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This data is related to the research article entitled “Germinal center
humoral autoimmunity independently mediates progression of
allograft vasculopathy” (Harper et al., 2016) [2]. The data presented
here focuses on the humoral autoimmune response triggered by
transferred allogeneic CD4 T cells and includes details on: (a) the
recipient splenic germinal center (GC) response; (b) augmentation
of humoral autoimmunity and accelerated heart allograft rejection
following transplantation from donors primed against recipient;
(c) flow cytometric analysis of donor and recipient CD4 T cells for
signature markers of T follicular helper cell differentiation; (d)
in vitro donor endothelial cell migration in response to column
purified autoantibody from recipient sera; (e) analysis of devel-
opment of humoral responses in recipients following adoptive
transfer of donor CD4 T cells and; (f) the development of humoral
autoimmunity in mixed haematopoietic chimeric mice.
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 Autoimmunity

ore specific subject area
 Transplant related autoimmunity

ype of data
 Figures

ow data was acquired
 Microscopy (Olympus, Japan), flow cytometry [FACSCanto II flow

cytometer with FACSDiva (BD Biosciences, San Jose, CA)], ELISA
[FLUOstar OPTIMA plate reader (BMG Labtech, Aylesbury, U.K.)]
ata format
 Analyzed

xperimental factors
 Humoral autoimmune responses measured by relative antibody con-

centration, percentage of germinal centers, area occupied by GCs,
percentage of TFH cells, number of cells
xperimental features
 Humoral Autoimmune responses were analysed

ata source location
 Department of Surgery, University of Cambridge, Level 9 Lab

ata accessibility
 Data is with this article

elated research article
 M. S. Qureshi, J. Alsughayyir, M. Chhabra, J. M. Ali, M. J. Goddard, C.

Devine et al. Germinal center humoral autoimmunity mediates
progression of allograft vasculopathy independently from recipient
alloimmunity. J Autoimmun, 2018; In press [2]
Value of the data
� The data presented provides a guide for performing a comprehensive analysis of germinal center
autoantibody responses in transplantation.

� This data may help in designing strategies, such as ex-vivo normothermic donor organ perfusion, in
which it is possible to modulate the donor lymphocyte fraction prior to implantation.

� The data can provide a framework for future studies to delineate the role of donor lymphocytes and
epitope diversification in host alloimmune responses.
1. Data

The data presented here was obtained after WT bm12 or CD4 T cell depleted bm12 donor animals
either heart transplants or cells into WT B6 or T cell deficient B6 recipients. Priming of donor animals
against the recipient, prior to transplantation into the same recipient strains, resulted in augmented
humoral responses (Fig. 2a and b) with rapid rejection of donor allografts (Fig. 2c). Splenic GC areas
were significantly higher in WT compared to Tcrbd� /� recipients (DnCD4 group) and WT recipients
who received CD4 depleted donor bm12 allograft (RcCD4) (Fig. 3). Adoptive transfer of bm12 CD4 T
cells into congenic CB45.1 B6 recipients demonstrated that a small percentage of recipient
(CD45.1þve) CD4 T cells acquired TFH cell signature markers compared to donor (CD45.2þve) CD4 T
cells (Fig. 4a and b) and 3.5% of recipient B cells were found to be double positive on flow cytometry
for Ki67 and Bcl-6 that are characteristic of GC B cells (Fig. 4c). Adoptive transfer of bm12 CD4 T cells
into Tcrbd� /� and SAP-ve B6 groups revealed short lasting autoantibodies and GCs compared to WT
group (Fig. 5a, b). Furthermore in-vitro EC migration assays demonstrated significantly higher
number of bm12 ECs migrated across the scratch wound line in response to (column-purified)
immunoglobulin from WT recipients of bm12 heart transplants, compared to immunoglobulin from T
cell deficient Tcrbd� /�(DnCD4) B6 recipients or from Sh2d1a� /� B6 recipients that are genetically
deficient in SLAM-associated protein (SAP) and that do not form TFH cells (SAP-veB6, Fig. 6).
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2. Experimental design, materials and methods

