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Abstract: Deregulated NF-κB signalling is implicated in the pathogenesis of numerous human
inflammatory disorders and malignancies. Consequently, the NF-κB pathway has attracted attention
as an attractive therapeutic target for drug discovery. As the primary, druggable mediator of
canonical NF-κB signalling the IKKβ protein kinase has been the historical focus of drug development
pipelines. Thousands of compounds with activity against IKKβ have been characterised, with
many demonstrating promising efficacy in pre-clinical models of cancer and inflammatory disease.
However, severe on-target toxicities and other safety concerns associated with systemic IKKβ
inhibition have thus far prevented the clinical approval of any IKKβ inhibitors. This review will
discuss the potential reasons for the lack of clinical success of IKKβ inhibitors to date, the challenges
associated with their therapeutic use, realistic opportunities for their future utilisation, and the
alternative strategies to inhibit NF-κB signalling that may overcome some of the limitations associated
with IKKβ inhibition.
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1. Introduction

There are five members of the nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells
(NF-κB) transcription factor family in mammals: RelA (p65), RelB, c-Rel, NF-κB1 (p50, initially
synthesised as a larger precursor, p105) and NF-κB2 (p52, initially synthesised as a larger precursor,
p100). All members share a conserved Rel homology domain (RHD) that enables them to associate
with each other to form a diverse array of transcriptionally active homo- and hetero-dimeric complexes.
In normal unstimulated cells, NF-κB dimers are tightly bound by members of the inhibitor of kappa B
(IκB) family of proteins, which maintain the cytoplasmic steady-state localisation of NF-κB dimers and
inhibit their DNA-binding activity. The precursor proteins p100 and p105 also contain ankyrin repeat
domains, which are cleaved upon processing to p52/p50, such that they comprise internal inhibitors
of NF-κB dimers.

The transcriptional activity of NF-κB dimers is regulated by several distinct pathways (Figure 1).
The first is the canonical pathway, which is induced by pro-inflammatory cytokines, such as tumour
necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1), engagement of antigen receptors, such as the
T- and B-cell receptor (T/B-CR), pathogen-associated molecules such as lipopolysaccharides (LPS)
and certain growth factors (Figure 1A–D; [1]). Engagement of the canonical NF-κB pathways triggers
signalling cascades that converge on activation of the IκB kinase (IKK) complex, which is formed
by the kinase subunits, IKKα and IKKβ, and a regulatory subunit, IKKγ (also known as NEMO,
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NF-κB essential modifier). The non-canonical pathway, meanwhile, is stimulated by a more restricted
set of cytokines all belonging to the TNF superfamily, including BAFF (B-cell activating factor) and
lymphotoxin β [2]. Non-canonical NF-κB signalling requires IKKα, but not NEMO or IKKβ activity,
and so will not be discussed in detail here. Several atypical pathways are also capable of activating
the IKK complex in response to diverse stresses, such as DNA damage (Figure 1E; [3]). These distinct
NF-κB pathways regulate different subsets of target genes, and hence different biological functions.
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of TRAF6, which along with the E2-conjugating complex Ubc13-Uev1a, generates K63-linked 
polyubiquitin chains that serve to recruit and activate the TAK1 complex or TAB1/2/3-TAK1. K63-
linked chains also serve as a substrate for the LUBAC (linear ubiquitin assembly complex) complex, 
which conjugates M1-linked ubiquitin to these oligomers, to generate M1-K63-linked hybrid ubiquitin 
chains. The IKK complex is recruited to this complex through interaction of NEMO with M1-linked 
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turn, recruits RIP kinase, and subsequently TRAF2 or TRAF5 adaptor proteins and cIAP1 or cIAP2 to 
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Figure 1. Overview of canonical and DNA damage-induced NF-κB signalling pathways. (A) Binding of
IL-1/Toll-like receptor (TLR) ligands to the interleukin-1 receptor (IL-1R)/TLRs leads to the assembly
of the so-called ‘Myddosome’, an oligomeric structure consisting of the adaptor protein MyD88,
IL-1 Receptor (IL-1R)-Associated Kinase 4 (IRAK4), IRAK1 and IRAK2. IRAK4 activates IRAK1,
allowing IRAK1 to autophosphorylate and subsequently phosphorylate the E3-ligase Pellino-1, which
in turn causes K63-polyubiquitylation of IRAK1. This leads to the recruitment and activation of TRAF6,
which along with the E2-conjugating complex Ubc13-Uev1a, generates K63-linked polyubiquitin chains
that serve to recruit and activate the TAK1 complex or TAB1/2/3-TAK1. K63-linked chains also serve as
a substrate for the LUBAC (linear ubiquitin assembly complex) complex, which conjugates M1-linked
ubiquitin to these oligomers, to generate M1-K63-linked hybrid ubiquitin chains. The IKK complex is
recruited to this complex through interaction of NEMO with M1-linked chains. The co-localisation
of TAK1 and IKK to ubiquitin chains leads to activation of the IKK complex, which subsequently
phosphorylates IκBα to activate the NF-κB pathway. (B) TNFα binding to the extracellular domain
of the receptor leads to the recruitment of TRADD (Tumor necrosis factor receptor type 1-associated
DEATH domain) to the cytoplasmic death domains of TNFR1. TRADD, in turn, recruits RIP kinase,
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and subsequently TRAF2 or TRAF5 adaptor proteins and cIAP1 or cIAP2 to assemble the
TNFR1 complex I. cIAP1 and cIAP2 generate K63-linked polubiquitin chains on RIP1 and other
components of the complex. This is necessary to recruit LUBAC, which stabilises complex
I by catalysing the attachment of linear M1-linked polyubiquitin chains, typically to RIP1.
K63-polyubiquitylated RIP1 also recruits the TAK1:TAB complex. LUBAC-mediated M1-linked
linear polyubiquitylation of RIP1, meanwhile promotes the recruitment of NEMO, as part of the
IKK complex. Membrane proximal recruitment of IKK kinases contributes to IKK activation
through proximity to TAK1, which is thought to prime the activation of IKK via phosphorylation
of S176/S177 of IKKα/IKKβ, and through oligomerisation of IKK complexes, which is thought to
facilitate trans-autophosphorylation of the activation loop, leading to full activation. (C) Engagement
of the TCR by a major histocompatibility complex (MHC)-antigen complex leads to recruitment of
Src family kinases, including FYN and LCK, which phosphorylate the TCR to promote recruitment
of the tyrosine kinase, ZAP-70. ZAP-70 phosphorylates the adapter proteins LAT and SLP-76,
which along with VAV1 promote the recruitment and activation of PLCγ1. PLCγ1 generates the
second messengers, inositol trisphosphate (IP3) and diacylglycerol (DAG), which, in turn, activate a
specific PKC isoform, PKCθ. PKCθ-mediated phosphorylation of CARMA1 triggers a conformational
change, enabling CARMA1 to bind to BCL10 and MALT1, to form the CBM complex. BCL10 and
MALT1 become polyubiquitinated, possibly through TRAF6 activity, which promotes the recruitment
of NEMO, as part of the IKK complex. (D) Antigen binding to BCRs leads to the recruitment
and activation of SRC-family kinases, including BLK, LYN, FYN and SYK and adaptors, such as
BLNK. This leads to activation of PLCγ2, which catalyses the generation of IP3 and DAG, which
ultimately activate a specific PKC isoform, PKCβ. PKCβ phosphorylates CARMA1 to form the CBM
complex and ultimately activate the IKK complex. (E) Genotoxic triggers the nuclear accumulation
of ‘IKK-free’ NEMO. Within the nucleus NEMO forms a complex with PARP1, PIASy and ATM and
undergoes a series of post-translational modification. PIASy promotes the sumoylation of NEMO,
which promotes its nuclear localisation. ATM phosphorylates NEMO at Serine 85, which is necessary
for the subsequent monoubiquitylation of NEMO. This is thought to trigger the nuclear export of the
NEMO-ATM complex, which then, in an ill-defined mechanism, activates TAK1 and the IKK complex.
Canonical and DNA damage-induced NF-κB signalling pathways converge at the activation of the IKK
complex, which subsequently phosphorylates IκB proteins (at S32 and S36 IκBα). This promotes the
recognition of the PEST motif degron within IκBα by β-TrCP, which is part of the E3 ubiquitin ligase
SCFβ-TrCP (S phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein containing β-transducing
repeat-containing protein), and its K48-linked ubiquitylation, which targets IκBα for proteasomal
degradation. This enables NF-κB complexes (primarily p65-p50 and c-rel/p50 complexes in the case
of canonical NF-κB pathways), to accumulate in the nucleus, where they regulate the expression of
NF-κB-dependent genes.

