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Traumatic axonal injury (TAl) is an important pathoanatomical subgroup of
traumatic brain injury (TBI) and a major driver of mortality and functional
impairment. Experimental models have provided insights into the effects of
mechanical deformation on the neuronal cytoskeleton and the subsequent
processes that drive axonal injury. There is also increasing recognition that
axonal or white matter loss may progress for years post-injury and represent one
mechanistic framework for progressive neurodegeneration after TBI. Previous
trials of novel therapies have failed to make an impact on clinical outcome, in
both TBI in general and TAl in particular. Recent advances in understanding the
cellular and molecular mechanisms of injury have the potential to translate into
novel therapeutic targets.

TAl is a Common and Severe Subtype of TBI

TBI (see Glossary) is a major public health concern that contributes to one-third of all injury-
related deaths [1] (http://www.cdc.gov/traumaticbraininjury/data). TBI is an emerging research
priority, with large North American and European comparative effectiveness research studies
enrolling several thousands of patients and looking at a broad range of research questions [2—4].
The definition of TBI is an ‘alteration in brain function, or other evidence of brain pathology,
caused by an external force’ [5]. However, this unitary epidemiological definition encompasses a
complex disease process with diverse injury subtypes that may overlap (Figure 1). There is an
increasing drive to differentiate these subtypes to allow precision-medicine approaches to
management, where specific pathobiological processes can be matched to mechanistically
appropriate therapy. Such approaches also need to take account of differences in host
response that arise from coexistent trauma reactions and pre-existing comorbidities. The
temporal evolution of secondary brain injury and associated pathophysiological responses
(Figure 2) that follow the primary brain injury are also important when trying to understand a
TBI. This review examines key molecular mechanisms and potential therapeutic targets in one of
the most common and severe types of TBI, traumatic or diffuse axonal injury [6]. The
terminology regarding axonal injury is in flux but historically the cellular and animal models of
this injury type have been referred to as TAI [6]. This review uses the term TAI to refer to studies
of TBIs where axonal injury is the dominant component, regardless of whether they were
undertaken in human or animals.

Axonal Structure and the Initial Mechanical Injury

Axons can be up to ten thousand times the volume of the parent neuronal cell body and their
elongated structure places them at particular risk of mechanical injury. An axon contains
longitudinal tracks of microtubules arranged in a series of overlapping and highly dynamic
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Multiple therapeutic targets are emer-
ging that offer the potential to reduce
secondary brain injury at a cellular level.
These include cytoskeletal and mem-
brane stabilisation, control of calcium
flux and calpain activation, optimisation
of cellular energetics, and modulation
of the inflammatory response.

Wallerian degeneration, as occurs fol-
lowing an axonal injury, is an active,
cell-autonomous death pathway that
involves failure of axonal transport to
deliver key enzymes involved in NAD
biosynthesis.

Chronic microglial activation occurs fol-
lowing traumatic brain injury (TBI) and
may persist for decades afterwards.
This ongoing response has been linked
to long-term neurodegeneration, parti-
cularly of white matter tracts.

Phagoptosis is the process whereby
physiologically stressed but otherwise
viable neurons are phagocytosed by
microglia in response to a range of
eat-me signals induced by tissue injury.
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Figure 1. Traumatic Brain Injury Subtypes. There are several different variants of traumatic brain injury, which often
coexist and have significant overlap. They can be broadly divided into focal and diffuse injuries, although it is worth noting
that true focal injuries are rare and blast injuries lack a pure neuropathological correlate. The clinical presentation and
prognosis of a traumatic brain injury varies depending on the individual nature of the injury. The inherent variability makes it
challenging to establish the optimal treatment and there is recognition of the value of an individualised approach.

strands that span the length of the neuron. Microtubules may offer some structural support but
primarily act as polarised tracks for motor proteins. Neurofilaments provide tensile strength
and their radial charges are thought to influence axonal diameter, while actin filaments
provide additional membrane stability in the form of a regular repeating ring-like structure that
runs around the circumference of the axon and is held together with spectrin links and adductin
caps [7].

TAl results from high-velocity translational or rotational forces acting on the large, gyrencephalic
human brain, typically due to a motor vehicle accident or fall. Inertial forces shear and stretch
axons to breaking point/primary axotomy or partially damage them, triggering molecular
pathways that result in secondary axotomy/axon degeneration [8]. It is generally accepted that
primary axotomy may be an uncommon component of TAl and would most obviously be found
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Figure 2. Cellular and Molecular Activities Resulting in Secondary Brain Injury. Following a traumatic insult to the
brain, an extensive series of various cellular processes is initiated that leads to further neuronal dysfunction and death. This
contributes to the complexity of traumatic brain injury but also provides a variety of therapeutic targets.
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Glossary

Alzheimer's disease (AD): a
common dementia syndrome that
clinically manifests as cognitive
impairment, especially memory
impairment and behavioural change.
Pathologically it is characterised by
amyloid plagues and neurofibrillary
tangles of tau.

Axonal transport: the cellular
process that moves proteins, lipids,
vesicles, organelles, and other cargos
along the length of an axon. Many
cargos are trafficked bidirectionally
(both away from and towards the
soma) by motor proteins that move
along microtubules or other
cytoskeletal structures found within
the cytoplasm.

Axotomy: a complete physical break
in an axon, often caused by a stretch
injury or laceration. Primary axotomy
occurs at the moment of trauma
while secondary axotomy occurs later
due to secondary injury cascades/
axon degeneration.

Cerebral microdialysis: a technique
for sampling the molecular
components of brain extracellular
fluid by using a dialysate solution to
establish concentration gradients
across a semipermeable membrane.
Involves the insertion of a sampling
microdialysis catheter into a region of
non-eloguent brain parenchyma.
Diffuse axonal injury: a type of
human TBI characterised by a diffuse
distribution of predominantly
secondary axonal injury. A rapid
axonal stretch injury triggers
secondary axonal changes that can
vary in extent and severity. A recent
clinical definition requires human
brain imaging to show four or more
separate foci of signal abnormality
(http://www.commondataelements.
ninds.nih.gov).

