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SUMMARY

Global DNA demethylation is an integral part of re-
programming processes in vivo and in vitro, but
whether it occurs in the derivation of induced pluripo-
tent stem cells (iPSCs) is not known. Here, we show
that iPSC reprogramming involves both global and
targeted demethylation, which are separable mecha-
nistically and by their biological outcomes. Cells at in-
termediate-late stages of reprogramming undergo
transient genome-wide demethylation, which is more
pronounced in female cells. Global demethylation
requires activation-induced cytidine deaminase
(AID)-mediated downregulation of UHRF1 protein,
and abolishing demethylation leaves thousands of
hypermethylated regions in the iPSC genome. Inde-
pendently of AID and global demethylation, regulatory
regions, particularly ESC enhancers and super-en-
hancers, are specifically targeted for hypomethylation
in association with transcription of the pluripotency
network. Our results show that global and targeted
DNA demethylation are conserved and distinct re-
programmingprocesses,presumablybecauseof their
respective roles in epigenetic memory erasure and in
the establishment of cell identity.
INTRODUCTION

Induced pluripotent stem cell (iPSC) technology holds unparal-

leled promise for research, tissue engineering, and regenerative

medicine. Reprogramming is a continuous process character-

ized by the stepwise activation of fundamental pluripotency

genes (Brambrink et al., 2008; Stadtfeld et al., 2008) and the

silencing of somatic cell-of-origin genes (Buganim et al., 2012).
Cell Rep
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This complex remodeling of transcriptional networks is associ-

ated with reprogramming of the epigenome (Brambrink et al.,

2008; Sridharan et al., 2009; Stadtfeld et al., 2008), which is

the ensemble of DNA or chromatin modifications linked with

gene expression states without affecting DNA sequence. Spe-

cific histone marks are lost (Chen et al., 2013b; Golipour et al.,

2012; Yang et al., 2014) or acquired (Buganim et al., 2012; Cac-

chiarelli et al., 2015; Mikkelsen et al., 2008) during reprogram-

ming, and activation of microRNAs (Polo et al., 2012) and long

noncoding RNAs (Kim et al., 2015) at defined stages is also

important. A critical role for DNA demethylation in complete

and robust reprogramming of terminally differentiated cells has

been proposed (Papp and Plath, 2013); however, the molecular

mechanisms underlying this epigenetic process and its dy-

namics at different stages during reprogramming are poorly un-

derstood. It is also not clear to what extent demethylation is

involved in the creation of a pluripotent cell identity and whether

it may also be needed to remove epigenetic memory.

iPSCs have been shown to tolerate global hypomethylation,

just as embryonic stem cells (ESCs) do (Wernig et al., 2007),

and the efficiency of obtaining these cells is improved by treat-

ment with 5-azacytidine (Mikkelsen et al., 2008). Tet family diox-

ygenases hydroxylate 5-methylcytosine (5mC) and enhance

reprogramming efficiency (Costa et al., 2013; Doege et al.,

2012; Hu et al., 2014). The cytosine deaminase activation-

induced cytidine deaminase (AID) stabilizes the pluripotent

phenotype (Kumar et al., 2013) and is needed for demethylation

of specific promoters in heterokaryon reprogramming (Bhutani

et al., 2010), but the extent, timing, and mechanisms of this de-

methylation in iPSC reprogramming are not known.

Despite demethylation being critical, there are only a few

comprehensive studies of DNA methylation dynamics during

the reprogramming process and none in a primary reprogram-

ming system. Polo et al. (2012), using a methylation array to

study promoter regions, showed that demethylation occurs

gradually, while new methylation marks are gained only late in

reprogramming. More recently, Lee et al. (2014a) performed
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genome-wide analyses in intermediates of F-class cells (an alter-

native pluripotent state, dependent on continuous high expres-

sion levels of the Yamanaka Factors [Oct3/4, Sox2, Klf4, cMyc]