IKKα and IKKβ are ubiquitously expressed serine/threonine kinases with 52% sequence identity
and 70% homology [4]. They also share highly similar domain organisation and tertiary structure,
as demonstrated by the recent X-ray crystal structures of human IKKα and IKKβ (Figure 2; [5–7].
Activation of IKKα and IKKβ kinase activity requires the phosphorylation of specific residues in
the activation loop of their active sites: serine-176 (S176) and serine-180 (S180) for IKKα and S177,
and S181 for IKKβ [8,9]. The precise sequence of molecular events involved in IKK activation remain
to be fully determined. However, recent evidence for higher-order IKK complexes [10], combined
with X-ray crystal structures of IKKβ dimers in catalytically active conformations [6], has led to the
proposal of a model for IKK activation involving oligomerization-mediated trans-autophosphorylation
of IKK subunits. Indeed, in the case of IKKβ activation downstream of IL-1 and TNFα in mouse
embryonic fibroblasts (MEFs) and TLR ligands in macrophages, TAK1 has been proposed to
phosphorylate IKKβ at S177, which primes subsequent IKKβ-catalysed autophosphorylation of
S181 [11]. Subsequently, the activated IKK complex phosphorylates IκB proteins (at S32 and S36 in the
case of IκBα), promoting their K48-linked ubiquitylation by the S phase kinase-associated protein 1
(SKP1)-cullin 1-F-box protein (SCF)/beta-transducing repeat-containing protein (β-TrCP) E3 ubiquitin
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ligase complex, which targets them for proteasomal degradation [12–16]. In the context of canonical
NF-κB signalling, this enables RelA- and c-Rel-containing NF-κB dimers to accumulate in the nucleus
where they coordinate the expression of genes involved in diverse biological process including cell
proliferation/survival, immune and inflammatory responses, and other host defence mechanisms [17].Cells 2018, 7, x 4 of 34 
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Figure 2. X-ray crystal structures of human IKKβ and IKKα. (A) Ribbon diagram of the crystallographic
structure of the human IKKβ dimer. The N-terminal lobe of the kinase domain (KD) (KD N; residues
1–109), C-terminal lobe of the KD (C; residues 110–307), ubiquitin-like domain (ULD; residues 308–404)
and scaffold/dimerization domain (SDD; residues 410-664) are coloured in yellow, orange, blue and
green, respectively. The NEMO-binding domain (NBD) at the extreme N-terminus was not resolved
in the original structure. Figure adapted from [5]. PDB ID: 4KIK. (B) Ribbon diagram of the human
IKKβ protomer showing the tri-modular architecture of KD, ULD, and the elongated, α-helical SDD.
Figure adapted from [5]. PDB ID: 4KIK. (C) Ribbon diagram of a model of a human IKKα dimer derived
from X-ray crystallographic data. Figure adapted from [7]. PDB ID: 5EBZ. (D) Ribbon diagram of the
human IKKα protomer showing the same tri-modular architecture of domains as IKKβ. The NBD
at the extreme N-terminus was also not resolved in the original structure. Figure adapted from [7].
PDB ID: 5EBZ. The pseudo two-fold axis of the IKKβ and IKKα dimers are indicated by a dashed line.

The activity of NF-κB subunits is also regulated through direct post-translational modification
including phosphorylation, ubiquitination, sumoylation, acetylation and nitrosylation [18,19]. In many
cases, these modifications are mediated by IKKα and IKKβ, as well as components of heterologous
signalling pathways. This provides an additional layer of fine control through which NF-κB transcriptional
activity can be modulated and represents a key site of cross-talk within the wider signalling network [3].

NF-κB signalling pathways are normally tightly controlled by multiple regulatory mechanisms
to ensure minimal basal activation [20]. However, given its critical role in regulating the expression
of genes involved in cell-survival, proliferation, angiogenesis, metabolism, inflammation and cell
adhesion/migration, it is unsurprising that a wide range of inflammatory diseases and cancers have
been shown to exhibit deregulated NF-κB signalling that results in constitutive pathway activation [21].
Indeed, the ability of NF-κB to induce inflammation places it as one of the crucial links between chronic
inflammation and cancer [22]. However, aberrant NF-κB activation is also capable of promoting
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tumorigenesis in cancers whose early progression isn’t typically associated with inflammation through
contributions of NF-κB target genes to almost all the hallmarks of cancer [23,24].

Outside of their direct role in the NF-κB signalling pathway, both IKKα and IKKβ have been
proposed to phosphorylate an ever-growing list of ‘non-classical’ substrates involved in diverse
biological processes [25]. Whilst, many of these ‘non-classical’ phosphorylation events and the associated
NF-κB-independent functions of IKKs await thorough validation, it is clear that the IKK complex is a central
point of cross-talk between NF-κB and other signalling pathways. Many of the substrates phosphorylated
by IKKα and IKKβ, such as FOXO3a and TSC1, are involved in proliferative and pro-survival pathways,
and so these NF-κB-independent functions of the IKKs may also contribute to tumorigenesis [26,27].

2. IKKβ Inhibitors

The identification of NF-κB signalling pathways as important drivers of human disease and
the essential role of the IKK complex as the ubiquitous signal integration hub for NF-κB activation
pathways led to a concerted effort by the pharmaceutical industry to identify small molecule inhibitors
of the IKKs via high-throughput screening programmes. The primary focus of efforts to inhibit
canonical NF-κB signalling has been the druggable IKKβ kinase due to foundational mouse studies
that indicated IKKβ and NEMO are essential for activation of this pathway, while IKKα is largely
dispensable [28–30]. Instead, IKKα, but not IKKβ or NEMO, is indispensable for non-canonical NF-κB
activation [31–34].

A vast drug-discovery effort has identified numerous synthetic small molecules with activity
against the IKKs that typically exhibit selectivity for IKKβ over IKKα. Indeed, the first IKKα-selective
inhibitor series was only very recently reported [35] and IKKα-selective inhibitors are described
in another review within this special issue by Pepper & Mackay. In addition, a range of natural
products, such as wedelactone, reportedly inhibit IKKβ [36,37]. However, these compounds tend to
have pleiotropic effects, and with a few notable exceptions, their mechanism of IKK/NF-κB inhibition
has not been fully characterised. Collectively, the number of compounds with reported activity against
IKKβ continues to grow [38,39]. A selection of the best-characterised, commercially-available IKKβ
inhibitors is shown in Table 1.
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Table 1. Commercially available IKKβ inhibitors.

Inhibitor Mechanism Ki/IC50 for IKKβ (nM) * [Ref] Selectivity Over IKKα Known Off-Targets Bio-Availability Pre-Clinical Therapeutic Efficacy

BI605906 (BIX02514) ATP-competitive 380 [40] >300 fold (>100 µM)
>300-fold selectivity over

100 representative tyr/ser-thr kinases
IGF1 (7.6 µM)

N/A N/A

MLN120B ATP-competitive 60 [41] >1000 fold (>100 µM) >1000-fold selectivity over
30 representative tyr/ser-thr kinases Good oral bio-availability Multiple myeloma [42] Arthritis [43]

PHA-408 ATP-competitive 10–40 [44,45] >350 fold (14 µM)
>100-fold selectivity over

30 representative tyr/ser-thr kinases
PIM-1 (0.6 µM)

Good oral bio-availability Arthritis [44] COPD [46,47]

TPCA-1 (IKK inhibitor IV) ATP-competitive 18 [48] ~22-fold (400 nM) STAT3
Poor oral

bio-availabilityAdministered
intra-peritoneally

Arthritis [48] Nasal epithelium inflammation [49]
Glioma [50] NSCLC [51] COPD [52] Wet AMD [53]

SC-514 ATP-competitive 3000–12,000 [54] >15-fold (>200 µM) CDK2/CycA (61 µM) Aurora A (71 µM)
PRAK (75 µM) MSK (123 µM)

Poor oral
bio-availabilityAdministered

intra-peritoneally

Rat model of inflammation [54] Oral squamous cell
carcinoma [55] Osteoclast-related disorders [56] Diabetic

neuropathy [57]

LY2409881 ATP-competitive 30 [58] > 10-fold >10-fold selectivity over panel of
representative tyr/ser-thr kinases Administered intra-peritoneally DLBCL [58]

PS-1145 ATP-competitive 100 [59,60] N/A [61] Administered intra-peritoneally
Multiple myeloma [61] DLBCL [62] Graft-versus-host

disease [60] Tobacco smoke-induced pulmonary
inflammation [63]

Compound A (Bay 65-1942) ATP-competitive Ki for GST-IκBα = 4 nM [64] >30 fold (135 nM)
IKKε, MKK4, MKK7, ERK-1, Syk, Lck,

Fyn, PI3Kγ, PKA and PKC (IC50 >
10µM)

Good oral bio-availability
KRAS-induced lung cancer [65] Chronic pulmonary
inflammation [64] Ischemia–reperfusion injury [66]

LPS-induced neurotoxicity [67]

IKK-16 (IKK Inhibitor VII) ATP-competitive 40–70 [68,69] 5-fold (200 nM) LRKK2 (50 nM) Good oral bio-availability

Multiple organ failure associated with hemorrhagic
shock [70] Sepsis-associated multiple organ

dysfunction [71] Ventilation-induced lung injury [72]
Acute kidney injury [73]

IMD-0354 (and pro-drug IMD-1041) ATP-competitive ~1µM [74,75] N/A N/A Administered intra-peritoneally CLL [76] Pancreatic cancer [77] Adult T-cell leukemia [78]
Breast cancer [75]

ACHP (IKK inhibitor VIII) ATP-competitive 8.5 [79] 30-fold (250 nM) IKKε, Syk, MKK4 (IC50 > 20 µM) Good oral bio-availability Multiple myeloma [80] Adult T-cell leukemia [81]
HIV-1 replication [82]

BMS-345541 Allosteric 300 [83] ~13-fold (4000 nM) >300-fold selectivity over a small panel
of representative tyr/ser-thr kinases Good oral bio-availability Arthritis [84] Colitis [85] Cardiac graft rejection [86]

