with CAMK1D, but, more surprisingly, showed high-

confidence pcHi-C interactions with a more distant gene, OPTN (Figure 3c, Supplementary 

Figure 5a). Accordingly, deletion of this enhancer (but not an adjacent region), or silencing 

with KRAB-dCas9, led to selectively decreased expression of both OPTN and CAMK1D, 

whereas targeted activation of the enhancer stimulated their expression (Figure 3d, 

Supplementary Figure 5c,d). These results, therefore, confirm functional relationships 

predicted by pcHi-C maps. Although the role of OPTN and CAMK1D as mediators of this 

T2D-associated genetic signal remains to be defined, the findings highlight an example of a 

diabetes-relevant enhancer with multiple target genes.

We also examined rs7903146, a plausible causal SNP in the TCF7L2 locus. This is the 

strongest known genetic signal for T2D, and it is known to influence islet-cell traits in non-

diabetic individuals2,25,26. SNP rs7903146 lays in a class I enhancer with unusually high 

Mediator occupancy (Supplementary Figure 6a). The SNP alters allele-specific accessibility 

and episomal enhancer activity6, and has been associated with differences in TCF7L2 
mRNA27. However, deletion of this enhancer in human colon cancer cells affects ACSL5 
rather than TCF7L2 28, thereby questioning the true target gene(s) of this enhancer in islet 

cells. We found that the rs7903146-bearing enhancer has imputed and moderate-confidence 

pcHi-C interactions with TCF7L2, but no evidence of proximity with any other gene in 

human islets (Supplementary Figure 6a). Consistently, targeted deletion, functional 

inhibition, or stimulation of the enhancer caused selective changes in TCF7L2 mRNA 

(Supplementary Figure 6b,c). Therefore, the enhancer that harbors rs7903146 regulates 

TCF7L2 in human β cells. Regardless of the possible metabolic role of this locus in other 

cell types29, this finding indicates that TCF7L2 is a likely mediator of the genetic 

association between rs7903146 and islet-related traits.

For all 8 tested loci, at least one of the genes assigned by pcHi-C to an enhancer showed 

gene expression changes, and four showed changes in expression of more than one gene 

(Figure 3b, Supplementary Table 4, Supplementary Data Set 4). This included functionally 

validated imputed target genes, such as VEGFA as well as MDGA1 and ZFAND3 
(Supplementary Figure 7). These functional studies, therefore, underscore the complexity of 

enhancer-promoter interactions, with long-range interactions that cannot be predicted from 

linear genome maps, interactions that are not functionally essential, and frequent target gene 

multiplicity. Importantly, the results validate the use of human pcHi-C maps to connect 

regulatory elements that harbor T2D-associated variants with the genes that can mediate 

disease susceptibility mechanisms.

Islet-specific transcription is linked to enhancer hubs

Earlier studies demonstrated that risk variants for common diseases such as T2D are 

enriched in clusters of enhancers that regulate key cell identity genes4–7. However, spatial 
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clustering of enhancers is not necessarily apparent from linear genome maps. To identify 3D 

enhancer clusters, we again considered promoter-associated three-dimensional spaces, or 

PATs, and empirically defined enhancer-rich PATs as those containing three or more class I 

enhancers (enhancers with high H3K27ac and Mediator occupancy, Figure 1c). This 

definition of enhancer-rich PATs was supported by a multivariate analysis of genomic and 

epigenomic PAT features that were most predictive of islet-specific gene expression 

(Supplementary Figure 8a and Methods). In total, we identified 2,623 enhancer-rich PATs 

(Supplementary Figure 8b). As noted above, many active enhancers (~40%) had interactions 

with ≥1 promoter (Supplementary Figure 3f). Thus, separate enhancer-rich PATs were often 

connected. We therefore merged enhancer-rich PATs with other PATs connected through 

enhancer-mediated high-confidence interactions, yielding 1,318 islet enhancer hubs (Figure 