OSKM) and one late time point where OSKM were no longer

exogenously expressed. They demonstrated that hypomethy-

lated differentially methylated regions (DMRs) are highly en-

riched in H3K4me3 andH3K27me3 and that themajority of these

overlap with specific transcription factor binding sites. However,

it is not clear how DNA methylation marks at regulatory regions

are remodeled during primary iPSC reprogramming and how

this is linked to the establishment of the pluripotent gene expres-

sion program. Here, we perform a comprehensive genome-wide

in-depth analysis of the dynamics of DNA demethylation and its

link to transcription during primary mouse embryonic fibroblast

(MEF) reprogramming to iPSCs. We demonstrate that both fe-

male and male cells undergo global hypomethylation of the

genome, which is likely to be important for the removal of epige-

netic memory. Independently, targeted loss of DNA methylation

marks at critical regulatory regions is necessary for the establish-

ment of cell identity. We show that global demethylation is more

pronounced in female cells, while targeted demethylation at reg-

ulatory regions is evident in both female and male cells. Finally,

we find that AID plays a key role in global demethylation and

epigenetic memory erasure. Surprisingly, this occurs at the level

of regulation of UHRF1 protein, an essential component of the

DNA methylation maintenance machinery, recently also shown

to be regulated during global demethylation in ESCs transition-

ing from serum to 2i (von Meyenn et al., 2016).

RESULTS

iPSC Reprogramming Triggers Transient Global DNA
Hypomethylation
To enable dynamic methylation profiling, reprogramming inter-

mediates were analyzed at defined time points (Figure 1A; for a

detailed description, see Experimental Procedures). Oct4-GFP

MEFs were reprogrammed in low oxygen (5% O2), known to

improve reprogramming (Yoshida et al., 2009), in serummedium

and using an inducible piggybac system. This allowed us to

obtain and pick colonies as early as day 6 (d6) after induction

of OSKM by doxycycline (Dox) and analyzing these same clones

over time, allowing for the characterization of intermediate time

points that are not accessible through primary reprogramming

carried out in normoxic conditions (Figure 1A). Female and

male iPSC clones at intermediate-late stages of reprogramming

(d21 and d29 iPSCs) already express the majority of the pluripo-

tency factors, but in contrast to established iPSCs (d60 iPSCs)

female cells are still in the process of downregulating Xist and

thus in the process of completing X chromosome reactivation

(Figure S1A). Dox-independent GFP-positive colonies at d21

that showed expression of key pluripotency markers and the

ability to differentiate into the three germ layers as well as a

normal karyotype by d60 (Figures S1B–S1D) were used in subse-

quent analyses. Embryonic stem cells (ESCs) were included in

the analysis as a control for pluripotent cells.

Notably, liquid chromatography mass spectrometry (LC-MS)

revealed substantial global demethylation in intermediate-late

stages of reprogramming in female cells (Figure 1B). While
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methylation levels comparable to MEFs (3.0%) were maintained

at d6 (d6T+/S–: 3.0% and d6T–/S+: 3.1%), in intermediate-late

stages there was a significant decrease in 5-methylcytosine

(5mC) levels (d21 iPSCs: 2.7% and d29 iPSC: 2.4%, p < 0.05:

MEFs versus d29 iPSCs, ANOVA with Dunnett’s correction).

However, this global hypomethylation was transient with estab-

lished iPSCs’s 5mC levels (3.8%) similar to those of primed ESCs

(3.9%). Global demethylation during reprogramming of female

cells was confirmed by whole-genome bisulphite sequencing

(WGBS), which revealed a substantial drop in CpG methylation

levels from 68% in MEFs to 45% in d29 iPSCs, with subsequent

remethylation to 67% in d60 iPSCs (Figures 1C, S1E, and S1G).

Interestingly, during reprogramming of male cells this global

demethylation was not as marked as in female cells (Figures

1D, S1F, and S1G).