Phagoptosis: the process where
physiologically stressed but otherwise
viable neurons are phagocytosed by
microglia in response to a range of
eat-me signals induced by tissue
injury.

Primary brain injury: the brain injury
that occurs at the moment of impact.
On a macroscopic level, this includes
contusions, lacerations, and
haemorrhages. On a cellular level,
primary axotomy can be included in
this classification.

Secondary brain injury: all
deleterious aspects of the brain injury
cascade that occurs following the
immediate traumatic injury to the
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with a tissue laceration or other direct injury [9]. An elongating stretch of at least 10% that occurs
in 100 ms or less appears to represent a threshold for sublethal axonal injury with secondary
consequences [10]. Some white matter bundles are more vulnerable due to their orientation and
location (for example, the corpus callosum and brainstem) or at interfaces between tissue
compartments of different density such as the grey—white matter junction [11]. Other modifiers of
TAI susceptibility include local cellular features, including the stiffness of adjacent tissue,
maximum diversion angle, and internal neuronal cytostructure [12]. Myelination may afford
some degree of protection against TAl, through mechanisms that include metabolic support
by glia, the greater physical robustness of myelinated axons and hence tolerance of greater injury
forces, and better functional recovery [13,14]. An additional driver of variable resilience may be
differences in the site of post-injury ionic fluxes. In myelinated axons the altered ionic gradients
favour nodal and paranodal areas, whereas unmyelinated axons experience more uniform and
widespread injury-induced ionic fluctuations [15].

The classical histological finding in TAl is of ‘retraction bulbs’, which are thought to develop
following primary axotomy. The term may represent a misnomer, as they are now generally
thought to represent the visualisation of an abnormally accumulated substance, such as the
transmembrane glycoprotein amyloid B precursor protein (APP), due to impaired axonal
transport rather than actual axonal retraction [16]. Primary axotomy is generally considered
relatively rare in human TAI [6], but direct evidence quantifying this is limited. A second major type
of morphological change typically seen in TAl is swelling or varicosities. These are regions of
isolated or multiple axonal swellings (‘beading’) found along the length of an otherwise intact
axon. These have been linked to microtubular dysfunction and fracture [16]. Microtubules have a
viscoelastic nature and are particularly susceptible to breakage because, when rapidly
stretched, they become the stiffest portion of the axon. These breaks lead to microtubular
undulations and impairment of axonal transport with subsequent accumulation of axonal
transport cargos such as BAPP [16,17]. Although similar undulations have occasionally been
demonstrated in sham controls, the consensus is that these appearances provide good
evidence of stretch injury [16,18]. However, not all instances of TAl show BAPP accumulation,
and the true pathophysiological significance of axonal swellings is unclear, as is their reliability as
amodifiable marker of effective neuroprotection [19]. Hanell et al. provide a review of the different
axonal phenotypes seen in TAl and their potential significance [18].

Immunohistochemical analysis for APP accumulation is currently the gold-standard clinical and
experimental technique for assessment of TAI [15]. However, in most instances this is a clinical/
radiological diagnosis and does not require brain tissue. This diagnosis is based on a typical
clinical history of a high-energy TBI coupled with conventional neuroimaging findings (with X-ray
CT) that show no significant focal lesions [15]. MRI has shown marked improvements in
diagnostic sensitivity for TAl in living patients and newer MRI approaches can identify either
biomarkers of the axonal injury itself with diffusion tensor imaging or the microhaemorrhages that
result from injury to the microvessels accompanying white matter using sequences such as
gradient echo and susceptibility-weighted imaging [20,21].

Cytoskeletal Protection

Neurofilaments are the dominant intermediate filament of axons; they are produced in the
neuronal soma and transported throughout the neurite. Structurally they are obligate hetero-
polymers assembled from a central rod domain surrounded by the neurofilament triplet proteins
(which may be light, medium, or heavy) [22,23]. Neurofilaments may be a key contributor of axon
tensile strength and resilience to mechanical stretch. However, it remains unclear whether they
have additional roles beyond acting as a simple structural protein. Following injury, the axonal
swellings found in TAI develop neurofilament accumulations of all subtypes [24]. Neurofilaments
undergo a process of compaction whereby the interfilament spacing is reduced due to side-arm

Cell

brain. Secondary injury includes
processes that begin seconds after
the injury and may still be evident
decades later. These include
bleeding, energy failure, excitotoxicity,
calcium influx, WD, phagocytosis,
and many others.

Traumatic axonal injury (TAl): the
in vivo or in vitro model equivalent of
diffuse axonal injury. Typically
emulated through the application of a
mechanical stretch insult. The term is
also used to refer to human TBI
cases where there are one to three
separate foci of signal abnormality
(http://www.commondataelements.
ninds.nih.gov).

Traumatic brain injury (TBI): an
alteration in brain function or other
evidence of brain pathology caused
by an external force. This includes
several other subtypes of TBI
including focal and diffuse areas and
patterns of injury.

Wallerian degeneration: a carefully
controlled, active, cell-autonomous,
and evolutionarily conserved death
pathway that is distinct from other
death mechanisms including
apoptosis and necrosis. It involves
the rapid granular fragmentation of an
axon distal to the injury site following
transection, typically occurring after a
latent period of 24-48 h when
modelled in vivo or 4-8 h in vitro
(Box 2).
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phosphorylation or proteolysis and increased density is found within axonal swellings [25]. This
finding could be due to impaired axonal transport leading to accumulation of cargos, including
neurofilaments. However, the failure of the neurofilament central rod-domain marker RM014,
which is exposed during compaction, to co-accumulate with APP suggests that the compaction
is more complex than a simple transport impairment [23,26,27].