4a, Supplementary Figure 8c). Compared to alternate enhancer hub definitions, this 

definition maximized the enrichment of islet cell functional annotations and the number of 

mapped hubs (Supplementary Figure 9). The 1,318 islet enhancer hubs are, in essence, 3D 

chromatin domains that contain a median of 18 enhancers, two active promoters, and two 

shared enhancer interactions (Supplementary Figure 8d). They are often tissue-selective 

interaction domains, because hub promoters had 2.8-fold higher fraction of islet-selective 

interactions than non-hub promoters (Wilcoxon’s P = 2.8 x 10-36) (Supplementary Figure 8e, 

examples in Figure 1b, 5a, Supplementary Figures 1h,i and 10a). Furthermore, the genes that 

form part of enhancer hubs were enriched in islet-selective transcripts, and in functional 

annotations that are central to islet cell identity, differentiation, and diabetes (Figure 4b,c, 

Supplementary Table 5, Supplementary Data Set 5).

Hubs exhibit domain-level chromatin changes

Consistent with the high internal connectivity of hubs, gene pairs from the same hub showed 

increased RNA expression correlation values across tissues and islet samples, as compared 

to control active gene pairs in the same TAD as the hubs (P = 6.3 x 10-8)(Figure 4d). 

Moreover, hub enhancers showed higher H3K27ac correlations with their target promoters 

than when were paired with non-hub promoters from the same TAD (P = 2.2 x 10-16) 

(Figure 4e). These findings are consistent with enhancer interaction hubs as functional 

regulatory domains.

To further explore the behavior of hubs as functional domains, we again examined islets 

exposed to moderately low vs. high glucose concentrations. Glucose-induced enhancers and 

mRNAs were highly enriched in hubs, compared with non-hub counterparts (Fisher’s P = 

1.1 x 10-7 and 2.2 x 10-16, respectively). Of 297 promoters that showed glucose-induced 

H3K27ac, 94 were contained in hubs, and 65% of these showed glucose-induced mRNA 

(Supplementary Tables 6,7). We predicted that if hubs are functional regulatory domains, 

hub enhancers connected to glucose-induced genes should tend to show coordinated 

glucose-dependent changes. Our analysis showed that hub enhancers assigned to glucose-

induced promoters showed a widespread parallel increase in H3K27ac (Figure 4f-h, 

Supplementary Table 8). Thus, varying glucose concentrations elicit chromatin changes in 

human islets at the level of broad regulatory domains. Taken together, our findings indicate 

that enhancer hubs have properties of functional units.
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Enhancer hubs contain super-enhancers and enhancer clusters

We compared islet enhancer hubs with previously defined islet enhancer domains, such as 

linear enhancer clusters and super-enhancers (Supplementary Figure 8f). This showed that 

hubs have at least some spatial overlap with 70% of enhancer clusters 7, and with 87% of 

super-enhancers defined with a standard algorithm 4 (Supplementary Figure 8g-i). Hubs, 

however, differ in that they can be connected with their target genes. Furthermore, enhancer 

hubs capture spatial clusters of Mediator-bound (class I) enhancers that do not cluster in the 

linear genome and therefore do not fulfill definitions of super-enhancers and enhancer 

clusters (Supplementary Figure 8j-l) 4,7. In fact, many hubs contained several inter-

connected enhancer clusters or super-enhancers (Supplementary Figure 8m-o). This is 

illustrated by the ISL1 locus, which has several enhancer clusters and super-enhancers 

distributed across an entire TAD, whereas pcHi-C points to a single hub that connects 

dozens of enhancers with ISL1 and lncRNA HI-LNC57 (Figure 5a). Thus, enhancer hubs 

are 3D domains that often include one or more enhancer clusters or super-enhancers and 

their target gene(s).

Tissue-specific architecture of the ISL1 enhancer hub

To gain insight into the 3D conformation of enhancer hubs, we built 3D models of hubs 

using islet pcHi-C interaction data (Figure 5a). We focused on the ISL1 locus because it 

contains a single hub within a TAD-like domain, with few other annotated genes. We used 

islet pcHiC data to build interaction matrices at 5 kb resolution, and transformed the 

frequency of interactions between genomic segments into spatial restraints 30,31. We then 

used molecular dynamic optimization to generate an ensemble of 500 models that best 

satisfied the imposed restraints. This showed co-localization of islet enhancers and target 

genes in a constrained space of the TAD, whereas models built from B lymphocyte pcHi-C 

libraries showed decreased aggregation of these regions (Figure 5b,c, Supplementary Figure 

10b,c, Supplementary Videos 1-2). Quantitative analysis of ISL1 and six other T2D-relevant 

hubs showed analogous tissue-specific aggregation of hub enhancers and promoters 

(Supplementary Figures 10d-I, 13f-h). These models, which capture the average topology in 

a population of cells, serve to highlight that whereas TADs are defined as single intervals in 

linear genome maps, hubs are formed by multiple interspersed regions that occupy a shared 

3D subspace within a TAD.