The methylation dynamics during iPSC reprogramming

closely resembled the transient loss of DNA methylation marks

in early embryo development, where DNAmethylation is globally

lost from the oocyte (52%) to the 2- and 4-cell stage (47% and

38%) until it reaches very low levels (20%) in the inner cell

mass (ICM) at the blastocyst stage. Methylation marks are then

regained by the E6.5 epiblast stage (61%) (Figures 1E and

S1H). Moreover, global demethylation was uncoupled from

transcriptional regulation (Figure S1I) as previously reported in

primordial germ cell (PGCs) development, and in the transition

from primed to naive ESCs (Seisenberger et al., 2012; Ficz

et al., 2013).

These results show that global DNA demethylation occurs in

the intermediate-late stages of reprogramming and that female

and male cells undergo different modulation of DNA methylation

dynamics during reprogramming.

Stable Targeted DNA Demethylation Occurs at
Pluripotency Regulatory Regions and Correlates with
Expression of the Pluripotency Network
In order to integrate and validate the differences in global methyl-

ation levels observed between the discrete time points within our

experiment, the development of specific analytical approaches

was required. These approaches also allowed insights into other

reprogramming systems, thus highlighting their usefulness (for

detailed description, see Supplemental Experimental Proced-

ures). The first approach employs a background model to cor-

rect for global methylation differences, which allowed us to

confidently call differentially methylated regions (DMRs) from

MEFs to established iPSCs. Gene bodies, intergenic regions,

and long interspersed nuclear elements (LINEs) and short inter-

spersed nuclear elements (SINEs) have a similar methylation

profile to the genome as a whole and hence follow the global de-

methylation and remethylation event (Figures 2A and S2A). In

contrast, intracisternal A particle (IAP) retrotransposons and

limb enhancers (as an example of a tissue-specific enhancer)

are protected from demethylation, with many DMRs being hy-

permethylated in the established iPSCs. Notably, pluripotency

regulatory regions such as promoters, ESC enhancers, and su-

per-enhancers (SEs) are specifically targeted for demethylation,

with the majority of these DMRs being hypomethylated over and

above the genome average (Figures 2A and S2A). The impor-

tance of hypomethylation for enhancer and SE function in
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Figure 1. Global DNA Demethylation Dynamics during iPSC Reprogramming
(A) Scheme of the reprogramming system. d6T+/S– and d6T–/S+: Thy1 (T) and SSEA1 (S) FACS cells at day 6 of reprogramming. For detailed description, refer to

Experimental Procedures.

(B) Global 5mC levels measured by LC-MS. Results are expressed as percentage of total cytosines and data are represented asmean ± SEM p values shown are

the result of an ANOVA with Dunnett’s correction.

(C–E) CpGmethylation levels, as assessed by BS-seq, during reprogramming of (C) female, (D) male cells, and (E) pre-implantation embryo (oocyte, 2- and 4-cell

embryos, ICM, and epiblast). (C–E) Plot displays the median (bar), inter-quartile range (box), and maximum and minimum (whiskers).

See also Figure S1.
ESCs is well documented (Ding et al., 2015; Stadler et al., 2011;

Wiench et al., 2011) but has not been described in iPSC reprog-

ramming. To validate the DMRs found fromWGBS, an amplicon-

based assay was designed. This assay allowed the methylation

dynamics of selected regions to be interrogated at >1,000-fold

sequencing depth. The results closely matched those obtained

from our low sequencing depth (3-fold) WGBS data, showing

that such coverage nevertheless provided robust methylome in-

formation on individual loci (Figure S2B). Unlike global demethy-

lation, targeted demethylation occurs at the same regions and to

a similar extent during female and male somatic cell reprogram-

ming (Figure 2A).

Hierarchical clustering of RNA sequencing (RNA-seq) data of

female cells during reprogramming showed that differentially ex-

pressed genes from MEFs to established iPSCs fell into five
distinct expression clusters (Figure S2C) similar to those previ-

ously described (O’Malley et al., 2013). Notably, genes in cluster

II (upregulated during reprogramming—including the pluripo-

tency network genes) are enriched for hypomethylated DMRs

in non-CGI promoters, ESC enhancers, and SEs (Figure 2B).