T-ALL [87] Glioma [50] Prostate cancer [88]

Withaferin A Cys179-binding [89–92] N/A
Broad spectrum inhibitor [93] Vimentin,
HSP90, β-tubulin, Desmin, Annexin-A2,

Notch-1, STAT1/3
Poor oral bioavailability N/A

BOT-64 Ser-177/181 binding 1000–3000 [94] N/A N/A Administered intra-peritoneally N/A

Ainsliadimer A Cysteine-46 binding 30 [95] N/A No significant activity against
340 human kinases at 200 nM Administered intravenously N/A

* Value as reported in the reference, from activity or binding assay, not corrected for ATP concentration.
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To date, chemical IKKβ inhibitors with four mechanisms of action have been characterised (see
Table 1). The clear majority are ATP analogues that exhibit reversible, ATP-competitive activity, with some
degree of selectivity for IKKβ over IKKα and other kinases. Due to the structural similarity of protein
kinase ATP-binding sites, ATP mimetics often exhibit activity against other kinases, resulting in ‘off-target’
effects at or near concentrations of drug required to inhibit its primary target in cells [96]. Indeed, several
widely-used ‘selective’ IKKβ inhibitors have recently been shown to exhibit significant off-target effects.
For example, the compound Bay 11-7082, which inhibits IκBα phosphorylation and NF-κB transcriptional
activity in cells, has been used to study IKK and NF-κB function in >350 publications [97]. However, a recent
report showed that Bay 11-7082 inhibits NF-κB not through direct inhibition of IKK activity, but through
irreversible covalent inactivation of the E2-conjugating enzymes Ubc (ubiquitin conjugating) 13 and UbcH7,
and the E3-ligase LUBAC (linear ubiquitin assembly complex) [98]. In addition, the widely used compound
TPCA-1 was recently shown to inhibit STAT3 signalling through direct binding to the STAT3 Src Homology
2 (SH2) domain, in addition to its activity against IKKβ [51]. Of great concern is the continued use of these
non-selective inhibitors to make inferences about IKK function. The current best-in-class, ATP-competitive
IKKβ inhibitors are MLN-120B and BI605906, which exhibit >50- and >300-fold selectivity for IKKβ over
IKKα, respectively [40,41,99]. The selectivity of BI605906 for IKKβ over 100 other serine/threonine and
tyrosine kinases has also been confirmed [40], while MLN-120B exhibited a highly favourable selectivity
profile when tested against a panel of 442 kinases [99], making these inhibitors the preferred tools for
dissecting IKKβ-dependent functions [100].

Meanwhile, BMS-345541 acts as an allosteric inhibitor of the IKKs, displaying moderate (13-fold)
selectivity for IKKβ over IKKα [83]. Curiously, BMS-345541 binds to IKKβ in a mutually exclusive manner
with respect to phosphorylated IκBα substrate and in a non-mutually exclusive manner with respect to ADP.
Binding to IKKα has the opposite effect, leading to a proposed binding model whereby BMS-345541 binds
to similar allosteric sites on IKKα and IKKβ but affects the active sites of the subunits differently.

A third class of IKKβ inhibitors constitute thiol-reactive compounds that interact with key
cysteine residues in IKKβ. For example, berberine [101], nimbolide [102] and withaferin A [92]
have been proposed to inhibit IKKβ activity through covalent modification of cysteine 179 (C179),
a residue that may promote phosphorylation of ser-177/Ser-181 and, in turn, kinase activity [103].
However, the involvement of C179 modification in the mechanism of action of withaferin A has been
questioned recently by a study that found it to be a poor direct inhibitor of IKKβ in an in vitro kinase
assay; instead it was proposed to inhibit IKKβ indirectly through blockade of signal-induced NEMO
reorganization into ubiquitin-based signalling foci [89]. Other molecules, such as the epoxyquinoid
derivatives, manumycin A [104] and jesterone dimer [105], are thought to inhibit IKKβ activity through
covalent cross-linking of IKKβmonomers via C179, which disrupts the essential interaction between
IKKβ and NEMO. Modification of C179 may also block S-glutathionylation at this residue, which is
thought to be important for the kinase activity of IKKβ [106]. The natural product ainsliadimer A,
meanwhile, covalently modifies the conserved residue, cysteine-46, in both IKKα and IKKβ, to inhibit
ATP-binding and kinase activity via a putative allosteric mechanism [95]. A fourth mechanism of action
for IKKβ inhibitors has been proposed for the benzoxathiole derivate, BOT-64, which inhibited IKKβ
kinase activity via an apparent direct interaction with S177 and/or S181 residues in the activation loop
of IKKβ [94], although 10 years on from the primary paper further work is required to validate this.

In addition, IKKβ kinase activity may be inhibited indirectly through blockade of the essential
interaction between IKKβ and NEMO. For example, cell-permeable peptides corresponding to the
NEMO-binding domain (NBD) of IKKα/β display non-selective inhibitory activity against IKKα and
IKKβ [107]. These molecules will be discussed further in Section 7.2.

Multiple clinically approved non-steroidal anti-inflammatory agents (NSAIDs), including sodium
salicylate (aspirin), sulindac sulphide and exisulind, have also been proposed to inhibit the NF-κB
pathway at the level of IKKβ. The primary anti-inflammatory mechanism of these compounds is
via inhibition of the cyclooxygenase enzymes, COX1 and COX2 [108]. However, these compounds
have also been reported to inhibit NF-κB activation by inhibiting IκBα phosphorylation [109–112],



Cells 2018, 7, 115 8 of 34

while at higher concentrations aspirin has been proposed to act as an ATP-competitive inhibitor of
IKK-β (in vitro IC50 ~80µM) [110,112]. However, these findings should be interpreted with extreme
caution as more recent kinase profiling studies suggest that aspirin inhibits vast numbers of other
kinases at least as potently as it inhibits IKKβ [113]. Furthermore, some studies have suggested that
the direct inhibition of IKKβ activity by aspirin in vitro does not reflect its inhibitory mechanism
in vivo, where aspirin is proposed to inhibit TNFα-induced IκBα phosphorylation and degradation
indirectly through activation of p38 kinase [114,115]. In addition, more recent studies have proposed
that while short-term treatment (1–2 h) with NSAIDs may block stimuli-induced NF-κB activation in
cells, prolonged exposure with pharmacologically relevant doses of NSAIDs, in fact, stimulates the
NF-κB pathway both in vitro and in vivo ([116–120]. Furthermore, this activation has been causally
associated with pro-apoptotic effects of these agents in cancer cells and may involve NSAID-induced
nucleolar translocation of RelA [121].

3. Pre-clinical Development of IKKβ Inhibitors

IKKβ inhibitors have demonstrated efficacy in various pre-clinical models of cancer and inflammatory
disease (see Table 1). For instance, MLN-120B inhibited multiple myeloma (MM) cell growth in a
clinically relevant severe combined immunodeficient (SCID)-hu mouse model [42] and exhibited significant
therapeutic efficacy in a rat model of rheumatoid arthritis (RA) [43]. However, clinical use of these inhibitors
has not yet been reported. Indeed, only a handful of phase I/II clinical trials with IKK inhibitors have
been performed. The earliest example was the ATP-competitive IKKβ inhibitor, MLN-0415, which failed
in phase I human trials for inflammatory disorders due to an unfavourable safety profile [122]. It is
now being tested in dogs with high-grade lymphomas. The Institute of Medicinal Molecular Design Inc
(IMMD) has several compounds in current or completed phase I/II trials, for which results have yet to
be published [122]. For example, IMD-2560 (a pro-drug of IMD-0560) [123] underwent a phase I trial for
the treatment of rheumatoid arthritis (RA), rheumatic osteoporosis and osteoarthritis, IMD-0354 [124]
underwent a phase I trial for the topical treatment of atopic dermatitis and IMD-0354 (and its pro-drug
IMD-1041) underwent a proof-of-concept (POC) study for the treatment of chronic obstructive pulmonary
disease (COPD; Identifier: NCT00883584). However, questions surrounding the true molecular target of
these compounds has been raised by the lack of conclusive biochemical evidence for IKKβ antagonism.
Indeed, IMD-0354 was recently shown to exhibit no activity against IKKβ or IKKα in an ATP-based kinase
assay [125].

The IKKβ-selective compound, SAR-113945 [126], has progressed the furthest through clinical
development. Multiple phase I trials demonstrated its safety/tolerability following intra-articular
injection in patients with knee osteoarthritis (Identifier: NCT01113333/NCT01463488/ NCT01511549).
Positive efficacy trends in these studies motivated the undertaking of a Phase IIa POC trial (Identifier:
NCT01598415). However, SAR-113945 failed to show efficacy in this larger patient sample size [127].

The ATP-competitive IKKβ inhibitor, SPC-839 (also known as AS602868; [128,129]), also progressed
into phase I trials for haematological malignancies, but the trial was prematurely terminated due to
portfolio repositioning. This reflects a common trend within the pharmaceutical industry; interest in the
clinical development of IKKβ-selective inhibitors has significantly diminished in the last 10 years.