The calcineurin inhibitor FK506 (tacrolimus) is used in humans as an immunosuppressive
agent to reduce the risk of organ rejection. It inhibits phosphatases and hence attenuates the
effects of dephosphorylation-dependent proteases on the neuronal cytoskeleton, including,
neurofilament compaction and spectrin/ankyrin degradation [23,28]. The subsequent reduc-
tion in structural axonal injury and secondary degeneration in experimental models of TAI
implies that this pathway is important in cytoskeletal breakdown, although the effects differ
between axonal subpopulations and are particularly pronounced in unmyelinated axons
[28,29]. A single dose of FK506 in a rat model of lateral fluid-percussion injury has been
shown to reduce loss of dendritic spines and also axonal damage as measured with antibody
labelling of BAPP [29,30]. Pretreatment of cultured primary cortical neuronal axons with
FK506 1 h before an in vitro stretch reduced secondary axotomy [31]. FK506 has also been
suggested as a treatment for post-traumatic epilepsy, which may result from increased
calcineurin activity in the hippocampus [32]. FK506 in combination with hypothermia seems
to protect axons in excess of isolated treatment in a rat lateral-percussion model [33]. Despite
the current clinical use of FK506 as an immunosuppressive agent in humans there are still no
results available for its effects in human TAI.

Microtubule stabilisers including paclitaxel (Taxol) have also been suggested as potential neuro-
protective agents and there is evidence that they may affect the rate of axonal degeneration
[17,34,35]. Unfortunately, paclitaxel has poor blood—brain barrier permeability and serious side
effects in humans, including peripheral neuropathy. Despite this there remains interest in this
therapeutic avenue and Taxol-like agents (taxanes) may as yet prove to be of use [36]. Another
agent thought to act on cytoskeletal proteins is epothilone D. This microtubule-stabilising drug is
brain penetrant and shows evidence of modulating injury-induced axonal sprouting in cortical
neuron cultures following experimentally induced traumatic axotomy [37]. However, despite
emerging evidence for efficacy in spinal cord injury, data directly supporting efficacy in brain injury
remains lacking [37,38].

Spectrin is a key cytoskeletal element whose breakdown leads to the formation of specific,
quantifiable, stable «ll spectrin fragments of 145 kDa and 150 kDa (SBP145 and SBP150,
respectively). The SBP145 breakdown product is brain specific and is found in contusions with
brain necrosis, but an isolated TAl is also sufficient to stimulate its generation. The rise in
breakdown products may occur within 15 min and is reliably demonstrated within 3-24 h
[39,40]. SBPs have been proposed as a potential biomarker of brain injury (Box 1). There
are no examples of direct spectrin stabilisers; prevention of spectrin breakdown by calpain
inhibitors is well documented but the effects of reduced spectrin degeneration on axon survival in
TAI remain largely speculative [41,42].

Ankyrins are a family of adaptor proteins that link the spectrin—actin complex to integral
membrane proteins, a function vital to the maintenance of ion channels within the plasma
membrane. Proteolytic degradation of ankyrin-G following axonal injury may result in misloc-
alisation of sodium channels in nodal regions. It might also encourage instability of the
axolemma through altered binding of neurofascin, a member of the L1 immunoglobulin
superfamily of cell adhesion molecules [43,44]. Hence, direct stabilisation of ankyrin or reduc-
tion of its proteolysis may offer a new therapeutic avenue, if such an intervention could be safely
achieved in humans.
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Box 1. Molecular Biomarkers in TAI

An effective biomarker of axonal injury would provide a diagnostic tool, a quantitative measure of injury severity, and an
indicator to gauge treatment efficacy. The ideal biomarker would be highly sensitive and specific for TAI, rapidly reflect
changes in injury status, and be easily obtained, such as from a peripheral blood sample. Axon degeneration results in the
generation of cytoskeletal breakdown products and several of these have been explored as potential biomarkers.
Calpains and caspase-3 irreversibly cleave ol spectrin, a neuronal membrane-associated scaffolding protein, into
fragments of various molecular weights. These «ll spectrin breakdown products (SBDPs) are found in human cere-
brospinal fluid (CSF) and blood following severe TBI and may predict injury severity and outcome. However, a rise in
SBDPs is not specific for TAl and may also be found in cerebral ischaemia, neurodegenerative diseases including AD, and
normal ageing [72,118]. Neurofilament light chains are another key cytoskeletal protein with some specificity for TAI [119].
Axotomy releases phosphorylated neurofilaments into the blood and CSF that may correlate with injury severity [120]. A
third element to be explored as a biomarker is glial fibrillary acidic protein (GFAP) and its breakdown products. GFAP is a
brain-specific intermediate filament that is prevalent in astrocytes and correlates with intracranial injury [121]. Other
cytoskeletal products that are being investigated include the microtubule-stabilising protein tau and microtubule-
associated protein 2 (MAP2) [119]. Many non-cytoskeletal molecules are also being investigated as potential biomarkers
in TBI; these include S100-B (a 21-kDa calcium-binding protein), neuron-specific enolase (a 78-kDa y-homodimer
glycolytic enzyme isomer), and the neuron-specific protein ubiquitin C-terminal hydrolase (UCH-L1). An alternative
approach to biomarker detection is to characterise functional responses to injury. Cerebral microdialysis in both
experimental models and human TBI captures the generation of a wide range of pro- and anti-inflammatory cytokines
and chemokines in response to brain injury. However, the complex pattern of production with temporal variation,
covariance, and multiple interactions makes their interpretation and use as biomarkers challenging [101,122]. Despite
active research, biomarkers that are specific for axonal injury, as opposed to nonspecific markers of brain injury, are
lacking, and an ideal marker remains to be identified.

Cell-Autonomous Axonal Death Pathways

Injury to axons in the central nervous system can lead to death of the whole neuron, although this
may vary by neuronal subtype and with the distance of the injury from the cell body [45,46]. Loss
of the distal axon will also hamper connectivity and the associated reduction in synaptic activity
may influence overall neuron function even if plastic reorganisation ensues [47]. There are
numerous pathways and pathophysiological processes involved in axon degeneration and
neuronal death (Figure 3, Key Figure). These pathways differ by injury type and also with time
from the injury but may eventually converge. Each process provides the opportunity for
therapeutic intervention, ideally at a point before irreversible structural changes occur.

