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scNMT-seq enables joint profiling of chromatin
accessibility DNA methylation and transcription in
single cells
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Parallel single-cell sequencing protocols represent powerful methods for investigating reg-

ulatory relationships, including epigenome-transcriptome interactions. Here, we report a

single-cell method for parallel chromatin accessibility, DNA methylation and transcriptome

profiling. scNMT-seq (single-cell nucleosome, methylation and transcription sequencing)

uses a GpC methyltransferase to label open chromatin followed by bisulfite and RNA

sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic stem

cells, finding links between all three molecular layers and revealing dynamic coupling

between epigenomic layers during differentiation.
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Understanding regulatory associations between the epi-
genome and the transcriptome requires simultaneous
profiling of multiple molecular layers. Previously, such

multi-omics analyses have been limited to bulk assays, which
profile ensembles of cells. These methods have been applied to
study variation across individuals1, cell type2 or conditions by
assessing links between different molecular layers. With rapid
advances in single-cell technologies, it is now possible to leverage
variation between single cells to probe regulatory associations
within and between molecular layers. For example, we and others
have established protocols that allow the methylome and the
transcriptome or, alternatively, the methylome and chromatin
accessibility to be assayed in the same cell3–7. However, it is well
known that DNA methylation and other epigenomic layers,
including chromatin accessibility, do not act independently of one
another8. Consequently, the ability to profile, at single cell reso-
lution, multiple epigenetic features in conjunction with gene
expression will be critical for obtaining a more complete under-
standing of epigenetic dependencies and their associations with
transcription and cell states9.

To address this, we have developed a method that enables the
joint analysis of the transcriptome, the methylome and chromatin
accessibility. Our approach builds on previous parallel protocols
such as single-cell methylation and transcriptome sequencing
(scM&T-seq3), in which physical separation of DNA and RNA is
performed prior to a bisulfite conversion step and the cell’s
transcriptome is profiled using a conventional Smartseq2 proto-
col10. To measure chromatin accessibility together with DNA
methylation, we adapted Nucleosome Occupancy and Methyla-
tion sequencing (NOMe-seq)11, where a methyltransferase is used
to label accessible (or nucleosome depleted) DNA prior to
bisulfite sequencing (BS-seq), which distinguishes between the
two epigenetic states. In mammalian cells, cytosine residues in
CpG dinucleotides can be abundantly methylated, whereas
cytosines followed by either adenine, cytosine or thymine (col-
lectively termed CpH) are methylated at a much lower rate12.
Consequently, by using a GpC methyltransferase (M.CviPI) to
label accessible chromatin, NOMe-seq can recover endogenous
CpG methylation information in parallel. NOMe-seq is particu-
larly attractive for single-cell applications since, contrary to
count-based assays such as ATAC-seq or DNase-seq, the GpC
accessibility is encoded through the bisulfite conversion and
hence inaccessible chromatin can be directly discriminated from
missing data. Importantly, this implies that the coverage is not
influenced by the overall accessibility, so lowly accessible sites will
not suffer from increased technical variation compared to highly
accessible sites. Additionally, the resolution of the method is
determined by the frequency of GpC sites within the genome (~1
in 16 bp), rather than the size of a library fragment (>100 bp).
Recently developed single-cell NOMe-seq protocols have been
applied to assess cell-to-cell variance in CTCF footprinting6 and
to map chromatin remodelling during preimplantation develop-
ment7. However, no method that combines RNA-seq with
chromatin accessibility profiling in the same cells (with or with-
out DNA methylation) has been reported to-date, which is critical
for studying interactions between the epigenome and the
transcriptome.