4. Potential Reasons for the Lack of Clinical Success of IKKβ Inhibitors

Evidently, the potential of IKKβ inhibition as a therapeutic strategy remains unrealized and
previous optimism for IKKβ as a therapeutic target has significantly cooled. There are several plausible
reasons for this lack of clinical success. The simplest is that IKKβ inhibitors developed to date may
not exhibit the combination of properties required to achieve success during preclinical development,
including but not limited to: nanomolar-range potency, high selectivity over IKKα/other kinases,
and clinically relevant pharmacokinetics/pharmacodynamics. As mentioned earlier, several ‘selective’
IKKβ inhibitors that continue to be used by the research community have been shown to be anything
but selective. IKKβ inhibitors described to date were identified following hit-to-lead development and
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characterization of structure–activity relationships in the absence of resolved crystal structures for the
IKKs. However, the recent reports of human IKKβ X-ray crystal structures have revealed many new
structural details at a sufficiently high resolution that will hopefully facilitate the structure-guided design
of next-generation IKKβ inhibitors with enhanced potency and selectivity (Figures 2 and 3; [5,6]).
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Figure 3. Insights from X-ray crystallographic studies of IKKβ. (A) Predicted allosteric binding site between
the KD (yellow) and ULD (blue) of the catalytically inactive conformation of the human IKKβmonomer.
Surface representation of residues surrounding the binding pocket is shown in magenta. SDD, green.
Liu et al. identified a compound that specifically binds to this allosteric pocket in the inactive conformation
of IKKβ, but not the active conformation, and blocks IKKβ activation. Figure adapted from [130] PDB ID:
4KIK. (B) Ribbon diagram of a human IKKβ dimer (chains A and F) in a catalytically active conformation
taken from the asymmetric unit of the crystallographic structure. The primary dimer interface is mediated
by residues of the C-terminal portion of the SDD (dashed box). Figure adapted from [6]. PDB ID: 4E3C.
(C) Close-up view of the boxed area from panel B. Displayed are residues mediating interactions at
the dimer SDD interface that have been shown to be important for IKKβ catalytic activity in vitro via
site-directed mutagenesis. Three pairs of residues were mutated (W655D/L658D, L654D/W655D and
K482A/F485D) and in vitro kinase assays with human IKKβ performed [6]. Figure adapted from [6].
PDB ID: 4E3C. (D) Ribbon diagram showing the interaction of neighbouring, symmetry-related tetrameric
assemblies of IKKβ protomers within the crystal. This oligomerisation positions two KDs (from chains A,
green, and D’, magenta, in the representation provided) within close proximity to one another (dashed box).
Figure adapted from [6]. PDB ID: 4E3C. (E) Close-up view of the boxed area from panel D. The arrangement
of neighbouring KDs (from A and D’) positions the kinase activation loop (shown in yellow and blue) of one
protomer directly over the active site of its neighbour, and potentially facilitates oligomerization-dependent
trans auto-phosphorylation. Activation loop E177 and E181 (mutant forms of WT S177 and S181) are
shown in cyan and red, respectively. The Cα positions of V229 and H232 are marked as orange spheres.
Mutation of these, and other residues mediating interactions at this KD-KD oligomerisation interface
inhibited IKKβ catalytic activity and activation loop phosphorylation in vitro [6]. Figure adapted from [6].
PDB ID: 4E3C. Small molecules designed to interfere with dimerization/oligomerization via the interfaces
shown in panel C and E may function as specific inhibitors of IKKβ. Figures were prepared using program
PyMOL [131,132].
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These structures identified opportunities to rationally design highly selective non-ATP
competitive inhibitors. For example, Liu et al. captured an asymmetric dimer of human IKKβ
at a resolution of 2.8A, with one protomer in an active and the other in an inactive conformation,
each with phosphorylated and unphosphorylated S177/S181 residues, respectively [5]. The binding
mode of an inhibitor within the ATP-binding site of IKKβwas essentially identical regardless of the
activation state of the kinase domain (KD), suggesting that ATP-competitive compounds are unlikely
to selectively capture the inactive conformation. However, elsewhere the protein conformations were
distinct, highlighting the potential for selective, non-ATP competitive inhibitors. Indeed, a recent
study utilised a potential allosteric site identified at the KD-ubiquitin-like domain (ULD) interface
(Figure 3A) to perform a virtual screen for allosteric inhibitors [130]. They identified a lead compound
(3,4-dichloro-2-ethoxy-N-(2,2,6,6-tetramethylpiperidin-4-yl) benzenesulfonamide), which inhibited
TNFα-induced NF-κB transcriptional activity through selective capture of the inactive conformation
and hence blockade of IKKβ S177/S181 phosphorylation. The selectivity of this compound over IKKα
was, unfortunately, not assessed. However, it is interesting to note that X-ray and cryo-EM structures
of human IKKα demonstrated pronounced differences between IKKα and IKKβ in the orientation of
the KD relative to the α-helical scaffold/dimerization domain (SDD) and its stably associated ULD,
suggesting that the KD-ULD interfaces of IKKβ and IKKα may be sufficiently unique to facilitate
the design of highly selective IKK inhibitors [7]. Meanwhile, Polley et al. demonstrated that the
introduction of mutations within the two oligomerization interfaces identified in their constitutively
active (S177E/S181E) human IKKβ X-ray crystal structure—the SDD-SDD interface of dimeric IKKβ
(Figure 3B,C), and the KD-KD interface of oligomeric IKKβ (Figure 3D,E)—was sufficient to interfere
with IKKβ activation/catalytic activity in vitro, indicating that small molecules designed to interfere
with IKKβ oligomerization through these interfaces may function as highly selective inhibitors of
IKKβ [6].

Another reason for the lack of success of IKKβ inhibitors in pre-clinical development may be their
inappropriate therapeutic application. In the simplest sense this could reflect use of the wrong dosing
strategy (drug concentration/dosing schedule, etc.) for effective target inhibition. More challenging is
the appropriate selection of patient subgroups to achieve the desired therapeutic efficacy. For example,
the proof of concept study for SAR113945 failed to show any effect in the overall group of recruited
study participants for the primary endpoint; however, post-study analysis demonstrated a statistically
significant difference in a patient subgroup that had presented with synovial effusion at baseline [127].
Stratification of patient subgroups to identify those with a clear NF-κB-driven, inflammatory phenotype
that would benefit from IKKβ inhibition may be one solution to this problem.

A further underappreciated factor that may have impacted the clinical success of IKKβ inhibitors
is the relative contribution of IKKα and/or IKKβ to the disease state being targeted. As already
discussed, IKKβ has historically been considered the primary viable target to inhibit pathogenic
canonical NF-κB signalling due to seminal knock-out experiments in murine cells. However, this
isoform-specific delineation of function has turned out to be overly simplistic. Increasingly, it appears
that in certain human cell-types IKKα may play a substantial role, alongside IKKβ, in activation of
canonical NF-κB signalling, both under physiological or pathological conditions [133–135] and as
an adaptive response to inhibition of IKKβ [136]. The relative contribution of IKKα and IKKβ to
disease-associated canonical NF-κB signalling should therefore be assessed prior to any decisions
to apply IKKβ-, IKKα- or dual-selective inhibitors. For example, dual siRNA-mediated knockdown
of IKKα and IKKβ or dual IKKα/β inhibition had a greater suppressive effect on canonical NF-κB
activation and proliferation, survival and migration of head and neck squamous cell carcinoma
(HNSCC) cells than knockdown or inhibition of each IKK individually [134].

Many of these issues are likely compounded by the lack of widespread use of isoform-specific
readouts of cellular IKK activity in pre-clinical studies. Non-canonical NF-κB stimuli/FBS-induced
phosphorylation of human p100 at S866/870 may be used as a cellular readout of IKKα-induced
non-canonical NF-κB signalling [137]. Meanwhile, the relative contributions of IKKα and IKKβ
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to canonical NF-κB signalling (typically assessed by measurement of phosphorylation of IκBα at
S32/36 and p65 at S468 and/or S536) may be assessed using a combination of highly selective IKKβ
inhibitors (such as BI605906) and siRNA or CRISPR-Cas9-mediated genetic ablation of the IKKs.
IKKα-selective inhibitors may also be commercially available in the near future [35].

5. Safety Concerns Surrounding the Therapeutic Use of IKKβ Inhibitors

Irrespective of the reasons for the lack of clinical success of IKKβ inhibitors to date, there are
several real and perceived concerns surrounding the safety of systemic administration of IKKβ
inhibitors that have contributed to a significant decrease in interest in their clinical development.

One of the first observations to raise concerns about the safety of systemic IKKβ/NF-κB
inhibition was the marked increase in susceptibility to apoptosis that accompanied genetic ablation
of NF-κB pathway components. For example, ikkb-/- and rela-/- mice exhibit embryonic lethality due
to severe liver apoptosis, which results from an absence of survival signalling in response to TNFα
stimulation [28,29,138,139]. Meanwhile, enterocyte-specific ablation of IKKβ in a mouse model of gut
ischemia-reperfusion resulted in severe apoptotic damage to the intestinal mucosa, highlighting a role
for NF-κB signalling in maintaining tissue homeostasis in the adult mouse [140]. Curiously, however,
the consequences of a lack of IKKβ in humans are strikingly different; homozygous deletion of the
IKBKB gene is not embryonic lethal—at least in patients examined to date—but leads to a lack of
regulatory (Treg) and γδ T cells, defects in T- and B-cell activation and to SCID associated with
early infections with various pathogens [141–144]. These differences could relate to compensatory
IKKα-dependent canonical NF-κB signalling in humans in certain cell types, or other species variations,
and imply there may be broader differences in the response of mice and humans to systemic IKKβ
inhibition. Nevertheless, these genetic studies highlight another concern with systemic IKKβ inhibition:
the potential for increased susceptibility to infection due to the vital role for NF-κB signalling in the
host defence system [145,146].