Epigenome editing of T2D-associated islet hubs

We used enhancer perturbations to test the functional connectivity of selected enhancer hubs. 

In the ZBED3 locus, we targeted a class I enhancer that contains a variant with highest 

posterior probability for causality in T2D fine-mapping studies (PP = 0.461) (Figure 6a, 

Supplementary Figure 11a, Supplementary Table 4). Targeted epigenomic activation or 

inhibition of this single enhancer led to significant changes in the expression of five of the 

six genes connected with this hub, but not of non-hub genes from the same TAD (Figure 6b). 

In three other hubs we perturbed single enhancers containing candidate T2D susceptibility 

causal variants, which led to expression changes in CRY2 and PHF21A (Supplementary 

Figure 11b,c), VPS13C, C2CD4A and C2CD4B (Supplementary Figure 12) and GLIS3 
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(Supplementary Figure 13). These findings highlight a remarkable functional connectivity of 

enhancer hubs.

Islet hub variants impact insulin secretion

Previous evidence that T2D susceptibility variants are enriched in islet enhancer clusters 
5–7,24,32 prompted us to examine the enrichment of diabetes-associated variants in our newly 

defined annotations. T2D/FG-associated SNPs were enriched in islet pcHi-C interaction 

regions (Figure 7a), and in islet enhancer hub class I enhancers, rather than in other active 

enhancers (Figure 7b, Supplementary Figure 9, 14a-f, Supplementary Table 9). This 

indicates that hub class I enhancer variants are important for T2D susceptibility.

A major portion of the heritability of common diseases is driven by many variants that 

individually have not achieved genome-wide significance, yet exert a large aggregate effect 
33–35. Consistent with this notion, common variants that have so far not shown genome-wide 

significance for T2D association, but are located in pcHi-C interacting regions or hub class I 

enhancers, showed more significant association p-values than expected distributions (Figure 

7c,d). This observation prompted us to quantify the overall contribution of common variants 

in islet hubs to the heritability of T2D. We used stratified LD score regression 36, and found 

that hub class I enhancers showed the most significantly increased per-SNP T2D heritability 

coefficient (q = 1.64 x 10-2) compared with various islet and non-islet genomic annotations 

(Figure 7e, Supplementary Figure 15a, Supplementary Table 10).

Although islet dysfunction is central to the pathophysiology of T2D, other tissues (liver, 

adipose, muscle, brain, among others) are also critically important37. Genetic variation in 

islet hub enhancers should, therefore, predominantly impact on the heritability of pancreatic 

islet function. Indeed, islet hub variants showed higher heritability enrichment estimates for 

islet-cell traits than for T2D (Figure 7e, Supplementary Figure 15a-f, Supplementary Table 

10). Consequently, common variation in hub class I enhancers (0.26% of genomic SNPs) 

explained 9.9% of observed genetic heritability for T2D, 21.9% for acute insulin secretory 

response in intravenous glucose tolerance tests26, 17.2% for HOMA-B models of β-cell 

function, and 31.2% for an insulinogenic index based on oral glucose tolerance tests38 

(Supplementary Table 10). In sharp contrast, islet hub variants showed no enrichment for 

HOMA-IR, an estimate of insulin resistance (Supplementary Figure 15e). Of note, 

significant heritability enrichments were generally also observed for enhancer clusters, 

stretch enhancers, or super-enhancer annotations, yet estimates were consistently larger for 

hub enhancers (Figure 7e, Supplementary Figure 15a-d). These results indicate that enhancer 

hubs define genomic spaces that play a prominent role in the heritability of T2D and insulin 

secretion.