Results
scNMT-seq robustly profiles each molecular layer. To validate
scNMT-seq, we applied the method to a batch of 70 serum-grown
EL16 mouse embryonic stem cells (ESCs), together with four
negative (empty wells) and three scM&T-seq controls (cells
processed using scM&T-seq, i.e., without M.CviPI enzyme
treatment). This facilitates direct comparison with previous

methods for assaying DNA methylation and transcription in the
same cell3,13, as well as providing a control of bisulfite conversion
efficiency within the experiment. We isolated cells into methyl-
transferase reaction mixtures using FACS, followed by the phy-
sical separation of the DNA and RNA prior to BS-seq and RNA-
seq library preparation (see Fig. 1a for an illustration of the
protocol). Alignment of the BS-seq data and other bioinformatics
processing can be carried out using established pipelines, with the
addition of a filter to discard G–C–G positions, for which it is
intrinsically not possible to distinguish endogenous methylation
from in vitro methylated bases (21% of CpGs genome-wide).
Similarly, we discard C–C–G positions to mitigate against pos-
sible off-target effects of the enzyme11 (27% of CpGs). In total, 61
out of 70 cells processed using scNMT-seq passed quality control
for both BS-seq and RNA-seq (Methods, Supplementary Data 1).

The requirement to filter out C–C–G and G–C–G positions
from the methylation data reduces the number of genome-wide
cytosines that can be assayed from 22 million to 11 million.
However, despite this, a large proportion of genomic loci with
regulatory roles, such as promoters and enhancers, can in
principle be assessed by scNMT-seq (Fig. 1b). Consistent with
this, we observed high empirical coverage for methylation: a
median of ~50% of promoters, ~75% of gene bodies and ~25% of
active enhancers are captured in a typical cell by at least 5
cytosines (Fig. 1c, Supplementary Fig. 1a). We also compared the
methylation coverage to data from our previous BS-seq protocols
that did not incorporate a DNA accessibility component3, again
finding only small differences in coverage, albeit these became
more pronounced when down-sampling the total sequence
coverage (Supplementary Fig. 1b). Computational methods for
imputing these missing values could help to further mitigate these
differences14. Due to the higher frequency of GpC compared to
CpG dinucleotides in the mouse genome, accessibility coverage
was larger than that observed for endogenous methylation
(Fig. 1b, c and Supplementary Fig. 1a). Using our data, a median
of ~85% of gene bodies and ~75% of promoters could be probed
for DNA accessibility, the highest coverage achieved by any
single-cell accessibility protocol to date (9.4% using scATAC-
seq15, and with scDNase-seq, ~50% of genes >1 RPKM, >80% of
genes >3 RPKM16). This coverage also compares favourably with
other single-cell NOMe-seq methods developed in parallel, which
report GpC site coverages of 2.9%6 and 10%7 compared to 15%
using scNMT-seq (Supplementary Data 1).

Next, we examined accessibility levels at loci with known
regulatory roles. We found that accessibility was increased at
known DNaseI hypersensitivity sites, super enhancer regions and
binding sites for transcription factors and other DNA binding
proteins (from published ChIP-seq data, Fig. 1d, Supplementary
Fig. 2). As, a control, we included cells which did not receive
enzyme treatment (scM&T-seq controls) and these cells showed
universally low GpC methylation levels (~2%), with no enrich-
ment at regulatory regions, indicating that the accessibility data
are not affected by endogenous GpC methylation (Supplementary
Fig. 3). We next stratified loci and cells based on the expression
level of the nearest gene (based on the RNA data from the
corresponding cell). In agreement with previous studies8, we
observed that highly-expressed genes were associated with
increased accessibility at promoters and at nearby regulatory
sites, whereas lowly-expressed genes were associated with reduced
accessibility (Fig. 1e; Supplementary Fig. 4).