Conversely, limb enhancer DMRs, which remain hypermethy-

lated, are absent from this cluster. In contrast, genes in cluster

V (downregulated during reprogramming) are exclusively en-

riched for DMRs at limb enhancers (Figure 2B). Similar results

were seen for d6T–/S+ and ESCs (Figure S2D), showing that up-

regulation of pluripotency genes precedes global demethylation

and is influenced by targeted demethylation at ESC enhancers

and super-enhancers. Instructive examples of changes in regu-

latory regions of individual genes are shown in Figures 2C, 2D,

S2E, and S2F. These results show that demethylation at specific
Cell Reports 18, 1079–1089, January 31, 2017 1081
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Figure 2. Correlation of DNA Methylation at Different Regulatory Regions and Gene Expression

(A) Scatterplot of DNAmethylation levels of individual probes genome-wide, showingwhole genome and different genomic features of MEFs and d60 iPSCs. Dots

represent individual 50 CpG probes—significant differentially methylated regions (DMRs) are represented in green (female cell reprogramming) or blue (male cell

reprogramming). Background model depicted as a black line.

(B) Percentage of DMRs at regulatory regions that overlap with specific gene clusters, compared to random sets with the same number of genes (in gray).

(legend continued on next page)
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regulatory regions is important for the upregulation of the plurip-

otency network genes. In established female and male iPSCs,

depletion of methylation in ESC enhancers and non-CGI pro-

moters was more pronounced in highly and very highly ex-

pressed genes (Figure 3A), in agreement with previous studies

in ESCs (Lister et al., 2009; Stadler et al., 2011).

We developed a second analytical approach that utilizes

methylation-matched random probes (MMRPs) to account for

global methylation differences, which allows for clear visualiza-

tion of methylation differences during iPSC reprogramming (rela-

tive to MEFs). This approach validates the targeted demethyla-

tion findings in both female and male cells (Figures S3A and

S3B), and more importantly it allows for statistical significance

to be calculated after grouping of the differences elicited by re-

programming, irrespective of the differences in the process or

the genome coverage and sequencing depth of the data. Based

on these analyses, we observed that DNA demethylation at ESC

enhancers and super-enhancers is already evident in the inter-

mediate-late stages of reprogramming but becomes yet more

pronounced in d60 iPSCs (Figures 3B, 3C, S3C, and S3D).

Notably, we identified targeted demethylation at these same reg-

ulatory regions in pre-implantation embryos and during the

serum to 2i transition (Figure 3D) while it was absent in unipotent

PGCs (Surani, 2012). These results reveal a conserved targeted

demethylation signature during reprogramming to pluripotent

cell identity in vitro and in vivo, which seems to be independent

of the extent of global DNA demethylation.

AID Regulates UHRF1 and Global Demethylation during
iPSC Reprogramming
To understand the molecular regulation of global demethylation

associated with female cell reprograming, we assessed the

expression levels of genes implicated in DNA methylation and

demethylation. As previously shown (Buganim et al., 2012;

Polo et al., 2012), all Dnmt genes were significantly upregulated

upon reprogramming (Figure S4A). Importantly, we also

confirmed upregulation of DNMT1 and DNMT3b proteins (Fig-

ures 4A and S4B). However, we observed one notable exception

to this pattern UHRF1, responsible for the recruitment of DNMT1

to hemi-methylated DNA (Bostick et al., 2007; Sharif et al., 2007).

While its transcription was upregulated by reprogramming, we

observed substantially reduced protein levels at the stages

associated with global hypomethylation (Figures 4A and 4B),

when compared to fully reprogrammed iPSCs.