Hub variants provide tissue-specific risk scores

Recent studies suggest that polygenic risk scores (PRS) that integrate effects of a very large 

number of variants, including many that lack genome-wide significant association, can 

identify individuals with extreme levels of risk for polygenic diseases including T2D 
33,35,39–41. We assessed if islet hub variants could be harnessed to more specifically identify 
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individuals in whom variation in islet function plays a preponderant role in T2D 

susceptibility.

We first created a PRS model using all common variants from a recent BMI-adjusted T2D 

GWAS meta-analysis 42, and examined the ability of this genome-wide PRS to predict T2D 

in the UK Biobank population cohort 43–45. This showed that 2.5% of the UK Biobank 

individuals with the highest PRS had a 7.11-fold higher frequency of T2D than those with 

the lowest 2.5% (Figure 7f).

Next, we created PRS models that contained DNA variants from either (a) islet hub 

enhancers and promoters (1.6% of the genome), (b) all other islet open chromatin regions 

(5.0% of the genome), and (c) the rest of the genome. Despite that islet hub regions 

encompass < 2% of the genome, the T2D risk ratio –defined as the T2D frequency in the top 

vs. bottom risk bins– was 4.02-fold, which was comparable to that observed with variants 

from the rest of the genome (risk ratio 3.96), and larger than that of other open chromatin 

regions (risk ratio 3.01)(Figure 7f, 15g,h). Thus, islet hub variants possess a capacity to 

predict T2D risk that plausibly reflects their observed impact on the heritability of islet 

function (Figure 7e).

Although the genome-wide PRS model expectedly shows higher risk ratios than islet hub 

PRS models (Figure 7e), the latter could potentially define qualitatively distinct T2D risk 

profiles. Monogenic defects in islet transcription factors typically cause early-onset diabetes 

in lean individuals, suggesting that islet cis-regulatory variants could also predominantly 

impact T2D risk at an earlier age and lower BMI. We thus compared the effect of hub PRS 

at across BMI and age of onset of diabetes, and considered how it deviated from PRS 

calculated from genomic regions of similar size and distribution as hubs (100 iterations of 

1000 pseudo-enhancer hubs redistributed across TADs). For hub PRS, this T2D risk ratio 

showed greatest deviations from pseudo-hub PRS in individuals with BMI <30 (hub risk 

ratio = 6.25, Z = 5.68), and T2D diagnosed before 50 years (hub risk ratio = 6.67, Z = 5.27), 

but then sharply declined with increasing BMI and age of onset of T2D (BMI ≥ 35, hub risk 

ratio = 2.67, Z = 2.98; T2D onset ≥ 60 years, hub risk ratio = 3.01, Z = 2.94)(Supplementary 

Figure 15h). This contrasted from PRS models built with the rest of the genome, which 

showed greatest deviations from pseudo-hubs in individuals with BMI >35 and T2D 

diagnosed after 65 years, or PRS built with other islet open chromatin regions, which 

showed modest deviations of risk ratios in all groups (Supplementary Figure 15h). We 

further stratified UK Biobank individuals by both BMI and age of onset of diabetes, and 

found that individuals with 2.5% top hub risk scores had an odds ratio of 2.71 for T2D 

diagnosed < 60 years of age and BMI < 35 (Figure 7g). This odds ratio was a major 

deviation from that observed with pseudo-hub PRS (Z = 8.50), and was equivalent to the 

T2D risk of the highest genome-wide PRS (Figure 7g, see Supplementary Figure 15i for 

other control regions). At the other extreme of the phenotypic spectrum (BMI ≥ 35 and age 

of onset ≥ 60), individuals with the highest islet hub PRS showed a lower odds ratio that did 

not differ from pseudo-hub genomic regions (odds ratio = 1.52, Z = 0.37) (Figure 7g). Taken 

together, these results indicate that islet enhancer hub variants, which impact islet gene 

regulation and insulin secretion, can provide distinct T2D risk scores.
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Discussion

We have created human islet 3D genome maps that link human pancreatic islet enhancers to 

gene promoters. We validated them with experimental perturbation models and eQTLs, and 

show how they can identify the target genes of diabetes-relevant regulatory elements. This 

resource can therefore assist efforts to understand the molecular mechanisms that influence 

T2D susceptibility.