Next, to assess the quality of data obtained using scNMT-seq,
we compared the transcriptome, methylome and accessibility
profiles to published datasets. When considering the RNA-seq
component, dimensionality reduction17 and hierarchical cluster-
ing revealed that cells cluster by condition and not by protocol
(Supplementary Fig. 5). We next compared the methylome
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obtained from scNMT-seq to single-cell libraries profiled using
scM&T-seq3, scBS-seq13 and bulk BS-seq18, finding that most of
the cell-to-cell variation is not attributed to protocol or study but
to changes in the mean methylation rate (first principal
component, 51% variance) (Supplementary Fig. 6). To validate
the accessibility measurements, we generated a synthetic pseudo-
bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type19.
Globally, we observed high consistency between datasets (Relative
accessibility profiles, Pearson R= 0.74, Supplementary Fig. 7). A
notable difference was that scNMT-seq data captured, within
single cells, oscillating profiles with peaks spaced ~180 to ~200 bp
apart, indicating the positions of nucleosomes (Fig. 1d, e and
Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq11, demonstrating high
resolution of our accessibility measurements.

As a final quality assessment, we analysed associations between
molecular layers within individual cells (across all genes), which is
similar to approaches used to investigate linkages using bulk data
(see Fig. 2 upper panel for a graphical representation).
Reassuringly, this confirmed the expected negative correlations
for methylation with transcription12 and methylation with

accessibility8 (Fig. 2, lower panel) and positive correlations
between accessibility and expression18 (for most genomic
contexts with the notable exception of active enhancers for
which there is little evidence for a correlation between
accessibility and expression in our data or in published data).
These results indicate that our method recapitulates, within single
cells, known trends from bulk data.

Taken together, these results demonstrate that our method is
able to robustly profile gene expression, DNA methylation and
chromatin accessibility within the same single cell.

Identifying genomic loci with coordinated variability. Having
established the efficacy of our method, we next explored its
potential for identifying loci with coordinated epigenetic and
transcriptional heterogeneity. To obtain a dataset with a larger
degree of heterogeneity than observed in ES cells, we prepared a
second dataset obtained from serum grown ES cells that we
removed from LIF for 3 days to initiate differentiation into
embryoid bodies (EBs). We sequenced 43 cells, which clearly
clustered into two sub-populations based on RNA-seq profiles,
corresponding to pluripotent and differentiating states (Supple-
mentary Fig. 9). First, we examined cell-to-cell variance in the
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Fig. 1 scNMT-seq overview and genome-wide coverage. a Protocol overview. Single-cells are lysed and accessible DNA is labelled using GpC
methyltransferase. RNA is then separated and sequenced using Smart-seq2, whilst DNA undergoes scBS-seq library preparation and sequencing.
Methylation and chromatin accessibility data are separated bioinformatically. b Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ considers any C-G dinucleotides (e.g., as in
scBS-seq), ‘NOMe-seq CpG’ considers A–C–G and T–C–G trinucleotides and ‘NOMe-seq GpC’ considers G–C–A, G–C–C and G–C–T trinucleotides. c
Empirical coverage in 61 mouse ES cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots show
median coverage and the first and third quartile, whiskers show 1.5 × the interquartile range above and below the box. d CpG methylation and GpC
accessibility profiles at published DNase hypersensitive sites19. The profiles were computed as a running average in 50 bp windows. Shading denotes
standard deviation across cells. e CpG methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level of
the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 (high). The profile is generated by
computing a running average in 50 bp windows
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methylation data, finding that enhancers and Nanog binding sites
were associated with the largest methylation heterogeneity, which
is in agreement with previous ES cell data3,13 (Supplementary
Fig. 10a, b). Conversely, variability in accessibility rates was either
at similar levels to the background or, in the case of promoters,
CGIs, active enhancers, and gene bodies, found to be reduced
relative to the background (Supplementary Fig. 10c, d). This
could indicate that there are genomic elements which limit
variability of chromatin accessibility, such as CGIs most of which
in a cell are constitutively accessible20.