2.1. Adoptive transfer of purified lymphocyte subsets

Column purified 2�106 CD4 T cells, obtained from either bm12 or B6 animals or both together in
an 1:1 ratio, were injected intravenously (i.v) into naive Tcrbd� /� mice. Cells were purified as
described previously [1,2]. Spleens were harvested from challenged animals at day 50 after adoptive
transfer for characterisation of follicular architecture and compared to control non-reconstituted
naïve Tcrbd� /� animals. Tissues were embedded in OCT compound (VWR International, USA), flash
frozen in liquid nitrogen, and stored at � 80 °C. Frozen tissues were cut into 7 mm serial sections and
placed onto poly-L-Lysine coated slides (Sigma Aldrich Inc.). After drying for 30min, the tissue sec-
tions were fixed in acetone for 10min. Sections were then air dried for 30min and stored at �80 °C.
When ready for staining, spleen sections were rehydrated with 1% phosphate buffered solution (PBS;
OXOID, Hampshire, UK). Sections were stained with hematoxylin (H) (Sigma Aldrich, HHS16-500ml)
Fig. 1. Restoration of splenic B-cell follicular architecture upon reconstitution of T cell compartment in Tcrbd� /� mice. Low-
power photomicrographs of H&E stained cryostat splenic sections of non-reconstituted T cell deficient Tcrbd� /� mouse (a); and
naïve Tcrbd� /� mice, 50 days after reconstitution with: column purified B6 CD4 T cells (2�106 cells) (b); purified bm12 CD4 T
cells (2�106 cells) (c); purified B6 CD4 T cells (2 � 106 cells) and simultaneous challenge with purified bm12 CD4 T cells
(2�106 cells). Classical B cell architecture is readily evident in reconstituted mice, with characteristic light and dark zone
secondary germinal center follicles observed in mice simultaneously challenged with purified bm12 CD4 T cells (d). Scale bars
200 mm.



Fig. 2. Augmented anti-nuclear autoantibody response and accelerated heart allograft rejection following transplantation from
donors primed against recipient. WT.B6 mice were transplanted with hearts from bm12 donors sensitised to recipients by
challenge with WT B6 skin grafts 7 weeks previously (primed bm12). Control recipient B6 mice received heart allografts from
unmodified bm12 donors (WT). Anti-nuclear autoantibody titres following transplantation (a); splenic germinal center activity
(percentage of secondary follicles) (b); and allograft survival (c) are shown. Included for comparison are results for B6 reci-
pients of syngeneic B6 heart transplants. Data represent mean and SD of n ¼ 4–10 mice per group. ns – not significant:
*P o 0.05, **P o 0.01 and ***P o 0.001.
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and washed with deionized water and tap water to allow stain to develop. Sections were immersed
into acid ethanol and then washed with deionized water and tap water. After blotting the excess
water from the slides, eosin stain (Sigma Aldrich, HT110216-500ml) was added for one minute fol-
lowed by wash with 95% ethanol, 100% ethanol and then xylene. After drying, slides were fixed with
coverslip slides using permount (Fisher Scientific, SP15-100). After drying, slides were examined
under microscope (Olympus, Japan) for characterisation of follicular architecture. Images were pho-
tographed using an ORCA-ER digital camera (Hamamatsu Photonics, Japan) and acquired with CellR
2.6 software (Olymous Imaging Solutions, Germany).

On analysis naïve Tcrbd� /�did not demonstrate any follicular architecture and mice reconstituted
with either bm12 or B6 CD4 T cells developed follicular architecture, but simultaneous reconstitution
of Tcrbd� /� with both bm12 and B6 CD4 T cells resulted in the development of secondary follicular
architecture with classical light and dark zone orientation (Fig. 1).