Additional safety concerns surrounding systemic IKKβ inhibition are largely related to the
complexity of function of IKK/NF-κB signalling in inflammation and, in turn, inflammatory
diseases and cancer; NF-κB signalling is often described as a ‘double-edged sword’, having pro-
and anti-inflammatory functions in different contexts. Further complexity is introduced by the
context-dependent roles of the NF-κB-mediated inflammatory response itself in tumorigenesis. As an
example, immune-cell infiltration of tumours can have a dual role: either leading to an anti-tumour
response, or immune evasion and active promotion of tumorigenesis. For a comprehensive review of
this complex subject, see [147,148].

Chronic NF-κB activity has been implicated in the pathogenesis of many inflammation-related
diseases [149,150] and genetic mutations that lead to increased NF-κB activity often trigger chronic
inflammation and associated pathologies [151–153]. Indeed, NF-κB is one of the key links between
chronic inflammation and cancer, as shown by the critical role of NF-κB in inflammation-driven,
colitis-associated cancer (CAC) and hepatocellular carcinoma (HCC) [154,155]. Beyond maintaining a
chronic inflammatory microenvironment, NF-κB has established tumour promoting roles in various
cancers through the aberrant regulation of genes that influence all of the hallmarks of cancer.
Many studies have confirmed that NF-κB inhibition through genetic ablation or small-molecule
inhibition of IKKβ has anti-inflammatory and/or anti-tumorigenic effects in vivo [154,156,157].

However, several studies have surprisingly shown that IKKβ inhibition in certain cells/tissues
triggers the spontaneous development of severe inflammatory conditions, and in some cases promotes
malignant development, indicating anti-inflammatory and tumour suppressor roles for NF-κB; it
appears, therefore, that the consequence of IKKβ deletion and NF-κB inhibition is highly cell-type
and context dependent [158]. For example, a series of seminal studies demonstrated a role for
NF-κB signalling in the negative control of inflammasome-dependent IL-1β secretion [159,160].
Hematopoietic-cell specific ablation of IKKβ or prolonged, systemic IKKβ inhibition in mice resulted
in enhanced inflammasome-dependent, caspase-1-mediated IL-1β production and hyper-susceptibility
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to septic shock-induced endotoxin challenge or bacterial infection [159]. In turn, the enhanced IL-1β
secretion following systemic IKKβ inhibition was found to promote the proliferation of granulocytic
progenitors and increase the survival of mature neutrophils leading to neutrophilia and inflammatory
destruction of tissues [160]. The mechanism for this NF-κB-dependent inhibition of the inflammasome
remained obscure until recently when it was proposed that NF-κB promotes the expression of
sequestosome-1/p62 (SQSTM1, here referred to as p62) in macrophages to facilitate p62-dependent
elimination of damaged mitochondria, which act as cell-intrinsic inflammasome activating signals [161].
The clinical relevance of these observations is supported by the observation of enhanced inflammation
and neutrophilia during human phase I trials of IKKβ inhibitors. Furthermore, IL-1β protein is
significantly increased in the plasma of advanced non-small-cell lung carcinoma (NSCLC) patients
treated with Bortezomib (trial protocol: NCT01633645) [162]. While IKKβ∆ IL-1βR1-/- mice do not
display neutrophil-driven inflammation they exhibit severely compromised innate immunity and
susceptibility to bacterial infection [160]. Furthermore, IL-1β is required for immunogenic cell death
(ICD)-mediated dendritic cell (DC) maturation and antigen presentation as part of the adaptive
immune response [163]. Combined inhibition of IKKβ and IL-1β signalling is, therefore, unlikely to be
viable, necessitating an alternative solution to the toxicity issues of systemic IKKβ inhibition, unless
coupled with intense medical supervision and strong antibiotics.

In addition, there are concerns that systemic IKKβ inhibition might promote malignant
development in tissues/contexts where IKKβ/NF-κB activity plays a dominant tumour suppressor
role. For example, IKKβ has been shown to act as a tumour suppressor in cancer-associated
fibroblasts (CAFs) during intestinal tumorigenesis [164]. However, these findings directly contrast
with other studies where IKKβ ablation in mesenchymal cells protected against inflammation-induced
intestinal carcinogenesis [165,166]. The reasons for these differences are unclear but may be due
to temporal differences in IKKβ inactivation and/or the targeting of different mesenchymal cell
subpopulations in each model. The outcome of IKKβ ablation often depends on the targeted cell
type. For example, in melanoma IKK has both tumour-promoting activity in melanocytes [156] and
tumour-suppressive activity in myeloid cells [167]. Furthermore, IKKβ doesn’t always act as a ‘real’
tumour suppressor. For example, in models of chemically-induced HCC (which is not accompanied by
chronic inflammation) NF-κB inactivation through liver-targeted deletion of IKKβ strongly enhances
diethylnitrosamine (DEN)-induced carcinogenesis [168]. However, IKKβ inhibition only potentiates
HCC under conditions of elevated hepatocyte injury, indicating that IKKβ is not a true tumour
suppressor in this context. Indeed, mice with hepatocyte-specific expression of constitutively active
IKKβ exhibit enhanced HCC development [169].

These examples highlight that the biological determinants influencing the pro- or
anti-inflammatory/tumorigenic roles of IKKβ are complex and ill-defined. Further work is needed,
both in animal models and patient tumoral samples, to unravel the context-dependencies of IKKβ
functions in inflammation/cancer to better define the circumstances where the therapeutic benefits of
systemic IKKβ inhibition may outweigh the risk of potential side-effects.

6. Recent Therapeutic Opportunities to Target IKKβ

Despite shifts in the priorities of the pharmaceutical industry away from the development of IKKβ
inhibitors there are several active research areas where IKKβ remains a highly attractive clinical target.
Furthermore, therapeutic strategies such as rational combination therapies and targeted delivery may
be able to mitigate some of the host toxicity observed following systemic delivery of IKKβ inhibitors.
Here we discuss some of these recent therapeutic opportunities to target IKKβ.

6.1. Cancers Exhibiting Clear ‘Addiction’ to Canonical NF-κB Signalling

While the inflammatory side-effects associated with prolonged IKKβ inhibition may limit systemic
application of IKKβ inhibitors in the treatment of chronic inflammatory and autoimmune diseases,
a partial and/or short-lived inhibition of IKKβ, which is unlikely to trigger widespread neutrophilia,
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could still find utility in the treatment of cancers in which NF-κB plays a clear initiating/driving role in
tumorigenesis. The priority would be tumours bearing oncogenic, NF-κB-activating lesions, followed
by tumours with constitutive NF-κB activation due to factors within the tumour microenvironment
(TME). In either case, NF-κB activation must be strongly correlated with poor prognosis. In other
words, identification of cancers exhibiting a wide therapeutic window of opportunity may enable
partial/short-term IKKβ inhibition to have a preferential effect on malignant cells relative to normal
host cells. In this context, it is important that tumour subtypes exhibiting addiction to the NF-κB
pathway are identified. This can be achieved using whole genome sequencing/copy number analysis
to identify relevant NF-κB component lesions alongside expression profiling of NF-κB target genes
to identify gene signatures diagnostic of NF-κB pathway addiction [170,171]. A full account of
the link between NF-κB and cancer is beyond the scope of this review, and readers are directed
elsewhere [22,148]. However, a few illustrative examples will be discussed to highlight those cancers
for which IKKβ inhibition offers the greatest therapeutic potential.

Both cell-intrinsic and -extrinsic factors contribute to aberrant NF-κB activity. Enhanced NF-κB
activity can be a direct consequence of mutations of NF-κB pathway components and/or upstream
oncogenes that activate NF-κB. On the other hand, a tumour can acquire elevated NF-κB activity
through interaction with the inflammatory milieu of the TME. Lymphoid malignancies, particularly
B-cell lymphomas, frequently exhibit direct mutations of NF-κB signalling genes [172]. For example,
the pathogenesis of activated B cell-like Diffuse large B-cell lymphoma (ABC DLBCL) involves
oncogenic activation of various upstream NF-κB pathway components, including the CD79B subunit
of the BCR, CARD11 and MyD88, which drive cancer cell proliferation/survival through canonical
NF-κB activity [171,173]. Oncogenic addiction of ABC DLBCL cells to high NF-κB activity has been
demonstrated by the selective cytotoxicity of IKKβ inhibitors, providing a clear rational for therapeutic
strategies targeting IKKβ/NF-κB [62,170].