Subsequently, we tested locus-specific associations between
different pairwise combinations of molecular layers (Fig. 3a),
which is distinct from the correlations across genes used for
quality control above and is enabled by parallel single-cell
measurements in multiple cells. This analysis can be used to
discover individual genes and loci with coordinated heterogeneity
across pairs of molecular layers. First, considering associations
between methylation and transcription, we identified a minimum
of 3 (exons) and a maximum of 47 (gene bodies) associations
(FDR <0.1, Fig. 3a, Supplementary Fig. 11a, Supplementary
Data 2, Methods). The majority of these associations were
negative, reflecting the known relationship between these two
layers. In contrast, we found that associations between DNA
accessibility and transcription were less widespread, with a small
number of mostly positive associations in promoters, p300
binding sites and super enhancer regions (13 associations total,
FDR <0.1, Fig. 3a, Supplementary Fig. 11b and Supplementary
Data 2). Low numbers of correlated accessibility–expression
could indicate that transcriptional changes in this population are
more dependent on DNA methylation changes than chromatin
accessibility changes and this is in agreement with the results
presented in Fig. 2. Finally, for methylation-accessibility, we
found associations at most genomic contexts, with up to
89 significant correlations (introns) and these tended to be
negative as expected (Fig. 3a, Supplementary Fig. 11c and
Supplementary Data 2).

As an illustrative example, Fig. 3b displays the Esrrb locus, a
gene we find to be expressed primarily in the pluripotent cells

(Supplementary Fig. 9), and which displays a strong correlation
between methylation and expression in super enhancer regions,
replicating previous findings3. Mean methylation and accessibility
rates along the gene showed clear differences between the two
sub-populations of cells identified, which were largest at
regulatory elements. While the super enhancers showed the
strongest negative correlation between methylation and tran-
scription, a strong positive correlation was found in the promoter
between accessibility and transcription. Similarly, Supplementary
Fig. 12 shows the Prtg locus, a known neuroectoderm marker21,
which is expressed primarily in differentiated cells (Supplemen-
tary Fig. 9), again showing marked epigenetic differences between
the two cell populations.

Base resolution chromatin accessibility profiles. Inspection of
accessibility data at the single GpC level reveals complex patterns
due to presence of nucleosomes (Fig. 1d, e), which are not
appropriately captured by rate parameters calculated in pre-
defined windows. The prevalence of these oscillatory patterns
prompted us to reconstruct the DNA accessibility profiles in
individual cells at a locus level, by adapting a statistical model
initially developed for DNA methylation profiles22. As expected,
the single-cell profiles at gene promoters were more predictive of
gene expression than conventional accessibility rates (Supple-
mentary Fig. 13), and these captured characteristic patterns of
nucleosome depleted regions at transcription start sites and cell-
to-cell variation in both the position and the number of nucleo-
somes (see Supplementary Fig. 14).

Next, we exploited the reconstructed profiles to quantify the
level of heterogeneity of chromatin accessibility at transcription
start sites. For each gene, we clustered the cells based on the
similarity of the accessibility profiles and we estimated the most
likely number of clusters (Methods). Subsequently, we stratified
genes by the number of clusters estimated by our model, which
we considered as a measure of accessibility heterogeneity (Fig. 4a).
This revealed that genes with homogeneous accessibility profiles
(fewer clusters) were associated with higher average expression
levels (Fig. 4b) and were enriched for gene ontology terms linked
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Fig. 2 scNMT-seq recapitulates known global associations between molecular layers. Upper panel shows an illustration of the computation of the
correlation across genes (one association test per cell). Left is CpG methylation and RNA expression associations, middle is CpG methylation and GpC
accessibility associations, and right is GpC accessibility and RNA expression associations. Red circles represent CpG methylation levels, blue circles
represent GpC accessibility levels and yellow polyA tails represent RNA abundance. Lower panel shows the Pearson correlation coefficients between
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to house-keeping functions, such as regulation of gene expression,
rRNA processing and splicing (Fig. 4d). Examples of genes with a
single cluster are shown in Supplementary Fig. 15 and examples
of genes with two differentially expressed clusters are shown in
Supplementary Fig. 16. In contrast, genes with heterogeneous
accessibility (multiple clusters) were associated with low expres-
sion levels and were enriched for bivalent promoters containing
both active H3K4me3 and repressive H3K27me3 histone marks
(Fig. 4c). The increased bivalency was independent of the mean
expression level of the gene (Supplementary Fig. 17).