Fig. 3. Calculation of germinal center area. Splenic GC area was significantly higher in WT compared to T cell deficient
(Tcrbd� /�) recipients (DnCD4) and WT recipients who received CD4 depleted donor bm12 allograft (RcCD4). However, GC area
was comparable between WT and Tcrbd� /� recipients reconstituted with WT B6 CD4 T cells at the time of transplantation of
bm12 allografts (Dn.RcCD4). Splenic GC area in B6 recipients of syngeneic B6 heart grafts is included for comparison. Data
represent mean and SD of n ¼ 4–6 mice per group. *P o 0.05, **P o 0.01.
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2.2. Histopathology and immunofluorescence

Donor bm12 animals were primed with recipient B6 skin graft as described in the accompanying
research article [3]. The primed bm12 allografts were then subsequently transplanted into B6 (WT)
recipients. Recipient sera and spleens were examined for development of autoantibodies by HEp-2
indirect immunofluorescence as described previously [4,5] and for development of GCs as described
in the accompanying research article [3] respectively. Furthermore, allografts were monitored for
rejection [3,6]. Compared to recipients of allografts from unmodified bm12 donors, recipients of heart
allografts from sensitized donors developed augmented autoantibody responses (Fig. 2a), in keeping
with the presence of robust splenic germinal center activity (Fig. 2b). This was associated with
accelerated rejection of heart allografts (Fig. 2c).

Recipient spleens were stained for GC markers and enumerated as described in the accompanying
research article [3], and were further characterized by measuring the area occupied by GL7þve

B220þve staining per follicle , expressed as percentage GC area per secondary follicle, using CellR
2.6 software (Olymous Imaging Solutions, Germany). Splenic GC area was significantly higher in WT
(39.6 7 14.7%) compared to Tcrbd� /� recipients (DnCD4 group) (1.0 7 0.6 %) and WT recipients who
received CD4 depleted donor bm12 allograft (RcCD4) (1.1 7 0.51 %). However, GC area was comparable
between WT and Tcrbd� /� recipients reconstituted with WT B6 CD4 T cells at the time of trans-
plantation of bm12 allografts (53.8 7 21.9%) (Fig. 3).

2.3. Flow cytometric identification of T follicular helper cells and GC B cells

Flow cytometric identification of TFH cells and GC B cells was performed in CD45.1 B6 recipient
splenocytes following adoptive transfer of donor CD45.2 bm12 CD4 T cells or CD45.1 B6 CD4 T cells as
described previously [7,8]. Recipients were sacrificed 23 days after the adoptive transfer and sple-
nocytes were analysed for TFH cells GC B cells. Analysis revealed a small percentage of recipient
(CD45.1þve) CD4 T cells acquiring TFH cell signature markers compared to recipient (CD45.2þve) CD4 T
cells at this time point (Fig. 4a and b). Furthermore, recipient B cells were examined for acquisition of
GC markers by calculating Ki67þve and Bcl-6þve B cells as described previously [8]. On analysis of B
cells, 3.5% of B cells were found to be positive for Ki67 and Bcl-6 characterising GC B cells on flow, a
representative flow cytometry figure is shown in Fig. 4c.

2.4. Quantification of humoral autoantibody responses

Humoral reposes were examined in WT, Tcrbd� /� , SAP-ve B6 and syngeneic recipients following
adoptive transfer of either unmodified (WT) bm12 CD4 T cells or following adoptive transfer of bm12