Our study has systematically mapped >1300 enhancer hubs in human islets. These enhancer 

domains align with earlier observations derived from lower resolution Hi-C maps, which 

showed broad genomic regions that exhibit unusually high interaction frequencies46, with 

numerous well-characterized chromatin hubs12,13, and with evolutionary conserved 

noncoding sequence blocks47,48. We show that enhancer hubs exhibit features of regulatory 

domains that control genes important for islet-cell function, differentiation and diabetes. 

They also contain DNA variants that have a major impact on the heritability of insulin 

secretion. Hub elements, therefore, define a genomic space that has direct relevance to islet 

function and human diabetes. Islet enhancer hubs should thus provide a useful gene-centric 

framework for genetic studies that aim to discover regulatory variants underlying T2D and 

monogenic diabetes.

Our work is relevant to the dissection of the polygenic underpinnings of T2D. Recently, 

genome-wide polygenic risk scores have shown promise for the prediction common 

diseases35. Because T2D pathophysiology is heterogeneous and multiorganic 37,49,50, it is 

reasonable to presume that partitioned polygenic risk scores could also provide risk 

estimates that distinguish mechanisms of susceptibility across individuals. Polygenic scores 

based on islet hub variants could thus be leveraged to quantify patient-specific genetic risk 

acting through islet gene regulation and insulin secretion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The promoter interactome of human pancreatic islets.
a, Overview of promoter-capture Hi-C (pcHi-C) in human islets. b, Integrative map of the 

KCNJ11-ABCC8 locus, showing human islet ATAC-seq and ChIP-seq, HindIII bait 

fragments, and arcs representing high-confidence pcHi-C interactions in human islets and 

erythroblasts. c, High-resolution annotations of islet open chromatin. ATAC-seq data from 

13 islet samples was used to define consistent open chromatin regions, which were classified 

with k-medians clustering based on epigenomic features. Mediator and H3K27ac binding 

patterns allowed sub-classification of active enhancer classes I-III. Post-hoc analysis of islet 

CAGE tags confirmed that transcription start sites are highly enriched in promoters and 

weakly in class I enhancers. These islet regulome annotations are hereafter Supplementary 

Data Set 1. d, Average H3K27ac and Mediator signal centered on open chromatin regions 

for active enhancer subtypes in three human islet (HI) samples and input DNA. e, Overlap of 

promoter-interacting regions with epigenomic features, expressed as average log2 ratios (and 

95% confidence intervals) over the overlaps obtained with 100 sets of distance-matched 

fragments. Error bars show s.d. across control sets.
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Figure 2. Identification of target genes of islet enhancers.
a, We assigned target genes to 39.5% of all 45,683 active enhancers through high-confidence 

interactions. PAT features allowed imputing the assignment of promoters to another 40% of 

all active enhancers (see Supplementary Figure 3l,m for further details and evidence that 

imputed assigments are enriched in sub-threshold interactions). b, Functional correlation of 

enhancer-gene pairs assigned through high-confidence interactions (n = 18,637 pairs) or 

imputations (n = 28,695 pairs). Spearman’s Rho values for normalized H3K27ac signal in 

enhancer-promoter pairs across 14 human islet samples and 51 Roadmap Epigenomics 

tissues. Control enhancer-gene pairs were enhancers that overlapped a PAT in linear maps 

but were not assigned to the PAT promoter (n = 9,770 pairs), or other unassigned gene-

enhancer pairs from the same TAD (n = 20,186 pairs). c, Concordance of enhancer eQTL-

eGene pairs and enhancers-gene pairs assigned through high-confidence interactions (n = 

351 pairs) or imputations (n = 293 pairs), relative to distance-matched control regions (n = 

579 and 593 pairs, respectively), shown as a fold-change. P values were derived from one-

sided Fisher’s exact test. d, Genes assigned to glucose-induced enhancers showed 
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concordant glucose-induced expression. Top: glucose-induced enhancers showed enriched 

high-confidence (n = 439) or imputed (n = 640) assignments to glucose-induced genes, 

compared with distance-matched genes from the same TAD. Bottom: glucose-induced 

enhancers showed no enrichment for assignments to genes that were inhibited by high 

glucose concentrations (n=196 interacting and n=218 imputed pairs). OR = odds ratio. P 

values were calculated with Chi-square tests. e, Genes assigned to glucose-induced 

enhancers through high-confidence interactions (n= 275) or imputations (n=321 pairs) were 

enriched for glucose-induced promoter H3K27ac, compared with control genes from the 

same TAD. Box plots represent IQRs, notches are 95% confidence intervals of median, P 

values are from Wilcoxon’s two-sided signed ranked tests. See also Supplementary Data Set 