Epigenome dynamics along a developmental trajectory. One of
the most interesting opportunities of scNMT-seq is to link epi-
genetic properties to the transcriptomic profile along dynamic
trajectories of different cell states. To explore this, we used the
RNA-seq component to reconstruct a pseudotemporal ordering
of the cells from pluripotent to differentiated cell states (Fig. 5a,
Methods). We then tested for coordinated changes between the
accessibility profiles and the cellular position in the differentiation
trajectory, which identified a set of 15 genes that showed a
coherent dynamic pattern (Supplementary Fig. 18, Methods).
Fig. 5b depicts two representative genes: Efhd1, a gene that dis-
plays a transition from a state with an open transcription start site

(TSS) to a state with a closed TSS; and Rock2, with a similar
transition on the+1 nucleosome after the TSS. Supplementary
Fig. 19 shows additional examples of genes with associations
between accessibility profile and pseudotime trajectory.

Finally, we investigated whether dynamic changes in the
coupling between the epigenetic layers are observed along the
differentiation trajectory. To this end, we plotted methylation-
accessibility correlation coefficients (as calculated in Fig. 2a)
against pseudotime, which revealed an increasing negative
correlation coefficient between DNA methylation and accessi-
bility in practically all genomic contexts (Fig. 5c). Notably, this
suggests that the coupling between the epigenetic layers increases
as cells commit to downstream lineages, which could be an
important step in lineage priming. Importantly, this analysis was
made possible by the continuous nature of the single-cell
pseudotime ordering and the ability to profile the three molecular
layers and highlights the utility of such parallel single-cell
techniques.

In conclusion, we have described a method for parallel single-
cell DNA methylation, gene expression and high-resolution
chromatin accessibility measurements and report novel associa-
tions between each molecular layer. We additionally show that
our method can be used to dissect the dynamics of epigenome
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interactions during a developmental trajectory. This method will
greatly expand our ability to investigate relationships between the
epigenome and transcriptome in heterogeneous cell types and
across developmental and other cell fate transitions.

Methods
Experimental design. No statistical methods were used to predetermine sample
size. The experiments were not randomised. The investigators were not blinded to
allocation during experiments and outcome assessment.

Cell culture. El16 mESCs were derived from a 129xCast/129 embryo previously23

and cultured in serum containing media (DMEM 4500mg/l glucose, 4 mM L-
glutamine, 110 mg/l sodium pyruvate, 15% foetal bovine serum, 1 U/ml penicillin,
1 μg/ml streptomycin, 0.1 mM nonessential amino acids, 50 μM β-mercaptoetha-
nol, and 103 U/ml LIF ESGRO) without feeders. E14 mESCs (the E14 cell line was
a generous gift from A. Smith) were cultured as EL16 then seeded into low
attachment plates at 1000 cells mL−1 in serum media without LIF for 3 days before
collection. Single cells were collected by FACS, selecting for live cells and low DNA
content (i.e., G0 or G1 phase cells) using ToPro-3 and Hoechst 33342 staining. The
cell lines were subjected to routine mycoplasma testing using the MycoAlert testing
kit (Lonza).