AID has been previously implicated in iPSC reprogramming,

but the timing, mechanisms, and extent of demethylation it

may regulate are unknown (Bhutani et al., 2013; Kumar et al.,

2013). It was therefore interesting to note that Aid expression

peaked precisely in d29 iPSCs (Figure 4C) when DNA methyl-

ation levels are lowest. Moreover, global demethylation during

reprogramming of female Aid knock-out (AidKO) MEFs was

much less substantial and was delayed when compared to
(C) Expression profiles (reads per kilobase pre million mapped reads [RPKM]) fo

(D) Example of BS-seq profile for Tdgf1, Gdf3, Dppa3, and Slc2a3 at promoter, e

and 100% are shown. Shadowed areas highlight promoter (P), enhancer (E), or s

See also Figure S2.
wild-type (WT) female cell reprogramming (Figures 4D, 4E,

S4C, and S4D). Typical reprograming-induced demethylation

in female cells was partially rescued by re-expression of

either the wild-type or a catalytically mutant isoform of AID,

but not by expression of an empty vector (Figure 4F). These

results show the importance of AID in regulating global DNA

demethylation during reprogramming and that this regulation is

independent of the deaminase activity of AID.

Given the marked abrogation of demethylation observed dur-

ing reprograming of female AidKO MEFs, and the downregula-

tion of UHRF1 protein associated with reprograming and global

hypomethylation inWT cells, we compared UHRF1 protein levels

during WT versus AidKO cell reprograming. Intriguingly, defi-

ciency in AID prevented the downregulation of UHRF1 protein

(Figures 4G and 4H). In addition, overexpression of AID (both

WT and deaminase mutant) in AidKO reprogramming cells led

to a significant decrease in UHRF1 protein levels (Figures 4I

and 4J), consistent with a role for AID in regulating its abundance

at a posttranscriptional level and reinforcing its importance in

regulating global demethylation. We note in this respect the dif-

ferential expression of genes involved in ubiquitination (which is

known to regulate UHRF1 [Chen et al., 2013a]) between WT and

AidKO d29 iPSCs (Figure S4E), which included Lonrf3, Mdm2,

Usp48, Pramel7, Rnf32, Shprh, and Trim17 among others.

It is notable that despite the profound defect in the transient

global demethylation associated with reprograming, we de-

tected no differences in global methylation levels between WT

and AidKO d60 iPSCs, presumably due to the de novo methyl-

ation wave that takes place at the later stages of reprograming.

However, targeted demethylation at ESC-specific enhancers

and super-enhancers was not affected by lack of AID (Figure 4K)

consistent with the fact that in general activation of the pluripo-

tency transcriptional program occurred normally in AidKO iPSCs

(Figure S4F). This is consistent with the mild effects of AID defi-

ciency on obtaining iPSCs (Habib et al., 2014; Shimamoto et al.,

2014). However we did identify more than 17,000DMRs in AidKO

iPSCs, most of which (72%) were hypermethylated (Figure S4G).

These hypermethylated DMRs occur throughout the genome

and in all genomic features, consistent with a global effect of

AID. Additionally, these cells appear to have impaired differenti-

ation potential, as they are unable to upregulate several differen-

tiation markers at the same levels as WT cells (Figure S4H).

These findings reconcile previous observations on AidKO iPSCs

(Kumar et al., 2013), showing that global demethylation is mech-

anistically uncoupled from targeted demethylation and is neces-

sary for the erasure of epigenetic memory.

Our data also showed significant upregulation of the ten-

eleven Translocation (Tet) Tet1 and Tet2, and Tdg genes in

d29 iPSCs (Figure S4I) that continue to be highly expressed in

fully reprogrammed iPSCs. Hydroxymethylation levels were

low in MEFs and d6T+/S– cells, in contrast to d6T–/S+ cells

that have hydroxymethylation levels similar to primed ESCs
r Tdgf1, Gdf3, Dppa3, and Slc2a3.

nhancer, and SE regions. Methylation levels of individual probes, between 0%

uper-enhancer (SE) regions.
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(Figure S4J). This increase in 5-hydroxymethylcytosine (5hmC)

correlates with the observed increase in expression of the Tet

enzymes, consistent with their role in controlling MET (Hu

et al., 2014). Furthermore, the expression dynamics of Tet1, 2

and Tdg are consistent with a possible role in targeted but not

in global demethylation.