In contrast, with a few exceptions [174–176], solid malignancies rarely exhibit direct oncogenic
mutations of NF-κB pathway components. In most solid tumours NF-κB is constitutively activated
due to chronic pro-inflammatory signalling within the TME. However, certain oncogenes can also
drive downstream NF-κB activity. For example, studies of mouse models of Kirsten rat sarcoma viral
oncogene homolog (KRAS; G12D)-induced lung cancer have demonstrated that KRAS activates NF-κB
in lung tumours in situ [177–179]. Various mechanisms have been proposed for KRAS-mediated
activation of NF-κB, including cell-autonomous feed-forward activation of PI3K-AKT, MEK-ERK
and DNA-damage response signalling pathways and feed-forward autocrine signalling [157,179].
Concomitant loss of p53 activity dramatically enhances the activation of NF-κB in lung cancer
cells [177,179]. Significantly, IKKβ-dependent NF-κB activation in these models has been shown
to drive lung tumourigenesis, primarily through enhanced cancer cell proliferation [65,178,179].
Furthermore, KRAS-driven NF-κB activation has been associated with feedforward amplification
of RAS signalling, drug resistance, and tumour stemness [180,181]. These studies collectively
identify IKKβ inhibition as a promising therapeutic strategy in KRAS-driven lung cancer with altered
p53 activity [65]. It should be noted, however, that several studies have also linked KRAS-driven IKKα
and TBK1 activation to pathogenic NF-κB activity [181–184], suggesting that IKKβ inhibition alone
may not be an optimal therapeutic strategy.

A potentially crucial aspect of IKKβ inhibition as a cancer therapy is the appropriate timing of
treatment with respect to the stage of cancer progression. Given the potential toxicity of IKKβ inhibition
towards T cells, such treatment is likely to be undesirable during the early tumour-eliminating
phase of the immune system, when cytotoxic T lymphocytes (CTLs) target transformed cells.
Rather, based on current knowledge, IKKβ inhibition is more likely to have positive therapeutic
effects in the chronic inflammatory phase of tumour progression [22]. However, this generalisation
may be an oversimplification (see Section 6.3) and may not apply to all cancers. Indeed, given
the context-dependency of the pro- and anti-inflammatory effects of IKKβ inhibition, it remains
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to be determined what the net effect systemic, pharmacological IKKβ inhibition may have in
different cancers.

6.2. Use of IKKβ Inhibitors in Combination Therapies to Combat Chemoresistance

The consensus from pre-clinical studies is that IKKβ inhibitors are unlikely to achieve
broad clinical success as single agents in cancer therapy, except perhaps for certain types of
lymphoma/leukaemia. However, there is significant optimism that they might yet enter the clinic
as part of combination therapies with conventional therapeutics (chemo- and radiotherapeutics),
and certain targeted therapies, in cancers where NF-κB signalling has been associated with
chemoresistance [185]. Use of synergistic combinations may enable lower concentrations of IKKβ
inhibitors to be employed to achieve a desired therapeutic effect, thus reducing systemic toxicity.

The cytotoxic/cytostatic effects of conventional therapeutics, such as cisplatin and radiotherapy,
typically rely on their ability to preferentially induce DNA damage in highly proliferative cancer
cells, which triggers cell cycle arrest and, ultimately, cell death or senescence. NF-κB activity
is associated with chemoresistance in various cancers through the induction of genes involved
in the control of survival, proliferation, inflammation, DNA repair, metabolic reprogramming,
angiogenesis, drug uptake/inactivation, etc., that reduce the efficacy of conventional therapeutics [186].
Intrinsic chemoresistance has been correlated with constitutive NF-κB activation in numerous
cancers [187–189]. Chemoresistance is also commonly acquired or enhanced by therapy-induced
NF-κB activation [186,190,191]. For example, genotoxic agents that induce double-strand DNA breaks
(DSBs) activate IKK-dependent NF-κB activity via a NEMO-ATM dependent pathway initiated in the
nucleus (Figure 1E; [192]). As such, IKKβ inhibitors are under investigation as a route to sensitize cancer
cells to conventional genotoxic therapeutics. For example, inhibition of IKKβ with MLN-120B leads to
synergistic enhancement of vincristine cytotoxicity in non-Hodgkin’s lymphoma via suppression of
vincristine-induced NF-κB activity [193]. Interest in IKK/NF-κB inhibition is likely to enhance as ever
greater numbers of studies/clinical trials identify therapy-induced NF-κB activity as a key factor in
the relapse response to conventional therapies (Identifier: NCT00280761).

IKKβ inhibitors are also being investigated in combination with certain targeted therapeutics to
overcome intrinsic resistance. For example, activation of NF-κB has been strongly linked to intrinsic
and acquired resistance to epidermal growth factor receptor (EGFR) inhibitors [181,194,195], while
synergistic cytotoxicity has been observed in ABC DLBCL treated with JAK and IKKβ inhibitors [196].
However, it should be noted that, in general, the IKK isoform-dependence of NF-κB-mediated
chemoresistance mechanisms has not been characterised. IKKβ inhibition may not always be the most
effective means to counteract chemoresistance. Indeed, dual IKKα/β inhibition may be more effective
than IKKβ inhibition alone in the counteraction of resistance to EGFR inhibitors in HNSCC [134].

6.3. IKKβ Inhibitors as an Adjunct to Cancer Immunotherapies

Recent reports suggest IKKβ inhibitors may also combine well with certain cancer
immunotherapies. Cancer immunotherapy is a general term for treatments that harness or reactivate
the body’s own immune system to target and destroy tumours. For instance, this may be a
tumour-specific vaccination that enhances the anti-tumour activity of the patients own CTLs.
However, CTL-dependent anti-tumour responses are often suppressed by FOXP3+ Tregs that infiltrate
tumours. Therefore, several cancer immunotherapies that inhibit or deplete FOXP3+ Treg cells are
currently being tested [197]. As described earlier, patients with rare homozygous deletion of the IKBKB
gene typically lack Treg cells [141]. Consistent with this, prolonged IKKβ inhibition was recently
shown to partially deplete circulating FOXP3+ Treg cells, due to their dependence on NF-κB signalling
for survival [198]. Consequently, administration of an IKKβ inhibitor after tumour vaccination in a
mouse melanoma model enhanced the CTL-dependent anti-tumour response and delayed tumour
growth, identifying IKKβ as a potential druggable immune checkpoint. A large caveat, however,
is that the correct dosage or scheduling of IKKβ inhibition is likely to be critical to achieve potentiation,
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rather than inhibition of the anti-tumour response, due to the importance of NF-κB activity for T cell
survival/function [31]. For example, genetic deletion of IKKβ in T-cells abrogated the anti-tumour
response in mice with fibrosarcoma [199]. Indeed, Heuser et al. observed that high doses of IKKβ
inhibitor suppressed CTL responses in their model [198]. This dosage effect was explained by the
fact that Tregs were more sensitive than CTLs to IKKβ inhibition due to a greater reliance on NF-κB
signalling for survival. These findings also suggest further caution is warranted in attempts to utilise
systemic IKKβ inhibition to treat inflammatory diseases.

A key feature of tumour immune evasion is the increased expression of certain ligands, notably
programmed cell death-ligand 1 (PD-L1), at the cell surface of cancer cells and immune cells, such as
dendritic cells and macrophages [200,201]. Binding of PD-L1 to its cognate receptor, PD-1, on T cells inhibits
their proliferation/survival and effector cytokine secretion to downregulate CTL responses [202,203].
As such, anti-PD-1/PD-L1 therapies have now demonstrated marked success in a wide range of
malignancies [204]. However, high expression of surface PD-L1 by solid tumours and tumour-infiltrating
myeloid cells appears to be correlated with poor prognosis in certain cancers and may negatively impact
the clinical response to PD-1 blockade [205]. The mechanisms regulating PD-L1 expression are, therefore,
of clinical interest. Interestingly, NF-κB signalling has been shown to promote the expression of PD-L1 at
the transcriptional [206,207] and, more recently, the post-transcriptional level [208]. Lim et al. demonstrated
that in an inflammation-enhanced tumour model, macrophage-derived inflammatory cytokines (such
as TNFα) enhanced PD-L1 expression in cancer cells through protein stabilization via NF-κB-dependent
upregulation of COP9 signalosome 5 (CSN5). Consequently, administration of curcumin (which can inhibit
NF-κB and CSN5 activity directly) inhibited CSN5-dependent PDL1 stabilisation and enhanced the efficacy
of anti-CTLA4 therapy. Any study that employs curcumin comes with several caveats because of the sheer
number of signalling pathways this natural product deregulates, including ERK, JNK, p38 and Akt, as well
as NF-κB, in addition to effects on cathepsins. Nonetheless, this approach has received some support by
the observation that TNFα-blockade overcomes resistance to anti-PD-1 in experimental melanoma [209].
Whether these strategies might also apply to IKKβ-selective inhibitors warrants further investigation.

Another form of cancer immunotherapy involves the use of oncolytic viruses (OVs), which
specifically infect and kill tumour cells. For example, Talimogene laherparepvec (or T-Vec), based
on herpes simplex virus 1 (HSV-1), has been clinically approved for the treatment of advanced
melanoma [210]. However, there is considerable heterogeneity in the therapeutic response to OV
therapy, with resistance largely due to failure of tumour cells to become infected by the virus [211].
Interestingly, dimethyl fumarate (DMF) was recently shown to enhance OV infection of cancer cells and
improve therapeutic outcomes in resistant syngeneic and xenograft tumour mouse models through
inhibition of NF-κB signalling and, in turn, the antiviral response of cancer cells [212]. IKKβ-selective
inhibitors also improved OV infection in vitro [50,212,213], suggesting a combination of oncolytic
virotherapy and IKKβ inhibitors may warrant further clinical investigation.