Library preparation. Cells were collected directly into 2.5 μl methyltransferase
reaction mixture which was comprised of 1 ×M.CviPI Reaction buffer (NEB), 2 U
M.CviPI (NEB), 160 μM S-adenosylmethionine (NEB), 1 U μl−1 RNAsein (Pro-
mega), 0.1% IGEPAL (Sigma) then incubated for 15 min at 37 °C. The reaction was
stopped and the RNA preserved with the addition of 5 μl RLT plus (Qiagen) prior
to scM&T-seq library preparation according to the published protocols for G&T-
seq24,25 and scBS-seq26 with minor modifications. Briefly, mRNA was captured
using Smart-seq210,27 oligo-dT pre-annealed to magnetic beads (MyOne C1,
Invitrogen). The lysate containing the gDNA was transferred to a separate PCR
plate and the beads were washed three times in 15 μl of 1 × FSS buffer (Superscript
II, Invitrogen), 10 mM DTT, 0.005% tween-20 (Sigma) and 0.4 U μl−1 of RNAsin
(Promga). After each wash, the solution was transferred to the DNA plate to
maximise recovery. The beads were then resuspended in 10 μl of reverse tran-
scriptase mastermix (100 U SuperScript II (Invitrogen), 10 U RNAsin (Promega)
1 × Superscript II First-Strand Buffer, 2.5 mM DTT (Invitrogen), 1 M betaine
(Sigma), 9 mM MgCl2 (Invitrogen), 1 μM Template-Switching Oligo10,27 (Exiqon),
1 mM dNTP mix (Roche)) and incubated on a thermocycler for 60 min at 42 °C
followed by 30 min at 50 °C and 10 min at 60 °C. PCR was then performed by
adding 11 μl of 2 × KAPA HiFi HotStart ReadyMix and 1 μl of 2 μM ISPCR pri-
mer10,27 and cycling as follows: 98 °C for 3 min, then 18 cycles of 98 °C for 15 s,
67 °C for 20 s, 72 °C for 6 min and finally 72 °C for 5 min. cDNA was purified using
a 1:1 volumetric ratio of Ampure Beads (Beckman Coulter) and eluted into 20 μl of
water. Libraries were prepared from 100 to 400 pg of cDNA using the Nextera XT
Kit (Illumina), per the manufacturer’s instructions but with one-fifth volumes.
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In parallel, the genomic DNA was purified with a 0.8:1 volumetric ratio of Ampure
XP Beads (Beckman Coulter) and eluted into 10 μl of water. Bisulfite conversion
was carried out using EZ Methylation Direct MagBead kit (Zymo) according the
manufacturers’ instructions but with half volumes. Converted DNA was eluted into
40 μl of first strand synthesis mastermix (1 × Blue Buffer (Enzymatics), 0.4 mM
dNTP mix (Roche), 0.4μM 6NF oligo (IDT) then heated to 65 °C for 3 min and
cooled on ice. 50U of klenow exo- (Enzymatics) was added and the mixture
incubated on a thermocycler at 37 °C for 30 min after slowly ramping from 4 °C.
First strand synthesis was repeated 4 more times with the addition of 0.25 μl of
reaction mixture (1× blue buffer, 0.25 mM dNTPs, 10 mM 6NF oligo and 25U
klenow exo-). Reactions were diluted to 100 μl and 20U of exonuclease I (NEB)
added and incubated at 37 °C before purification using a 0.75:1 ratio of AMPure XP
beads. Purified products were resuspended in 50 μl of second strand mastermix (1×
Blue Buffer (Enzymatics), 0.4 mM dNTP mix (Roche), 0.4 μM 6NF oligo (IDT)
then heated to 98 °C for 2 min and cooled on ice. 50U of klenow exo- (Enzymatics)
was added and the mixture incubated on a thermocycler at 37 °C for 90 min after
slowly ramping from 4 °C. Second strand products were purified using a 0.75:1
ratio of AMPure XP beads and resuspended in 50 μl of PCR mastermix (1× KAPA
HiFi Readymix, 0.2 μM PE1.0 primer, 0.2 μM iTAG index primer) and amplified
with 14 cycles. Finally, scBS-seq libraries were purified using a 0.7:1 volumetric
ratio of AMPure XP beads before pooling and sequencing.