Finally, based on the observation that female and male cells

undergo global DNA demethylation to different extents, and

when female cells are devoid of AID they show an extent of

global demethylation similar to male WT cells, we investigated

the status of X chromosome reactivation. We observed that

AidKO female cells are able to reactivate the X chromosome,

just like WT cells (Figure S4K). Furthermore, to exclude that

this could be a reprogramming system-specific effect, we re-

programmed fibroblasts from one male and four female human

donors. Human cells also undergo global demethylation during

reprogramming (Figure S4L). However, this demethylation is

not as profound as in female mouse cells, resembling more

closely the male mouse global DNA methylation profile. Since

human cells do not robustly reactivate the X chromosome during

iPSC reprogramming (Tchieu et al., 2010), we investigated

whether this was the case in our reprogramming system. We

observed that our human cells were not able to reactivate the

X chromosome and Xist expression was maintained (Figures

S4M and S4N). Moreover, we observed that Aid is expressed

at d11, when methylation levels are lower (Figure S4O).

These results suggest that global DNA demethylation during

reprogramming is mainly achieved by passive demethylation,

similar to what has been reported in other reprogramming pro-

cesses (Seisenberger et al., 2012). Furthermore, AID can influ-

ence the global methylation levels during reprograming by regu-

lating the protein levels of UHRF1, and thus the efficiency of

recruitment of the maintenance methylation machinery. Addi-

tionally, the extent of global DNA demethylation is not dependent

on the reprogramming system or species but seems to be influ-

enced by the capacity of cells to reactivate the X chromosome

(Figure 4L).

DISCUSSION

The extent and role of DNAmethylation remodeling during the re-

programming of somatic cells to pluripotency are poorly under-

stood. Our detailed and comprehensive study reveals that iPSCs

undergo transient global demethylation during reprogramming

and that stable targeted demethylation occurs in parallel to the

global one. Notably, we show that the targeted and global deme-

thylation processes are mechanistically uncoupled and that up-

regulation of pluripotency genes precedes and is not dependent

on the extent of global demethylation. Targeted demethylation
Figure 3. DNA Demethylation Dynamics at Specific Genomic Features

(A) CpG methylation levels for promoter and enhancer regions of genes showing

(B and C) Density plots of methylation differences from MEFs to each time point in

shown by opaque plots, overlaid by MMRP transparent gray density plot.

(D) Density plots of methylation differences at specific features, from oocyte to e

ESCs, shown by opaque plots; overlaid byMMRP transparent gray density plot. (B

5% difference between data and MMRP profile. p values shown are the result o

See also Figure S3.
establishes a unique epigenetic pluripotency signature, which

is broadly conserved in other reprogramming processes. An

important caveat is that there are gender-specific differences

in the extent to which the genome demethylates globally. In fe-

male cells, where DNA demethylation is more pronounced,

downregulation of UHRF1 protein, through an AID-dependent

mechanism, facilitates global but not targeted demethylation

(Figure 4L). Moreover, our results clearly show that cells lacking

AID-mediated global demethylation have an impaired differenti-

ation potential, showing that AID is important for epigenetic

memory erasure but not for the establishment of pluripotent

cell identity.

Global DNA demethylation occurs in early embryos, during

PGC development and in naive ESCs in both mouse and human

(von Meyenn and Reik, 2015) and has consequently been pro-

posed to be a conserved and obligate feature of reprogramming

(Lee et al., 2014b; Nashun et al., 2015). Here, we show that

mouse female and male cells undergo different levels of

genome-wide demethylation during iPSC reprogramming. Our

results, extrapolated from human cell reprogramming, point to

a role for X chromosome reactivation in influencing these differ-

ences. This is consistent with mouse female ESCs having lower

global methylation levels than male ones (Zvetkova et al., 2005)

and with a recent report in PGC-like cell induction, where female

cells undergo DNA methylation reprogramming similar to male

cells, however, with more pronounced global changes (Shirane

et al., 2016).