Finally, there are reports that IKKβ inhibition may enhance anti-tumour immunity through
modulation of the activity of tumour-associated macrophages (TAM). A simplified model states
that TAMs recruited to tumours characterised by non-resolving inflammation switch from a
tumour-killing, ‘classically activated’ M1-like phenotype to a tumour-promoting, ‘alternatively
activated’ M2 phenotype that stimulates cancer cell proliferation, angiogenesis and metastasis
and suppresses immune effector cells [214]. The modulation of TAM survival/polarization is,
therefore, an attractive therapeutic target [215]. Inhibition of NF-κB activation in TAMs through
macrophage-specific ablation of IKKβ has been proposed to promote polarization to the anti-tumour
M1 phenotype, thereby enhancing tumour regression [216]. However, there are other conflicting
reports that suggest that M2 immunosuppressive TAMs from established tumours are characterised
by defective NF-κB transcriptional responses, due, in part, to overexpression of repressive
p50 homodimers [217,218]. In turn, enforced re-activation of NF-κB can polarize M2-like TAMs
to an M1-like phenotype and induce their tumour cytotoxicity [219–221]. Various explanations have
been proposed for these contrasting findings [222]. As discussed earlier in the broader context of
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cancer therapy, the clinical outcome of pharmacologic targeting of macrophage IKKβ/NF-κB activities
may depend on the disease stage; that is, premalignant, malignant or metastatic. This example is also
representative of a wider issue: given the complexity of NF-κB function in the immune system it is
perhaps prohibitively difficult to predict the outcome of systemic IKKβ inhibition on anti-tumour
immunity, thus limiting the potential of IKKβ inhibitors as adjuncts to cancer immunotherapies.

6.4. Targeted Delivery of IKKβ Inhibitors to Specific Tissues

If the safety issues associated with systemic IKKβ inhibition prove insurmountable, a less toxic
therapeutic approach may be the topical/local or targeted administration of inhibitors to specific
disease areas. The former strategy has been demonstrated in pre-clinical studies investigating the
use of IKKβ inhibitors to treat choroid neovascularization (CNV), which is a major pathological
change associated with exudative age-related macular degeneration (AMD) [223]. IKKβ-dependent
NF-κB signalling plays a significant role in CNV development [53]. Consequently, retrobulbar
administration of IKKβ inhibitor (TPCA-1)-loaded poly-lactide-co-glycolide (PLGA) microparticles
achieved controlled, durable intraocular release of drug, leading to attenuation of CNV and
macrophage recruitment, without systemic toxicity in a laser-induced mouse model of CNV [223].

Furthermore, as discussed in Section 5, numerous studies have demonstrated that the therapeutic
outcome of IKK/NF-κB inhibition in a specific cancer model depends on the cell-type(s) selected
for genetic ablation of the NF-κB signalling component. For instance, in a mouse melanoma
model, ablation of tumour-intrinsic NF-κB activity using cancer cell-targeted expression of an
IκBα super-repressor construct led to cytotoxicity-driven tumour regression following doxorubicin
treatment [224]. However, myeloid-specific loss of NF-κB signalling resulted in increased host toxicity and
mortality without tumour regression due to excessive IL-1β production, consistent with other studies [159].
Results such as this strongly advocate for a targeted delivery approach to IKKβ inhibition to reduce
therapy-associated systemic toxicity. αvβ3-ligand tetraiodothyroacetic acid (TET)-modified micelles have
been shown to promote selective accumulation of the NF-κB inhibitor, celestrol, in primary tumours and
lung metastases and to inhibit tumour growth and metastasis in a breast cancer mouse model to a greater
extent than systemic delivery of celestrol alone [225]. Although relative safety profiles were not assessed in
this case, this study demonstrates a promising proof-of-principle.

7. Alternative Approaches to Targeting the NF-κB Pathway

As the ubiquitously expressed, primary, druggable mediator of canonical NF-κB signalling,
IKKβ was the logical, first-choice target for the development of pharmacological inhibitors of the
NF-κB pathway. As we have discussed, IKKβ inhibitors have displayed significant therapeutic
potential, and new developments continue to identify IKKβ as an attractive therapeutic target.
However, the potential risks of on-target systemic toxicity, immunodeficiency and malignant
development arising in contexts where IKKβ/NF-κB activity plays a dominant tumour suppressor role
may prove insurmountable and forever undermine research efforts to clinically develop IKKβ-targeting
therapeutics. Some, if not all, of these safety concerns may be circumvented by targeting alternative
nodes in the NF-κB pathway [226,227]. Indeed, this strategy has seen far greater clinical success than
directly targeting IKKβ. A few illustrative examples will be discussed here.

7.1. Targeting Upstream NF-κB Signalling Components

Multiple signalling pathways converge to activate NF-κB. Inhibition of disease-specific upstream
NF-κB components may provide a greater degree of tissue- and context-specificity than directly
targeting IKKβ, which is activated by all NF-κB-inducing signals. A clinically-relevant example is the
specific targeting of BCR-induced NF-κB signalling (see Figure 1D) in B-cells using inhibitors of Burton
tyrosine kinase (BTK), such as Ibrutinib, which is approved for the treatment of refractory mantle cell
lymphoma (MCL) [228] and marginal zone lymphoma (MZL) [229], chronic lymphomatic leukemia
(CLL) [230], small lymphocytic lymphoma (SLL) [230], Waldenström’s macroglobulinemia [231] and
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chronic graft versus host disease [232] The highly-restricted pattern of BTK expression to B cells means
that Ibrutinib has a generally well-tolerated safety profile.

7.2. Targeting IKKα or NEMO

Until recently IKKα has received minimal attention as a target for drug development [35].
However, IKKα is an essential component of the non-canonical NF-κB pathway, making it an attractive
therapeutic target in diseases where aberrant activity of this pathway contributes to pathogenesis, such
as mucosa-associated lymphoid tissue (MALT) lymphoma and MM [233]. Furthermore, the growing
realisation that IKKα, alongside IKKβ, contributes to canonical NF-κB pathway regulation in certain
contexts should motivate the investigation of IKKα-selective or IKKα/β dual selectivity inhibitors in
diseases where canonical NF-κB signalling plays a role in pathogenesis [134]. Equally, selective
targeting of IKKα may enable context-specific inhibition of pathogenic NF-κB signalling, while
retaining sufficient ‘physiological’ levels of canonical NF-κB signalling in host tissues to prevent
the adverse effects seen with IKKβ inhibitors. IKKα also has numerous NF-κB-independent functions
that could be targeted (see Section 7.3).

Significantly more effort has been devoted to development of molecules that target the NEMO
scaffold, which is essential for canonical NF-κB signalling [234]. IKKα and IKKβ interact with NEMO
via their short, C-terminal NBDs, consisting of the hexapeptide amino acid sequence, LDWSWL.
Peptides corresponding to the NBD domain fused to sequences that facilitate intracellular delivery
disrupt the association of IKKs with NEMO and block NF-κB transcriptional activation in cells [107].
NBD peptides have exhibited promising therapeutic effects in numerous disease models [235].
For example, a recent phase I trial of systemic administration of NBD peptides for the treatment
of dogs with spontaneous ABC DLBCL demonstrated safety and treatment efficacy, offering hope
for translation of this therapy to human ABC DLBCL [236]. The safety/toxicity profile of NBD
peptides are generally more favourable than IKKβ inhibitors, potentially because they suppress
only stimulus-induced rather than basal, IKK activity [107]. They are also less likely to inhibit
‘off-target’ kinases due to the specificity of the protein interaction between NBD peptides and NEMO.
Clinical success may be limited, however, by the expense of peptide synthesis, their short half-life,
and poor oral bioavailability, requiring intravenous administration. Small-molecule NBD mimetics
that could overcome these limitations have recently been described [225].

Recently, NEMO-ubiquitin interaction inhibitors (iNUBs) have been characterised [237].
iNUBs inhibited IKK/NF-κB activation and target gene expression in response to TNFα, but not
IL-1β, stimulation. iNUBs, therefore, may offer a strategy to selectively impair NF-κB signalling in
response to specific stimuli.

7.3. Targeting NF-κB-Independent Functions of the IKKs

As described in Section 1, the IKKs exert multiple NF-κB-independent functions through the
phosphorylation of so-called ‘non-classical’ substrates. Many of these activities have been proposed to
contribute to disease progression [238]. Targeting these NF-κB-independent functions may, therefore,
offer an opportunity to block IKK-driven pathogenesis without the side-effects associated with systemic
NF-κB inhibition. For example, IKKα has been proposed to promote mammalian target of rapamycin
complex 1 (mTORC1) and mTORC2 activity via feedforward signalling, and thus could serve as
a therapeutic target in mTOR-dependent cancers in a manner independent of potent canonical
NF-κB inhibition [239,240]. Meanwhile, IKKβ phosphorylates FOXO3a at Ser644 to promote its
nuclear exclusion and ubiquitination-mediated proteasomal degradation to promote breast cancer
progression [26]. However, further work is needed to validate many of these targets as bona fide
IKK substrates and to understand the importance of these NF-κB-independent functions of the IKKs
in disease progression. Characterisation of NF-κB-independent functions is also vital in order to
anticipate and explain the potential side effects of targeting IKK kinase activity.
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7.4. Targeting IκBα Degradation

The ubiquitination and proteasomal degradation of IκB proteins represents an essential step in the
activation of NF-κB pathways. Inhibitors of the ubiquitin-proteasome system (UPS), therefore, inhibit
NF-κB activity by stabilising IκB proteins. A prominent example is the first-generation proteasome
inhibitor, bortezomib, which has achieved significant clinical successes, particularly in relapsed
and/or refractory MM and MCL [241,242]. However, despite these successes, therapeutic proteasome
inhibitors have several limitations, including dose-limiting toxicity, the rapid onset of secondary drug
resistance and broad cellular activities, which often lead to unpredictable outcomes. It is also unclear
to what extent the clinical response to proteasome inhibitors in lymphomas results from the inhibition
of NF-κB signalling [243]. Proteasome inhibitors will impinge on a legion of critical cell regulatory
pathways, so the notion that they can be used as a strategy to selectively target NF-κB pathways
is, at best, fanciful. Indeed, malignant plasma cells are thought to be more sensitive to proteasome
inhibition than non-malignant cells because their increased rate of immunoglobulin protein production
leads to enhanced cellular accumulation of undegraded, polyubiquitinated proteins in the presence
of proteasome inhibitors, which activates the unfolded protein response (UPR), thereby accelerating
tumour-cell apoptosis [244].