One mechanism proposed for the loss of axons when axonal transport is impaired is Wallerian-
like degeneration (WLD). This is related to Wallerian degeneration (WD) (Box 2). WLD shows
similarities to WD in molecular regulation and similarly involves granular disintegration of the axon
segment distal to the injury site. Some neuronal cell types, such as the retinal ganglion cell, also
suffer a proximal ‘dying-back’ pathology with soma injury or death after the initial insult [45,48].
Optic nerve stretch modelling has shown that some nerve fibres may also degenerate weeks to
months after the injury. Whether this is a delayed form of WD (for example, following the death or
significant impairment of the corresponding soma) or should be considered a separate process
is still being elucidated [49,50].

When subjected to a TBI, WLD® mice (which show delayed Wallerian degeneration) demonstrate
reduced physical evidence of TAI, less evidence of axonal transport disruption (swelling, APP
accumulation, microtubule disruption), and delayed motor and cognitive impairment. These
findings are consistent with WidS-sensitive degeneration following TAI but this has not been
definitively confirmed [51]. A recent study of closed head injury (weight drop) in SARM1 knockout
mice has showed evidence of in vivo protection through inhibition of the WLD pathway, with
reduction of behavioural deficits and axonal APP aggregates in the corpus callosum [52].
However, the authors were unable to quantify effects on axonal loss other than indirectly
through phosphorylated neurofilament heavy chain levels [52].

There are no currently available modulators of SARM1. However, as the WD pathway is
increasingly understood other therapeutic targets may emerge within the pathway and offer
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Summary of Molecular Mechanisms and Therapeutic Targets in Traumatic Axonal Injury (TAl)
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Figure 3. Mechanical stretch leads to undulation of the axon and activation of various injury pathways. Direct membrane mechanoporation and opening of exchange
channels leads to calcium influx. This activates calpains, which degrade structural proteins. Proinflammatory cytokines have broad effects including initiation of caspase-
mediated proteolysis and microglia recruitment. Calcium influx also triggers generation of the mPTP, with subsequent solute influx and mitochondrial dysfunction/death.
Reactive oxygen species are generated and result in oxidative damage. Neurofilaments compact and aberrant proteins including TDP43 and amyloid fibrils accumulate.
Microtubules are fractured; this leads to impairment of axonal transport with failure to deliver nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and
subsequent Wallerian degeneration. Eat-me signals including phosphatidylserine are externalised and may initiate phagoptosis of stressed neurons by microglia. Note
that although NMDA channels are shown on the axon for simplicity, most are localised on dendrites and dendritic spines and axonally based channels are in a minority.
Abbreviations: TDP43, transactive response DNA-binding protein 43 kDa (a nuclear-pore transport protein, the cytoplasmic mislocalisation and aggregation of which is
associated with chronic traumatic encephalopathy, frontotemporal dementia and amyotrophic lateral sclerosis); NMDA receptor, a glutamate receptor/ion channel that is
a channel for calcium ion flux. mPTP, mitochondrial permeability pore (when induced in mitochondria by tissue injury this allows solute influx, leading to mitochondrial

swelling and death).

new treatment opportunities. One example is P7C3 and related compounds; this aminopropyl
carbaxole discovered using an unbiased in vivo screening approach for neurodegenerative
disease modifiers seems to be proneurogenic and antiapoptotic [53]. P7C3 is thought to bind to
nicotinamide phosphoribosyltransferase (Nampt), possibly enhancing its activity [54]. Nampt is a
rate-limiting enzyme important in WD that converts nicotinamide to NMN and subsequently
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Box 2. Molecular Control of WD

The fullmolecular mechanism of WD is still being determined. One evolving model suggests that a key step in WD is failure
to deliver the enzyme nicotinamide mononucleotide (NMN) adenylyltransferase 2 (NMNAT2), an essential survival factor,
from the neuronal soma to the distal axon. Loss of NMNAT2 beyond the site of injury due to either interrupted transport or
transection of the axon leads to a reduction in the ubiquitous coenzyme NAD and an increase in its precursor NMN. Mice
expressing a mutant slow WD protein (WLD®) that provides a more stable form of NMNAT activity in the axonal periphery
are less dependent on ongoing transport of NMNAT2 from the neuronal soma and exhibit markedly slower Wallerian-like
degeneration [123]. It has been proposed that it is NMN that may ultimately lead to the triggering of WD [57]. Other
possibilities include a direct effect of NAD depletion or some combination of the two [124]. A crucial downstream
regulator of this intrinsic axonal self-destruct pathway is the sterile alpha and TIR motif-containing 1 (SARM1) protein.
SARM1 mediates rapid fragmentation of severed axons and when this factor is knocked out axons show a robust
delayed degeneration phenotype that is comparable with WLD® [80,125]. The mechanism by which SARM1 regulates
axon degeneration is still being elucidated, but recent data indicate that SARM1 either acts downstream on the NMNAT
pathway or regulates a separate branch that converges at a downstream point [124,126].

NAD. Further in vivo work in models of blast injury and TBI have shown that P7C3 can provide
neuroprotection and/or preservation of function [55,56]. However, there are still questions about
the exact mechanism of P7C3 action and it remains unclear how the apparent neuroprotection
provided by Nampt activation can be reconciled with the finding that the Nampt inhibitor FK866
has also been shown to delay WD [57].