2.
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Figure 3. Identification of gene targets of T2D-relevant enhancers.
a, We assigned gene targets through high-confidence interactions or imputations for 53 

(87%) out of 61 T2D-FG associated loci with genetic variants in islet enhancers 

(Supplementary Table 3). b, Summary of T2D-associated enhancer perturbations presented 

in this study (see also Supplementary Table 4). NT, not tested. c, Islet pcHi-C analysis 

defines gene targets of an enhancer bearing T2D-associated variants near CDC123/
CAMK1D. The only T2D risk credible set variant that maps to an islet enhancer in the locus 

(rs11257655, zoomed inset) is assigned to CAMK1D and OPTN (dashed horizontal lines). 
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Islet pcHi-C virtual 4C representations from pooled samples show interactions stemming 

from both CAMK1D and OPTN promoters towards rs11257655 with ChICAGO >3, but not 

from CDC123. d, CAMK1D and OPTN mRNA are regulated by the rs11257655-containing 

enhancer. We deleted the rs11257655-containing enhancer and a nearby control region with 

a T2D-associated variant (rs33932777) that lacked active chromatin marks in human islets. 

Cas9 only: n = 6 (2 independent experiments with triplicates). Deletions: n = 8 (2 gRNA 

pairs in 2 independent experiments with biological duplicates). Bars are means ± s.e.m., 

normalized by TBP and expressed relative to mean levels of the Cas9 only controls. 

Statistical significance: two-tailed Student's t-test.
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Figure 4. Tissue-specific enhancer hubs regulate key islet genes.
a, Hubs are composed of one or more enhancer-rich PATs (≥ 3 class I enhancers) connected 

through at least one common interacting enhancer. Turquoise and dashed green lines depict 

high-confidence and imputed assignments, respectively. Descriptive features of hubs are 

summarized in Supplementary Figure 8c. b, Islet hubs are enriched in genes showing islet-

selective expression. Ratios were calculated relative to all annotated genes. c, Islet hub genes 

are enriched in annotations important for islet differentiation, function and diabetes. 

Benjamini-Hochberg adjusted P values from EnrichR are shown (see complete lists in 

Supplementary Table 5). d, Gene pairs from the same hub show higher RNA correlations 

across human islet samples and 15 control tissues than gene pairs from the same TAD in 

which only one gene or neither gene is in a hub. P values were derived with Kruskall-Wallis 

analysis of variance. e, Enhancer-promoter pairs from the same hub show high H3K27ac 

correlations across 14 human islet samples and 51 Epigenome RoadMap tissues, compared 

with pairs from the same TAD in which only one element or neither are in a hub. P values 

were derived with a Kruskall-Wallis test. f,-g, Culture of 7 human islet donor samples at 4 

vs. 11 mM glucose shows concerted changes in H3K27ac in hub enhancers connected with 

glucose-dependent genes. Hub promoters were ranked by their median fold-change in 

H3K27ac at high glucose, so that glucose-induced promoters are on the left of the X axis. (f) 

Median mRNA for genes associated with each hub. (g) Median glucose-dependent fold-
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change of H3K27ac in enhancers from hubs connecting with each promoter, IQR values in 

blue shade. In both graphs values are shown as running averages (window = 50). h, 

Coordinated glucose-induced H3K27ac in enhancers of a hub connected to KIRREL3. Top 

tracks show RNA and H2K27ac in one representative sample. Bottom insets highlight 

H2K27ac at 11 mM glucose (red) vs. 4 mM (blue) in regions showing coordinated glucose-

induced changes in most hub enhancers, highlighted with black arrows (n = 4 human islet 

samples). See also Supplementary Table 6, Supplementary Data Set 5.
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Figure 5. Tissue-specific topology of the ISL1 enhancer hub.
a, Epigenome annotations and high-confidence pcHi-C interactions from pooled islet 

samples and total B lymphocytes are shown to illustrate active enhancers, super-enhancers 

and enhancer clusters distributed across a TAD, while sharing islet-selective 3D interactions 

with ISL1 and HI-LNC57. b-c, 3D chromatin conformation models of the ISL1 enhancer 

hub generated from pcHi-C libraries from human islets (b) and total B lymphocytes (c). 