We reprogramMEFs to iPSCs in the presence of serum, which

in ESCs results in high global methylation levels similar to those

of somatic cells (Ficz et al., 2013; Habibi et al., 2013; Leitch et al.,

2013). Hence despite high levels of de novo methyltransferases,

controlled downregulation of UHRF1 protein seems critical for

global demethylation. We have recently shown that UHRF1 is

also regulated at the protein level when mouse ESCs are transi-

tioned from serum to 2i (vonMeyenn et al., 2016). This potentially

provides a unifying theme for genome-wide demethylation

mechanisms, which in mice and humans are characterized by

disabling of the UHRF1/DNMT1 system, including by posttran-

scriptional regulation of Uhrf1 (Seisenberger et al., 2012; Su-

gawa et al., 2015).

The role of AID in DNA demethylation and reprogramming

in vivo and in vitro has been puzzling with the majority of studies

demonstrating that it plays a role in demethylation (Bhutani et al.,

2010, 2013; Kumar et al., 2013; Popp et al., 2010; Santos et al.,

2013) but that it has mild impact on iPSC reprogramming (Habib

et al., 2014; Shimamoto et al., 2014). Our results clearly show

that AID plays a major role in global DNA demethylation, and un-

expectedly this seems to be brought about by its negative regu-

lation of UHRF1 protein levels, suggesting a novel role for AID in
and in Different Reprogramming Processes

different expression levels in female d60 iPSCs.

reprogramming of (B) female and (C) male cells and ESCs, at specific features

ach time point in pre-implantation embryo, epiblast to PGCs and serum to 2i

–D) Analyses were performed for ESC enhancers and SED denotes aminimum

f a pairwise t test with a Benjamini-Hochberg correction.
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Figure 4. Mechanisms of DNA Demethylation

(A) WB showing levels of DNMT1 and UHRF1 in WT iPSCs at d29 and d60. b-actin was used as a loading control.

(B) Quantitation of DNMT1 and UHRF1 WB bands, relative to ESCs levels.

(C) Expression profile (RPKM) for Aid. p values shown are the result of two-tailed t tests from MEFs to d29 iPSCs.

(D) Global 5mC levels, measured by LC-MS. Results are expressed as percentage of total cytosine. Data are represented as mean ± SEM. Shown are results for

reprogramming of WT and AidKO MEFs.

(E) Global CpG methylation levels, as assessed by BS-seq, for every time point during AidKO MEF reprogramming. Plot displays the median (bar), inter-quartile

range (box), and maximum and minimum (whiskers).

(F) Global 5mC levels, measured by LC-MS. Results are expressed as percentage of total cytosine. Data are represented as mean ± SEM. Shown are results for

AidKO MEFs reprogrammed with the OSKM plus an empty vector (EV), a vector containing AID WT cDNA (AIDWt), or a vector containing AID catalytic mutant

cDNA (AIDCatMutt).

(G) WB showing levels of DNMT1 and UHRF1 in AidKO iPSCs at d29 and d60. b-actin was used as a loading control.

(H) Quantitation of DNMT1 and UHRF1 WB bands, relative to ESCs levels.

(I) WB showing levels of UHRF1 in WT and AidKO iPSCs d29 and clones rescued with EV, AIDWtor AIDCatMutt. b-actin was used as a loading control.

(J) Quantitation of UHRF1 WB bands (arbitrary units [a.u.]).

(legend continued on next page)
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posttranslational regulation of UHRF1. Known mechanisms of

UHRF1 regulation that can affect DNA methylation include ubiq-

uitination among others (Tauber and Fischle, 2015). We note in

this respect that several ubiquitination and deubiquitination en-

zymes are differentially expressed in iPSCs with and without

AID, and that AID itself interacts with a ubiquitin ligase (Sun

et al., 2013).