Mechanotransduction and Calcium Permeability

When a central nervous system axon is stretched there is an acute increase in intracellular
calcium primarily derived from intracellular stores. This is followed by a more gradual and long-
lasting dysregulation of intracellular calcium metabolism [31,58]. Although as yet unproved, it has
been suggested that physical forces may lead to ‘mechanoporation’, a term variably used to
refer to either direct or secondary opening of the axolemma, leading to intracellular fluxes of
calcium [58-61]. Calcium has established roles in many forms of cell death, including the
apoptotic death pathway and WD, and is therefore a potential therapeutic target in TAI.
Increases in intracellular cytoplasmic calcium, such as might occur with an inflammatory
response to a traumatic injury, disruption of energy metabolism, or damage to the cell mem-
brane, can trigger a pathogenic cascade culminating in cell death [31]. A focal increase in
calcium concentration in an axon precedes, and can result in, the development of axonal
spheroids [62]. Conversely, spheroid formation can be prevented by the blockage of NCX1, N-,
or L-type voltage-gated calcium channels, possibly by preventing a threshold level of axolemmal
calcium from being reached [62]. While the benefit of preventing such ultrastructural changes
remains unproved, it is evident that an unchecked increase in intracellular calcium levels can
trigger secondary axotomy. The mechanism by which this is likely to occur includes active
destruction of the cytoskeleton mediated by calcium-dependent calpains, caspases, cysteine
proteases, and phosphatases in response to cytosolic accumulation of calcium [63]. Addition-
ally, mitochondrial sequestration of calcium can result in energetic dysfunction, generation of
reactive oxygen species, and subsequent oxidative damage [23].

Attempts to use agents such as Kollidon VA64 to reseal microdefects in the plasma membrane
following injury aim to guard against mechanoporation-related calcium damage. Initial in vivo
results with this agent in rodent models of TBI have been encouraging [64]. Alternative
membrane-resealing agents include poloxamer 188. This non-ionic surfactant has been
shown to inhibit apoptosis and necrosis in vitro after a stretch injury and exhibits neuro-
protective effects following TBI in animal models but has not been tested in humans. The exact
mechanisms of action of this agent are debated but may partially involve inhibition of p38
mitogen-activated protein kinase (p38-MAPK) activation or cathepsin B- and tBid-mediated
mitochondrial cell death triggering [65]. Other ‘membrane-sealing’ compounds are currently
undergoing preclinical testing, including PEG-PDLLA micelle treatment, polyethylene glycol,
and tripartite motif (TRIM) proteins like Mitsugumin 53 [66-68]. A barrier to clinical translation in
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this context is the rapidity of calcium rise following injury, which makes direct prevention of early
calcium entry problematic.

Calpains as a Convergence Point in Axonal Degeneration

Excitotoxicity has a long history of being implicated as a secondary brain injury mechanism
contributing to neuronal death following trauma. Excitotoxic cell death is intimately linked to
downstream calcium ion influx modulation and dysregulation, which is mediated in part by
calpains [69]. Extracellular glutamate levels have been shown to be elevated in both experimental
and human TBI, but the failure of glutamate antagonists in clinical trials has resulted in interest
shifting to downstream targets, including calpains [70]. Calpains are calcium-dependent, non-
lysosomal cysteine proteases. Their baseline activity is low and in normal physiological con-
ditions they are predominantly involved in cell signalling and plasticity [42]. In response to axonal
injury and associated calcium shifts, calpains move from the cytosol to the plasma membrane,
where sustained activation causes widespread proteolysis. Several membrane, adhesion, and
structural cytoskeletal proteins are targeted by calpains, including the key cytoskeletal protein
spectrin. Calpains have been strongly implicated in the later stages of WD in both the peripheral
and central nervous system [69]. Their ability to degranulate the distal segment of injured axons
may be partly due to in vivo proteolysis of neurofilaments, although the exact steps in such a
mechanism have not been fully described [71]. Calpain activity within motor nerve terminals at
the neuromuscular presynaptic junction may also cause denervation, although whether this
precedes or follows axonal degeneration is unclear [71]. While calpain inhibition has shown
robust morphological protection this has not extended to electrophysiological function ex vivo —
a failing that may limit human translation [71]. Continued interest in this pathway is driven by the
belief that widespread calpain activation may be an early mediator of additional secondary brain
injury in TAl and by the fact that calpain-induced spectrin breakdown provides specific
molecular biomarkers of the process [72] (Box 1). Subaxolemmal calcium-induced calpain-
mediated proteolysis may contribute to the axolemmal permeability observed in TAI. Calpains
may also cause long-term deficiencies in axonal transport and plasticity leading to persistent
dysfunction and poor clinical recovery. Recognition of these potential roles in ongoing degen-
eration has focussed efforts on inhibition of calpain as a therapeutic strategy, primarily aimed at
affording cytoskeletal protection. This may be achieved either directly with calpain/protease
inhibitors or indirectly by reducing intracellular free calcium [42]. Numerous compounds that
target excitotoxic calcium-, calpain-, or caspase-related mechanisms have been investigated
in the context of TAl and TBI. A range of these has progressed to human trials, many based
around targeting glutaminergic excitotoxicity mediated by the NMDA receptor. Examples
include magnesium sulfate [73], selfotel (CGS 19755) [74], dexanbinol [75], and amantadine
[76]. Unfortunately, none of these interventions have shown benefit in clinical TBI. Several
calpain- and caspase-based agents have been trialled in rodent models with mixed success
but these have not progressed to human trials. Although there remains hope that some of these
therapies may find use in clinical practice, they share common inherent limitations, including
unwanted modulation of otherwise beneficial cell activities, and logistic difficulties around the
need for early drug administration.