Fig. 4. Differentiation of CD4 T cells into TFH phenotype and B cells into germinal centers on flow cytometry in WT recipients
(CD45.1 B6) of bm12 CD4 T cells (CD45.2). CD45.1 B6 mice were challenged with either purified allogeneic CD45.2 bm12 CD4 T
cells or CD45.2B6 CD4 T cells. 23 days later, mice were sacrificed and donor (CD45.2þve) and recipient (CD45.2-ve) splenic CD4 T
cells were characterized for TFH markers and recipient splenic B cells for GC B cell markers. Foxp3-ve, CD45.2-ve (recipient (a))
and CD45.2þve (donor (b)) splenic CD4 T cell populations characterised by flow cytometry for acquisition of CXCR5hiBcl-6hi (left
panel) or CXCR5hiPD1hi (right panel) TFH cell phenotype and recipient B220þve B cell population (c) characterized by flow
cytometry for acquisition of GC markers of Bcl-6hi and Ki67hi are shown. Data for TFH cells and GC B cells for WT recipients
(CD45.1 B6) of syngeneic B6 (CD45.2 B6) CD4 T cells is included for comparison. Figures represent one of two separate
experiments, with values depicting proportion of CD4 T cell and B cell population within gates.
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CD4 T cells that had been lentivirally transduced ex vivo with GFP-Bcl-6, as previously described
[9–11]. Column purified 2 � 106 donor CD4 T cells were adoptively transferred into recipients [1]. IgG
autoantibody responses were examined by HEp-2 indirect immunofluorescence (The Binding Site,
Birmingham, UK) as described previously [1,5], splenic GC activity was assessed as described in the
accompanying research article [3] and total IgG levels were measured thereafter by murine pan IgG
enzyme-linked immunosorbent assay (ELISA) assay as described below.



Fig. 5. Characterisation of humoral autoimmune responses following adoptive transfer of allogeneic CD4 T cells. a) Anti-nuclear
IgG autoantibody responses were examined following adoptive transfer of WT bm12 CD4 T-cells into Tcrbd� /� or SAP-ve B6
recipients, or following adoptive transfer of bm12 CD4 T cells that had been lentivirally transduced ex vivo with GFP-Bcl-6 (Bcl-
6). Right panel representative imaging depicting GFP-Bcl-6 expression in transduced bm12 CD4 T-cells and control bm12 CD4
T-cells without Bcl-6-GFP expression. Cells were cultured with Bcl-6 LV vector and control vector with stimuli and checked for
fluorescence at day 4. Scale bar 100 mm. b) Splenic germinal center activity in different test groups, 7 weeks after adoptive
transfer of either WT or Bcl-6-transduced bm12 CD4 T cells. c) Seven weeks after adoptive transfer of donor bm12 CD4 T cells,
IgG-secreting (top row) and anti-double-stranded DNA (dsDNA, bottom row) plasma cells were enumerated in spleen (left) and
bone marrow (right) by standard ELISPOT assay and expressed as antibody secreting cells (ASCs)/million cells plated. Shown for
comparison are responses in WT B6 recipients of WT bm12 donors (wild-type), and in naïve B6 and Tcrbd� /� B6 mice. d)
Circulating IgG antibody titres were determined by ELISA in sera from various test groups at early and late time points fol-
lowing adoptive transfer of donor CD4 T cells. Data represent mean and SD of n ¼ 4 mice per group. ns – not significant:
*P o 0.05, **P o 0.01 and ***P o 0.001.
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Fig. 6. in vitro endothelial cell migration responses following addition of column-purified immunoglobulin from transplanted
recipients. in vitro proliferation/migration of bm12 cultured endothelial cells in ‘scratch-wound’ assay following addition of
serum immunoglobulin column-purified 7 weeks after bm12 heart transplantation from: WT B6 recipients (WT); Tcrbd� /� B6
recipients (DnCD4); and Sh2d1a� /� B6 recipients that are genetically deficient in SLAM-associated protein (SAP) and that do not
form TFH cells (SAP-veB6). Migration was not observed with the negative fraction following column purification of sera from the
WT group (histogram). Representative photomicrographs of migration into the scratch wound are included. As positive control,
commercial anti-H-2Db mAb was added to endothelial cells. Data represent mean and SD of n ¼ 4 mice per group, with
discrete data-points, depicting samples from individual animals. *P o 0.05. Image scale bars are 50 mm.
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Briefly, 96-well Nunc ELISA plates (Immulon 4HBX, Thermo, Milford, MA) were coated with
1 μg/well primary goat anti-murine IgG antibody (catalogue number 1037-01; Southern Biotech,
Birmingham, USA) diluted in Na2CO3-NaHCO3 buffer [pH 9.6] and incubated for overnight at 4°C.
Nonspecific binding sites were blocked with phosphate-buffered saline (PBS) with 0.1% tween 20 and
5% semi skimmed milk powder for 2 hours at room temperature. After washing with PBS/0.05% tween
20 [Sigma, Poole, UK] in PBS throughout, samples were diluted 1:9 in block and added as serial
tripling dilutions (50 ml/well). After incubation at 37°C for one hour, bound IgG was detected using
secondary goat anti-murine IgG conjugated to HRP (catalogue number 1037-05; Southern Biotech),
and developed with TMB peroxidase substrate (BD). Plates were read in the FLUOstar OPTIMA plate
reader (BMG Labtech, Aylesbury, U.K.) at 450 nm. For each sample, an absorbance versus dilution
curve was plotted and the area under the curve calculated as a percentage of the AUC of a standard of
serial diluted murine IgG (I5381-5mg; Sigma-Aldrich, UK) that was assigned an arbitrary value of
100% [12]. Pooled sera from naïve B6 animals were used as a negative control.