Images represent the top scoring model from the ensemble of structures that best satisfied 

spatial restraints. Class I, II and III enhancers are colored in dark to light red and promoters 
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in blue if they are within 200 nm of the ISL1 promoter, or as white spheres if they are 

further than 200 nm. Note the proximity of lncRNA HI-LNC57 and ISL1 promoters in islets. 

The models show that active islet regulatory elements interact in a restricted 3D space in 

islet nuclei. See also Supplementary Figure 10b,c and Supplementary Videos 1 and 2.
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Figure 6. The ZBED3 enhancer hub links an enhancer bearing a T2D SNP with multiple target 
genes.
a, pcHi-C and virtual 4C representations from pooled islet samples for three viewpoints (see 

also Supplementary Figure 10). The variant with highest posterior probability in this locus 

(rs7732130) maps to a class I islet enhancer (yellow line, and zoomed inset) that shows 

interactions with PDE8B (CHiCAGO > 5), and ZBED3, ZBED3-AS1, snoRA47 and S100Z 
(CHiCAGO > 3, see also Supplementary Figure 11). WDR41 is assigned to rs7732130 by 

imputation. Dashed horizontal lines show all targets assigned through imputation or high-

confidence interactions. b, Analysis of hub and non-hub transcripts after CRISPR activation 

or inhibition of the transcriptional start site of ZBED3 or the rs7732130-enhancer in EndoC-

βH3 cells. Data are presented as means ± s.e.m. of all gRNAs combined per target region 

(enhancer CRISPRa: 3 gRNAs, CRISPRi: 4 gRNAs, all n=3 independent experiments). 

Statistical significance: two-tailed Student's t-test.
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Figure 7. Islet hub variants impact insulin secretion and provide tissue-specific risk scores.
a, Variant Set Enrichment (VSE) for T2D and FG (n=2,771 variants; Supplementary Table 

9) and breast cancer (n=3,048 variants) in high-confidence interacting fragments in islets. 

Box plots show 500 permutations of matched random haplotype blocks. Red dots indicate 

significant enrichments (Bonferroni–adjusted P < 0.01). b, T2D and FG GWAS-significant 

variants are selectively enriched in hub class I islet enhancers. Boxplots show median and 

IQR. c, Genomic inflation of T2D association P values for non-GWAS significant variants 

(P > 5x10-8) from a T2D GWAS meta-analysis (12,931 cases, 57,196 controls) in islet high-
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confidence interacting regions (magenta), non-interacting islet open chromatin (beige), and 

all other variants (brown). d, Genomic inflation of T2D association P values for non-GWAS 

significant variants in hub class I islet enhancers (blue), non-hub islet open chromatin 

(beige) and all other variants (brown). e, Heritability estimates based on GWAS summary 

statistics for T2D (12,931 cases, 57,196 controls), insulinogenic index (OGTT, 7,807 

individuals), homeostasis model assessment of β-cell function (HOMA-B) and insulin 

resistance (HOMA-IR) (~80,000 individuals), for indicated islet enhancer domains. Bars 

show category-specific per-SNP heritability coefficients (τc) divided by LD score heritability 

(h2) of each trait. τc coefficients were obtained independently for each trait, controlling for 

53 functional annotation categories. Values were multiplied by 107 and shown with s.e.m. f, 
T2D frequency across 40 bins, each representing 2.5% of individuals in the UK Biobank test 

dataset (226,777 controls, 6,127 T2D cases) with increasing PRS, calculated with hub (pink 

dots) or genome-wide variants (light green). g, Odds ratios (OR) for T2D calculated for 

2.5% individuals with highest PRS vs. all other individuals, using islet hub (pink) or 

genome-wide models (green), stratified by BMI and T2D age of onset. Boxplots show ORs 

for PRS from 100 permutations of pseudo-hubs (IQRs). Z-scores are standard deviations of 

pseudo-hub averages. See also Supplementary Figure 15 and Supplementary Table 17.
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