Mitochondria and Energetics in TAI

Axonal stress is associated with reduced mitochondrial movement, disruption of cristae, and
swelling, coalescence, or fragmentation of mitochondria [77]. Axons are sensitive to energy
depletion and utilise ATP to sustain membrane potentials and ionic gradients, prevent abnormal
calcium influx, and sustain transport of cargos (including mitochondria) within the axon. After
primary axotomy, mitochondrial respiration and glycolysis fall [78,79], resulting in a decline in
ATP levels that can contribute to irreversible axonal damage [79,80], although a recent report
indicates that loss of mitochondrial membrane potential can be quite a late event [81]. Modula-
tion of energetic failure remains a potential therapeutic target in TAI, either directly to ameliorate
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axonal energy failure or to address mitochondria-related injury. There are several ways in which
mitochondrial dysfunction may contribute to axonal pathology. When subjected to injury, axons
are sites of reactive oxygen species production, energy failure, and mitochondrial permeability
pore (MPTP) generation [82]. The mPTP is an inner membrane protein that is induced in
response to increased calcium matrix concentration and allows movement of small molecules
(<1.5 kDa) in or out of the mitochondria, a process that may lead to swelling and death [83,84].
The view that the mPTP participates in axonal degeneration has led to its study as a potential
therapeutic target in TAI. Cyclosporin A is a commonly used immunotherapeutic drug that binds
and inhibits cyclophilin D, a protein complex purported to be involved in the opening of the mPTP
[85]. Cyclophilin D knockout mice show decreased numbers of distal, but not proximal, axonal
bulbs and varicosities in a fluid-percussion mouse model of TAI [18]. Results with cyclosporin A
administration in TAI models are mixed. Pretreatment with cyclosporin A failed to reduce axonal
swelling in primary neuronal cultures exposed to reactive oxygen species [62]. However,
cyclosporin A does attenuate cytoskeletal changes and axon degeneration after a mild axon
stretch injury, while intrathecal administration reduced delayed axotomy in a rat acceleration
model [86]. Human Phase Il trials of cyclosporin are currently underway. A similar approach uses
the cyclosporin analogue NIM811, which also binds to cyclophilin D and prevents the formation
of the mPTP [87]. NIM811 reduces calpain-mediated spectrin degradation, neuronal degenera-
tion, and cognitive deficits when administered up to 12 h after a traumatic injury [88,89]. FK506
(tacrolimus) may also have a role in modulating cellular energetics, since it inhibits calcineurin and
hence reduces translocation of BAD to BCL-X in mitochondria, with reduction of mPTP opening
[15].

Attempts to improve mitochondrial energetics have included the use of N-acetyl cysteine [90]
which has shown potential symptomatic benefit when used in mild military blast injury [91].
Exposure to low-level laser light or 670-nm light provides a novel non-pharmacological approach
to improve mitochondrial energetics through alteration of redox state and transcription factor
expression while inducing modest increases in nitric oxide and reactive oxygen species. This
technigue has the potential for human applications and, in addition to isolated case studies, has
shown benefit in animal models [92,93]. There may be scope to combine this technique with
systemic administration of methylene blue, a compound that interacts with numerous targets,
acts as a redox cycler, and upregulates mitochondrial energetics [94]. Methylene blue may also
promote autophagy, reduce brain oedema, and inhibit microglial activation [95,96].

Another mitochondrial target identified with in vitro stretch modelling is cardiolipin peroxidation.
The compound XJB 5131 has been shown to reduce lipid oxidation and caspase activation in a
rat cortical contusion model, with subsequent improvement in both lesion size and functional
measures [97]. Further research is still required to characterise the compound before its use
beyond rodent models can be considered.

Creatine is an endogenous amino acid, administration of which can increase stores of the high-
energy metabolite phosphocreatine. Creatine may directly act on central nervous system axons
and modify response to brain injury by inhibiting calcium-induced activation of the mPTP,
maintaining ATP levels, preserving normal mitochondrial membrane potentials, and reducing
intramitochondrial calcium levels [98]. A randomised pilot study in children with severe TBI was
encouraging, with some prevention of post-traumatic symptoms and improvement in several
parameters including length of intensive care unit stay and cognition [99].

Inflammation and Microglial Phagocytosis and Phagoptosis

TAl triggers a complex cascade of inflammatory response with release of cytokines, chemokines
and growth factors by microglia, astrocytes, and neurons [100]. Many cytokines and chemo-
kines are capable of inducing mixed pro- and anti-inflammatory effects under specific
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conditions. This duality of function makes it difficult to disentangle their beneficial and detrimental
effects [101]. Thus far, despite often promising preclinical results, agents that modulate the
inflammatory response have failed to deliver clinical benefit in human TBI. Prominent examples
include corticosteroids and anti-tumour necrosis factor (TNF) therapy [75,102]. Blocking of the
‘proinflammatory’ interleukin (IL)-1 receptor remains a therapeutic target and is the subject of
ongoing investigation in the form of a Phase Il clinical trial that is examining IL-1ra [103].

Purinergic signalling through cognate transmembrane receptors represents a core part of the
neuroinflammatory response. Adenosine signals via P1 receptors while ADP and ATP activate
P2 receptors. Stretched cells, including astrocytes, can release their intracellular stores of ATP,
which activates ionotropic P2X; receptors localised to astrocytic end feet and colocated with
aquaporin 4 expression. P2X; activation leads to IL-1p-mediated exacerbation of local neuro-
inflammation, reactive gliosis, and cytotoxic oedema. It also results in membrane poration and
increased tissue damage as a result of enhanced calcium influx [104,105]. Brilliant Blue G (BBG)
directly antagonises P2X; and might downregulate this damaging response up to 4 h post-injury
[106]. The compound is nontoxic and has shown promise in attenuating optic nerve crush
injuries and rodent TBI models, although the effects have been mild and not all results have been
reproducible [106,107].