Furthermore, the development of splenic and bone marrow plasma cells with specificity for dsDNA
and IgG was identified by Enzyme-linked immunospot (ELISpot) assay as described previously [1].

Whereas WT recipients developed long-lasting IgG anti-nuclear autoantibody responses, the
responses in the Tcrbd� /� and SAP-ve B6 groups were truncated, and decayed after 2 weeks (Fig. 5a).
Challenge of Tcrbd� /� mice with Bcl-6 transduced bm12 CD4 T cells prevented this decay and par-
tially restored the late autoantibody response to levels observed in challenged WT B6 mice (Fig. 5a).
Splenic GC activity in the challenged mice at seven weeks mirrored the autoantibody response, with
GCs readily detectable in those mice with long-lived autoantibody responses. Modest GC activity was
observed in Tcrbd� /� mice challenged with Bcl-6 transduced bm12 CD4 T cells (Fig. 5b). The absence
of late GC activity in challenged T cell deficient B6 mice (DnCD4 group) likely explains the significantly
lower number of IgG-secreting plasma cells and dsDNA-specific plasma cells in the spleen and bone
marrow, when compared to challenged WT B6 recipients (WT, Fig. 5c). Similarly, measurement of
total circulating IgG antibody by ELISA assay in challenged WT, Tcrbd� /� , and SAP-ve B6 recipients of
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bm12 CD4 T cells revealed higher levels of IgG levels in WT group , when compared to the Tcrbd� /�

and SAP-ve B6 recipient groups, but this did not reach statistical significance (Fig. 5d).