Sequencing EL16 serum ES cells. Twenty of the BS-seq libraries, including 3
negative controls, were initially sequenced on a 50 bp single-end MiSeq run to
assess quality. The negative controls were found to have substantially reduced
mapping efficiencies compared to the single cell samples (mean of 2.7% compared
to 36.8%, see Supplementary Data 1). All single-cell BS-seq libraries were subse-
quently sequenced to a mean depth of 16.1 million paired-end reads and RNA-seq
libraries were sequenced to a mean depth of 2.0 million paired-end reads. Both sets

of libraries were sequenced on HiSeq 2500 instruments using v4 reagents and 125
bp read length.

Sequencing E14 embryoid body cells. Forty eight BS-seq libraries were sequenced
as a multiplex on one 75 bp PE high-output run on an Illumina NextSeq500 with a
mean sequencing depth of 9.6 million per cell. RNA-seq libraries were sequenced
on an Illumina NextSeq500 with a mean depth of 1.0 million 75 bp single-end
reads per cell (Supplementary Data 1).

BS-seq alignment. Single-cell bisulfite libraries were processed using Bismark28 as
described26 with the additional --NOMe option in the coverage2cytosine script
which produces CpG report files containing only A–C–G and T–C–G positions
and GpC report files containing only G–C–A, G–C–C and G–C–T positions.

RNA-seq alignment. Single-cell RNA-seq libraries were aligned using HiSat229

using options --dta --sp 1000,1000 --no-mixed --no-discordant for the paired-end
ES cell libraries and --dta --sp 1000,1000 for the single-end EB cell libraries.

Quality control–RNA-seq. For the EL16 serum grown ES cells, we discarded cells
that had (1) less than 300,000 reads mapped (2) more than 15% of total reads
mapped to mitochondrial genes, (3) less than 2000 genes expressed. In total, 68
cells passed the quality control (Supplementary Fig. 20a).

For the E14 embryoid body cells, we used a lower read-depth cut-off due to the
lower sequencing depth employed, discarding cells that had (1) less than 100,000
reads mapped (2) more than 15% of total reads mapped to mitochondrial genes, (3)
less than 2000 genes expressed. In total, 46 cells passed the quality control
(Supplementary Fig. 20b).
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Quality control–BS-seq. For the EL16 serum grown ES cells, we discarded cells
that had (1) less than 10% mapping efficiency (2) less than 500,000 CpG sites or
5,000,000 GpC sites covered. We additionally excluded one cell with unusually high
CpG coverage (>5M) and low duplication (26%) as a possible doublet. In total, 64
cells out of 73 passed the quality control (Supplementary Fig. 21a, Supplementary
Data 1). All 64 cells also passed RNA-seq QC (88%) and these comprised 61
scNMT-seq cells and 3 scM&T-seq cells.

For the E14 EB cells, we again used a lower coverage cutoff due to lower
sequencing depth, discarding cells that had (1) less than 10% mapping efficiency
(2) less than 300,000 CpG sites covered. In total, 40 cells passed the quality control
(Supplementary Fig. 21b, Supplementary Data 1), all of which also passed RNA-seq
QC and comprised 33 scNMT-seq cells and 7 scM&T-seq cells.

CpG Methylation and GpC accessibility quantification. Following the approach
of Smallwood et al13, individual CpG or GpC sites in each cell were modelled using
a binomial model where the number of successes is the number of reads that
support methylation and the number of trials is the total number of reads. A CpG
methylation or GpC accessibility rate for each site and cell was calculated by
maximum a posteriori assuming a beta prior distribution. Subsequently, CpG
methylation and GpC accessibility rates were computed for each genomic feature
assuming a normal distribution across cells and accounting for differences in the
standard errors of the single site estimates. See Supplementary Data 3 for details of
genomic contexts used in this study.

RNA quantification. Gene expression counts were quantified from the mapped
reads using featureCounts30. Gene annotations were obtained from Ensembl ver-
sion 8731. Only protein-coding genes matching canonical chromosomes were
considered. Following32 the count data was log-transformed and size-factor
adjusted based on a deconvolution approach that accounts for variation in cell
size33.