7.5. Targeting NF-κB Activity Directly

The activity of the NF-κB transcription factors themselves could theoretically be inhibited by several
different mechanisms including blockade of nuclear translocation, dimerization and DNA binding,
and inhibition of protein interactions with other essential cofactors. The reality is that drug development
success in this area has been limited, mostly due to the generalised difficulty of targeting nuclear transport
and of developing inhibitors of protein-protein interactions. Peptidomimetics, such as SN-50, which blocks
nuclear import of p50-containing NF-κB dimers, have been widely used as research tools, but are currently
unsuitable for clinical development due to their vast non-specific effects [245]. However, a collection of
recent studies has reinvigorated interest in directly targeting NF-κB subunits. Conditional deletion of
p65 and c-Rel in developing and mature Treg cells demonstrated their unique but partially overlapping
roles in Treg cell development [246]. Subsequently, targeting c-Rel with an FDA-approved xanthine
derivative, pentoxifylline (PTXF; [247]), improved checkpoint-targeting immunotherapy protocols (e.g.,
anti-PD1 therapy) to enhance anti-tumour immunity in a melanoma model [248]. In contrast to IKKβ
inhibition [198], minimal adverse effects were observed. Because the critical biological function of c-Rel
appears to be mainly restricted to the adaptive immune system, it may represent a more suitable target
than IKKβ/p65 to enhance checkpoint-targeting immunotherapies [249]. In addition, IKKβ deletion in
mouse bone-marrow derived hematopoietic cells results in significant defects in haematopoiesis not seen
upon p65 deletion, suggesting NF-κB-independent pathways may mediate some of the hematopoietic
defects associated with IKKβ deletion/inhibition [250]. This provides further rationale for targeting NF-κB
subunits directly.

7.6. Targeting Downstream Effectors of NF-κB-Dependent Pathogenesis

It is the aberrant NF-κB-dependent regulation of specific gene expression profiles that primarily
contributes to disease progression. These transcriptional programmes are often highly stimulus and
tissue specific. Therefore, an attractive alternative to IKKβ inhibition is the targeting of non-redundant,
disease-specific downstream mediators of pathogenic NF-κB activity. In theory, this approach should
identify safer, context-specific therapeutics that preserve the multiple critical physiological functions of
NF-κB. A few studies have demonstrated the exciting potential of this strategy. For example, TIMP-1 is
a key downstream modulator of NF-κB-dependent tumour growth in mouse KRAS-driven lung cancer
models and represents a potentially safer therapeutic target than IKKβ [179]. Another approach
is to target subsets of NF-κB-controlled genes based on their dependence on specific regulatory
mechanisms that are not involved in the activation of other genes. For example, the selective blockade
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of pro-inflammatory NF-κB-dependent transcriptional responses using inhibitors of the epigenetic
modifiers bromodomain and extra-terminal (BET) proteins, such as JQ1, exhibited synergistic effects
alongside JAK/STAT inhibition in myeloproliferative neoplasms [251,252].

8. Conclusions

As our appreciation of the fundamental role of dysregulated NF-κB signalling in the pathogenesis
of inflammatory disease and cancer continues to grow so the resolve of the pharmaceutical industry to
pharmacologically target NF-κB pathway components strengthens. Only a small cross-section of recent
developments in the therapeutic application of IKKβ inhibitors have been discussed in this review.
The number of conditions where IKKβ inhibitors are being pursued as a treatment option was too great
to cover here but includes: obesity-associated metabolic disease [253], atherosclerosis [254], multiple
sclerosis [255], COPD [256], muscular dystrophy [257], Parkinson’s disease [258], inflammatory bowel
disease [259] and chronic arthritis [260]. However, as has often been the case in studies of the role of
IKKβ in cancer progression, there have been conflicting reports of the importance of IKKβ activity in
the progression of other inflammatory disorders. In the context of atherosclerosis, for example,
aberrant vascular endothelial cell-specific canonical NF-κB pathway activation has been shown,
quite convincingly, to promote monocyte recruitment and atherosclerotic plaque formation [261,262].
Indeed, endothelial cell-specific NEMO ablation or expression of dominant-negative IκBα protects mice
from atherosclerosis [263]. The role of myeloid-specific IKKβ activity in atherosclerosis is less clear,
however, as myeloid-specific IKKβ deletion has been shown to both attenuate [264] and enhance [265]
atherosclerosis severity in LDL receptor-deficient mice in separate studies. These discrepancies again
raise questions about whether a favourable clinical outcome could be achieved following systemic
IKKβ inhibition in this disease context.

Despite promising pre-clinical results for IKKβ inhibitors in the aforementioned disease settings,
there is little optimism that IKKβ inhibitors will soon broadly enter the clinic. IKKβ is ubiquitously
expressed and carries out many critical physiological roles. Furthermore, the complex context- and
tissue-specific functions of IKK/NF-κB signalling have made it difficult to predict the net effect
and outcome of systemic intervention, and safety concerns currently appear too great a barrier to
overcome. As discussed, the most compelling rationale for clinical use of IKKβ inhibitors appears to
be in combination therapies and/or as part of a targeted delivery approach, particularly in cancers
exhibiting clear addiction to constitutive NF-κB signalling.

If the safety concerns associated with IKKβ inhibitors are to be overcome and they are to
offer lasting health benefits as a cancer therapy, research into intrinsic and acquired resistance
mechanisms will also be necessary. Resistant tumours eventually develop in a mouse model
of KRAS-driven, p53 mutant NSCLC treated with IKKβ inhibitors after a prolonged period
of tumour-free survival [266], but no mechanisms of resistance to IKK/NF-κB inhibitors have
been defined to-date. Furthermore, further work is needed to develop IKKβ inhibitors with the
combination of properties necessary for clinical success, including high selectivity, nanomolar
potency, a transient/reversible mode-of-action (since long-term inhibition is unfavourable), desirable
pharmacokinetics/pharmacodynamics and amenability to targeted delivery.

Intensive research within the NF-κB signalling field has uncovered the complexity governing
cell-type and stimulus-specific NF-κB transcriptional programs, including IKK-isoform and
NF-κB-subunit specific functions. This complexity acts both as a barrier and an opportunity to
develop highly selective therapies that overcome the issues inherent with systemic targeting of IKKβ.
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Abbreviations

The following abbreviations are used in this manuscript

ABC DLBCL Activated B cell-like Diffuse large B-cell lymphoma
BCR B-cell receptor
BET Bromodomain and extra-terminal
BTK Burton tyrosine kinase
β-TrCP Beta-transducing repeat-containing protein
CAC Colitis-associated carcinoma
CAF Cancer-associated fibroblast
CLL Chronic lymphomatic leukemia
CNV Choroid neovascularization
COPD Chronic obstructive pulmonary disease
CSN5 COP9 signalosome 5
CTL Cytotoxic T-lymphocyte
DC Dendritic cell
DEN Diethylnitrosoamine
DMF Dimethyl fumarate
DSB Double-strand break
EGFR Epidermal growth factor receptor
HCC Hepatocellular carcinoma
HNSCC Head and neck squamous cell carcinoma
ICD Immunogenic cell death
IKK IκB kinase
IL-1 Interleukin-1
iNUB Inhibitor of NEMO-Ubiquitin binding
IκB Inhibitor of kappa B
KD Kinase domain
KRAS Kirsten rat sarcoma viral oncogene homolog
LPS Lipopolysaccharide
LUBAC Linear ubiquitin chain assembly complex
MALT Mucosa-associated lymphoid tissue
MCL Mantle cell lymphoma
MM Multiple myeloma
mTORC Mammalian target of rapamycin complex
NBD NEMO-binding domain
NF-κB nuclear factor- “kappa-light-chain-enhancer” of activated B-cells
NSCLC Non-small-cell lung carcinoma
OV Oncolytic virus
PD/PDL Programmed death/PD-ligand 1
POC Proof-of-concept
RA Rheumatoid arthritis
RHD Rel homology domain
SCF S phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein
SCID Severe combined immunodeficient
SDD Scaffold/dimerization domain
SH2 Src Homology 2
TAM Tumour-associated macrophage
TCR T-cell receptor
TLR Toll-like receptor
TME Tumour microenvironment
TNFα Tumor necrosis factor-alpha
Treg Regulatory T cells
UBC Ubiquitin-conjugating enzyme
ULD Ubiquitin-like domain
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