2.5. in vitro endothelial cell migration assays

The response of culture bm12 endothelial cells to autoantibody was assessed by in vitro endo-
thelial cell migration assay, using whole sera or column purified immunoglobulin isolated from
recipient mice sera at different time points after transplantation. Briefly, for endothelial cell culture,
10–14 day old neonatal bm12 hearts were digested with collagenase and endothelial cells labelled
with biotin-conjugated antibodies against CD31 (clone MEC 13.3, BD Pharmingen), CD105 (clone
MJ7/18, BioLegend, San Diego, CA, USA) and Isolectin B4 (clone B-1205, Vector, Burlingame, CA), and
then separated using anti-biotin MicroBeads (Mitenyi Biotec, Bergisch Gladbach, Germany) with an
AutoMACS™ Separator (Mitenyi Biotec). Endothelial cells were cultured until 80–90% confluent and
cells were subsequently incubated with medium lacking growth factors for 24 h to minimize baseline
proliferation. A linear lesion was made in the cell monolayer across the diameter of the dish using a
sterile pipette tip. Cells were incubated with column-purified (NAb™ Protein G Spin Purification Kit,
Pierce, Rockford, IL, USA) immunoglobulin derived from sera of transplanted mice, or with sera for a
further 24–36 h, fixed with paraformaldehyde (BD Cytofix kit, BD Biosciences), and then stained with
0.05% Crystal Violet solution. The negative fraction from column purification was used as negative
control. For positive control, commercial anti-H-2Db mAb (BD Pharmingen, San Diego, CA, USA) was
added to endothelial cells (diluted in medium in 1/200). For each plate, five fields along the lesion
were analysed and numbers of cells encroaching the lesion were counted using light microscopy. The
EC migration assay in response to test sera purified from transplanted recipients is detailed in the
main accompanying article [3]; here we detail the EC response to addition of immunoglobulin derived
from column-purified recipient sera. Significantly higher number of bm12 ECs migrated across the
scratch wound line in response to column-purified sera from WT recipients of bm12 heart trans-
plants, compared to sera from T cell deficient Tcrbd� /� (DnCD4) B6 recipients or from Sh2d1a� /� B6
recipients that are genetically deficient in SLAM-associated protein (SAP) and that do not form TFH
cells (SAP-veB6, Fig. 6).

2.6. Creation of mixed haematopoietic chimeric mice

Reconstitution of Tcrbd� /� CD45.2 B6 recipients with congenic CD4 T cells was achieved by i.v
injection of 1 � 107 column-purified CD4 T cells from congenic CD45.1 B6 mice (using anti-mouse
CD4 MicroBeads [Mitenyi Biotec, Bergisch Gladbach, Germany] and autoMACS Separator [Mitenyi
Biotec]). Mixed haematopoietic chimeric mice were created using a combination of depleting anti-
bodies and total body irradiation (TBI), as detailed previously [13]. Briefly, CD45.1 B6 recipients were
treated with anti-CD4 (YTS) on day-6 and -1 and anti-CD8 on day-1, 0, 1, and days 6–8. On day 0,
recipients received 4 Gy TBI and a single dose of 2mg of anti-CD154 mAb (MR1). Following con-
ditioning on day 0, recipients also received an iv injection of 3 � 107 purified CD45.2 bm12 bone
marrow cells. Chimerism was confirmed by flow cytometric analysis of peripheral blood lymphocytes
4 weeks after reconstitution (Fig. 7).

2.7. Statistical analysis

Data were presented as mean 7 S.D. where appropriate. Mann Whitney tests were used for
analysis of non-parametric data. Two-way ANOVA was employed for comparison of antinuclear anti-
vimentin autoantibody and pan IgG antibody responses. Graft survival was depicted using Kaplan-
Meier analysis and groups compared by log-rank (Mantel-Cox) testing. Analyses were conducted
using GraphPad 4 (Graph- Pad Software, San Diego, CA, USA). Values of P o 0.05 were considered
significant.



Fig. 7. Creation of mixed haematopoietic chimeric mice. Stable bm12-C57BL/6 mixed haematopoietic bone marrow chimeric
mice were created by conditioning sub-lethally irradiated (4 Gy total body irradiation) congenic CD45.1 B6 mice with anti-CD8,
anti-CD4, and anti-CD154 mAbs, followed by intravenous injection with CD45.2 bm12 bone marrow cells (diagram). The
presence of mixed haematopoietic chimerism was assessed 7 weeks later by flow cytometric analysis of peripheral blood
mononuclear cells (representative histogram plots depicted), and identifying bm12 donor (CD45.2) and B6 recipient (CD45.1)
fractions within gated T cell (top row) and B cell (bottom row) populations.
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