Targeted demethylation (over and above the global demethy-

lation) occurs at ESC-specific enhancers and super-enhancers

to a similar extent in female and male cells, and this is conserved

in other reprogramming processes in which pluripotent cell iden-

tity is achieved. These regions share the characteristics of being

CpG-poor and transcription factor (TF) binding-rich regions,

characteristics that have been proposed to play a role in focal

or targeted demethylation (Soufi et al., 2012; Stadler et al.,

2011). TET proteins have also been implicated in reprogramming

(Nashun et al., 2015), as well as in targeted enhancer (Pastor

et al., 2013) and super-enhancer (Ding et al., 2015) demethyla-

tion in ESCs. However, Tet enzymes are needed specifically

for activation of microRNAs essential for iPSC derivation, and it

is possible to obtain fully reprogrammed iPSCs from Tet1-3

triple-knockout MEFs after ectopic expression of miR200c (Hu

et al., 2014). Nevertheless, the dynamics of Tet enzyme expres-

sion and of the hydroxymethylation levels that we observe sug-

gest they may play a role in the fine-tuning of targeted demethy-

lation. Indeed, a model that seeks to explain DNA methylation

dynamics at enhancers during differentiation has been proposed

(Hon et al., 2014). This model suggests that at TF binding-rich

enhancers, binding of TFs excludes DNMT1 activity, leading to

their demethylation, whereas in TF binding-poor enhancers,

TET2 protein is crucial in fine-tuning enhancer methylation in

an oxidation-dependent manner. We suggest that a similar

mechanism could be responsible for the targeted remodeling

of these regions during reprogramming.

In contrast, AID does not have a role in targeted demethylation

of pluripotency regulatory regions, but its absence results in

widespread hypermethylated epialleles in iPSCs. This explains

why AID-deficient iPSCs can be obtained, but cells with residual

and persistent epigenetic memory may well behave aberrantly

and unpredictably in potential future therapeutic settings, given

their altered differentiation potential. It will be interesting to

investigate further the differences in developmental potential be-

tween female andmale iPSCs, which could impact on their use in

basic and translational research. Hence, in a process where cells

have to switch off a somatic expression program and upregulate

a pluripotency network, global DNA demethylation seems to be

important for the removal of epigenetic memory, while targeted

demethylation at regulatory regions, and, in particular, at ESC

super-enhancers, is crucial for the establishment of the pluripo-

tent identity. Understanding and manipulating the two demethy-

lation processes may result in improvements in the safety and
(K) Density plots of methylation differences at ESC enhancer and SE from AidKO

density plot. D denotes a minimum 5% difference between data and MMRP profi

correction.

(L) Proposed model to explain role of AID in DNA methylation dynamics during iP

See also Figure S4.
the efficiency of obtaining robust, high quality iPSCs, prerequi-

sites for therapeutic applications in regenerative medicine.

EXPERIMENTAL PROCEDURES

Reprogramming of MEFs to iPSCs

For each transfection, 0.83 106 MEFs were nucleofected using Amaxa Nucle-

ofection Technology (Lonza AG; program A-023), according to the manufac-

turer’s instructions, with 1 mg of each plasmid. Plasmids for reprogramming

pB-TRE-OCKS, pBASE, and pB-CAG-rtTA were obtained from the Wellcome

Trust Sanger Institute’s plasmid repository. Reprogramming was performed in

ESC medium (DMEM, 15% fetal bovine serum, 1% anti-anti, 1% MEM non-

essential amino acids, 50 mM b-mercaptoethanol, and 103 U leukemia inhibi-

tory factor [LIF]) in the presence or absence of doxycycline, in a 5% O2

incubator. The medium was refreshed every other day. Colonies were picked

on day 6 of reprogramming and expanded for at least 54 days. Cells were

collected at different time points during reprogramming: mouse embryonic

fibroblasts (MEFs), d6 fluorescence-activated cell sorted (FACS) refractory

cells positive for Thy1 and negative for SSEA1 surface markers (d6T+/S–),

and early reprogramming intermediates negative for Thy1 and positive for

SSEA1 (d6T–/S+) as well as the reprogramming of individual colonies at inter-

mediate-late stages of reprogramming (d21 iPSC and d29 iPSC) and estab-

lished iPSCs (d60 iPSC).

All animal work carried out in this study is covered by a project license under

the Animal (Scientific Procedures) Act 1986, and further regulated by the Bab-

raham Institute Animal Welfare, Experimentation, and Ethics Committee.
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