Following TBI there is rapid and widespread activation of microglia. Temporally, the numbers of
microglia appear to follow a multiphasic pattern with early and late peaks [108]. Beyond the
acute inflammatory phase, chronic microglial activation is triggered that can persist for months or
years. This has been shown in murine models 1 year following experimental brain injury and in
human subjects with the PET ligand [''C](R)PK11195 [109,110]. Post-mortem examination of
the brains of TBI survivors who die of other causes at varying intervals after injury demonstrates
ongoing activation years and decades after the original insult, in association with regions of
substantial white matter volume loss [49]. This has been proposed as a potential mechanism
linking TBI and late neurodegeneration, including Alzheimer's disease (AD) (Box 3). Similarly to
the cytokine/chemokine response, microglia can be polarised within a spectrum that includes

Box 3. Links between TAI and Neurodegeneration

TBI is a major environmental risk factor for the development of AD [127] and chronic traumatic encephalopathy (CTE)
[128] and has been implicated in frontotemporal dementia and motor neuron disease (MND)/amyotrophic lateral sclerosis
(ALS), albeit inconsistently [129,130]. There are various potentially significant mechanistic links between TAI and AD,
mostly converging around amyloid  and tau generation. TAl is thought to directly disrupt microtubule dynamics creating
an impairment of axonal transport that subsequently leads to the characteristic histological finding of accumulations of
APP cargo [16]. APP can undergo cleavage into amyloid B peptides, a key feature of AD, that aggregate into amyloid
plaques. Some of these amyloid B species are directly neurotoxic, with oligomers including AB42 being particularly
implicated [131]. Cortical-impact modelling has shown that injury can induce aggregation and oligomerisation of amyloid
in a triple-transgenic AD mouse model [132]. Casualties of severe TBI may have increased brain amyloid levels, as
detected by PET or histology several years following injury, that could correlate with outcome [19,133,134]. In contrast to
the PET findings, reductions in CSF levels of AB42 have been noted following TBI. This decline may be due to a temporary
reduction in neuronal activity due to dysfunction, leakage across an opened blood-brain barrier, or deposition into
insoluble plaques [135]. Tau is a microtubule-associated protein that, along with amyloid B, is considered by many to be a
primary component of AD pathology. In AD, tau is seen to form hyperphosphorylated aggregates called neurofibrillary
tangles. Increased tau levels in the extracellular space following severe TAI correlate with reduced amyloid B levels and
adverse outcomes [136]. Recently, acute neuronal production of cis-phosphorylated tau (cPT) was found following TBIin
mice and in hypoxic/serum-starved neurons in vitro [137]. It has been proposed that cPT is pathogenic. Pretreatment or
post-injury treatment of mice with a cPT antibody blocked the increase in cPT and restored a range of structural and
functional sequelae including risk-taking behavior and brain atrophy [137,138]. This provides an example of a novel
potential biomarker and therapy that has shared implications for TAl and sporadic neurodegenerative disease. CTE is an
increasingly recognised neurodegenerative condition that occurs following repeated TBI, often in the context of contact
sports or military blast. The pathological mechanism is still being elucidated but the neuropathological hallmarks of
perivascular tau accumulation and mislocalised cytoplasmic aggregation of transactive response DNA-binding protein 43
kDa (TDP43) may suggest common links and therapeutic avenues with sporadic neurodegenerative diseases like
frontotemporal lobar degeneration (FTLD) and MND/ALS [139].
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classical/proinflammatory and alternative/reparative phenotypes with different mechanistic
impacts [111,112]. Understanding this balance and the complexities of mixed phenotypes
so that they can be modified in a beneficial way is an important challenge in TAI research.

Phagocytosis and debris clearance is required for maintenance of tissue homeostasis, regen-
eration, and plasticity but may be detrimental when occurring in excess [113]. Severing of
neurites or traumatic injury causes translocation of phosphatidylserine residues from the inner
plasma membrane to the cell exterior. This is one of several ‘eat-me’ signals in injured neurons,
recognised by activated microglia, and can trigger phagocytosis of the injured neuron [114].
More recently, the concept of phagoptosis has emerged. Molecules that are expressed by
stressed neurons and known to directly trigger the phagoptotic response include phosphati-
dylserine and desialylated glycoproteins. Alternatively, opsonins and receptors including MertK,
MFG-ES8, galectin-3, protein S, and GAS6 can act as intermediaries [114,115]. Counter-regula-
tory ‘don’t-eat-me’ signals also exist and include neuraminidase [114,116]. Although this
description of microglia-mediated injury is plausible, we do not know yet whether such phag-
optosis signals are displayed in response to TAI. If this injury mechanism is confirmed, modula-
tion of phagoptosis could potentially allow rescue of these partially but not irreversibly injured
neurons. Whether these cells could then recover and functionally reintegrate in a beneficial
manner would be an important subsequent question.

Concluding Remarks: Mechanistic Understanding May Translate to
Therapies

Despite increasing interest in and research into TAI, there has so far been a notable lack of
translation into efficacious patient therapies [70]. The extensive range of in vitro and in vivo
models that exists to examine various aspects of TAl has contributed to substantial advances in
mechanistic knowledge of axonal injury and death pathways [117]. However, because
of inherent limitations of model systems it is critically important to explore and compare
pathophysiology in human TBI, for example through cerebral microdialysis and imaging
technologies, to be certain that results obtained in TBI models are applicable in clinical settings.
Crucial questions remain but the hope is that increased knowledge gained from an improved
mechanistic understanding of injuries will translate into effective therapies and improved clinical
outcomes.

Acknowledgments

C.S.H. is supported by a Wellcome Trust PhD for Clinicians. M.P.C. is funded by the John and Lucille van Geest Foundation.
D.K.M. is supported by a Senior Investigator Award from the National Institute for Health Research, UK (NIHR), by the Acute
Brain Injury and Repair theme of the Cambridge NIHR Biomedical Research Centre, and by a Framework Program 7 grant
from the EU (CENTER-TBI, grant no 602150).