Methylation and accessibility pseudo-bulk profiles. Methylation and accessi-
bility profiles were visualised by taking predefined windows around the genomic
context of interest. For each cell and feature, methylation and accessibility values
were averaged using running windows of 50 bp. The information from multiple
cells was combined by calculating the mean and the standard deviation for each
running window. Genes were split into three classes according to a histogram of the
log2 normalised counts (x): Low (x < 2), Medium (2< x<6) and High (x > 6). All
genomic features were associated to the closest gene within a 5 kb window
(upstream and downstream of gene start and stop).

Single-cell accessibility profiles. Accessibility profiles were constructed within
each cell and gene in +/–200 bp windows around the TSS (as displayed in Fig. 5b
and Supplementary Figs. 14, 15 and 16) using a generalised linear model (GLM) of
basis function regression coupled with a Bernoulli likelihood using BPRMeth22. We
only considered genes that were covered in at least 40% of the cells with a mini-
mum coverage of 10 GpC sites. Subsequently, we clustered the profiles for each
gene by fitting a finite mixture model using an expectation–maximisation (EM)
algorithm. We estimated the most likely number of clusters based on the Bayesian
Information Criterion (BIC). The number of clusters was used as a measure of cell-
to-cell variation in the accessibility profile; the rationale being that homogeneous
profiles will be grouped in a single cluster, while regions with heterogeneous
profiles will be assigned a higher number of clusters. Gene Ontology enrichment
was performed for the different clusters using Fisher’s exact test. The p-values
where corrected by multiple testing using False Discovery Rate.

Predicting expression. To compare the performance of using accessibility rates
versus profiles for predicting gene expression levels we used the same approach
described in22. We first computed the accessibility rates and profiles for each gene
and cell. Then, for each cell, we used the fitted values as input features to a
regression model with the gene expression levels as the response variable. To
measure the accuracy of the model we computed the Pearson’s correlation coef-
ficient between the observed and predicted expression levels (Supplementary
Fig. 13a) To account for the different number of features used in the two models
(i.e., rate vs profile features) we also computed the adjusted R2 (Supplementary
Fig. 13b)

Correlation analysis. For the correlation analysis across cells, genes with low
expression levels and low variability were discarded, according to the rationale of
independent filtering34. Only the top 50% of the most variable loci were considered
for analysis and a minimum number of 20 cells was required to compute a cor-
relation. A minimum coverage of 3 sites was required per feature. All genomic
features were associated to the closest gene within a 10 kb window (upstream and
downstream of gene start and stop). Following our previous approach3, we tested
for linear associations by computing a weighted Pearson correlation coefficient,
thereby accounting for differences in the coverage between cells. When assessing
correlations between GpC accessibility with CpG methylation, we used the average
CpG methylation coverage as a weight. Two-tailed Student’s t-tests were performed

to test for nonzero correlation, and P-values were adjusted for multiple testing for
each context using the Benjamini–Hochberg procedure. For promoter annotations,
we used a small window for accessibility (+/–50 bp) to focus our analysis on the
transcription start site whereas for methylation we considered a larger window
(+/–2 kb). This choice was informed by pseudo-bulking the single-cell data and
computing the correlation between accessibility/methylation and gene expression
(across genes) for small 50 bp windows along the promoter, finding that the
strongest signal fell within our chosen range (Supplementary Fig. 22).

Pseudotemporal ordering of cells. Cells were ordered along a putative develop-
mental trajectory (pseudotime) with the destiny package35, using the top 500 genes
with most biological overdispersion as estimated by the scran package.

Code availability. All R code is provided as Supplementary Software and is
available from https://github.com/PMBio/scNMT-seq/

Data availability. Raw sequencing data together with processed files (RNA counts,
CpG methylation reports, GpC accessibility reports) are available in the Gene
Expression Omnibus under accession GSE109262. All other data are available from
the authors upon reasonable request.
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