References

1. Roozenbeek, B. et al. (2013) Changing patterns in the epidemi- 7.

ology of traumatic brain injury. Nat. Rev. Neurol. 9, 231-236

Xu, K. et al. (2013) Actin, spectrin, and associated proteins forma
periodic cytoskeletal structure in axons. Science 339, 452-456

2. Yue, J.K. etal (2013) Transforming research and clinical knowl- 8.  Greer, J.E. et al. (2013) Mild traumatic brain injury in the mouse
edge in traumatic brain injury pilot: multicenter implementation of induces axotomy primarily within the axon initial segment. Acta
the common data elements for traumatic brain injury. J. Neuro- Neuropathol. 126, 59-74
trauma 30, 1831-1844 9. Christman, C.W. et al. (1994) Ultrastructural studies of diffuse

3. Maas, Al et al. (2015) Collaborative European NeuroTrauma axonal injury in humans. J. Neurotrauma 11, 173-186
Effectiveness Resgarch in Traumat.\c Brain Injury (CENTER-TBI): 10, Dj Pietro, V. et al. (2013) Potentially neuroprotective gene modu-
a prospective longitudinal observational study. Neurosurgery 76, lation in an in vitro model of mild traumatic brain injury. Mol. Cell.
67-80 Biochem. 375, 185-198

4. Menon, D.K.andMaas, A.l. (2015) Traumaticbraininjuryin2014. 11 Cloots, R.J. et al. (2013) Multi-scale mechanics of traumatic brain
Progress, failures and new approaches for TBI research. Nat. injury: predicting axonal strains from head loads. Biomech.
Rev. Neurol. 11, 71-72 Model. Mechanobiol. 12, 137-150

5. Men.on, D.K.. et al. (2010) Position statement: definition of trau- 1o, Cloots, R.J. et al. (2011) Micromechanics of diffuse axonal injury:
matic brain injury. Arch. Phys. Med. Rehabil. 91, 16371640 influence of axonal orientation and anisotropy. Biomech. Model.

6. Johnson, V.E. et al. (2013) Axonal pathology in traumatic brain Mechanobiol. 10, 413-422

injury. Exp. Neurol. 246, 35-43

Trends in Neurosciences, May 2016, Vol. 39, No. 5

Cell

Outstanding Questions

Is increasing total neuron survival the
optimal target to improve outcomes in
TAl or are poor outcomes more a failure
of function and connectivity at the level
of the individual cell or large network?

Why is there progressive white matter
volume loss following TAI and does
microglial phagoptosis contribute?

To what degree is primary or second-
ary axotomy responsible for dysfunc-
tion following TAI?

Do degenerating axons trigger death in
adjacent axons? If so, how is this
mediated?

How much does Wallerian-like degen-
eration contribute to axonal death in TAI
and can WLD® or SARM1 knockout offer
protection in model systems (Box 2)?

Why do different axons degenerate at
different rates?

Can stabilisation of the axonal structure
protect the axon from injury or reduce
the rate of secondary axotomy?

What is the functional significance of
axonal varicosities and can they be
repaired?

Does TAI lead to significant axonal
transport impairment at varicosities
and/or more widely and does this con-
tribute to the development of neurode-
generative disease?

Are histological subtypes of axons
seen in injury (e.g., APP positive and
negative) of mechanistic or prognostic
importance?

How does TBI contribute to the devel-
opment of neurodegenerative diseases
(Box 3)?

Why do proteins including amyloid
and TDP43 increase following TAI
and are these detrimental?

Can aspects of the inflammatory (cyto-
kine/chemokine) response be modu-
lated to alter neuronal survival and
patient outcomes?

What is the role of autophagy in TAI?

What is the optimal biomarker for TAI
(Box 1)?

321



http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0005
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0005
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0010
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0010
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0010
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0010
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0015
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0015
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0015
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0015
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0020
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0020
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0020
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0025
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0025
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0030
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0030
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0035
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0035
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0040
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0040
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0040
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0045
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0045
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0050
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0050
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0050
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0055
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0055
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0055
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0060
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0060
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0060

Trends in Neurosciences

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Staal, J.A. and Vickers, J.C. (2011) Selective vulnerability of non-
myelinated axons to stretch injury in an in vitro co-culture system.
J. Neurotrauma 28, 841-847

Reeves, T.M. et al. (2012) Unmyelinated axons show selective
rostrocaudal pathology in the corpus callosum after traumatic
brain injury. J. Neuropathol. Exp. Neurol. 71, 198-210

Smith, D.H. et al. (2013) Therapy development for diffuse axonal
injury. J. Neurotrauma 30, 307-323

Tang-Schomer, M.D. et al. (2012) Partial interruption of axonal
transport due to microtubule breakage accounts for the forma-
tion of periodic varicosities after traumatic axonal injury. Exp.
Neurol. 233, 364-372

Tang-Schomer, M.D. et al. (2010) Mechanical breaking of micro-
tubules in axons during dynamic stretch injury underlies delayed
elasticity, microtubule disassembly, and axon degeneration.
FASEB J. 24, 1401-1410

Hanell, A. et al. (2015) Traumatic brain injury-induced axonal
phenotypes react differently to treatment. Acta Neuropathol.
129, 317-332

Johnson, V.E. et al. (2012) Widespread tau and amyloid-beta
pathology many years after a single traumatic brain injury in
humans. Brain Pathol. 22, 142-149

Betz, J. et al. (2012) Prognostic value of diffusion tensor imaging
parameters in severe traumatic brain injury. J. Neurotrauma 29,
1292-1305

Moenninghoff, C. et al. (2015) Diffuse axonal injury at ultra-high
field MRI. PLoS ONE 10, e0122329

Yuan, A. et al. (2012) Neurofilaments at a glance. J. Cell Sci. 125,
3257-3263

Siedler, D.G. et al. (2014) Diffuse axonal injury in brain trauma:
insights from alterations in neurofilaments. Front. Cell. Neurosci.
8, 429

Chen, X.H. et al. (1999) Evolution of neurofilament subtype
accumulation in axons following diffuse brain injury in the pig.
J. Neuropathol. Exp. Neurol. 58, 588-596

Smith, D.H. et al. (2000) Immediate coma following inertial brain
injury dependent on axonal damage in the brainstem. J. Neuro-
surg. 93, 315-322

DiLeonardi, AM. et al. (2009) Impaired axonal transport and
neurofilament compaction occur in separate populations of
injured axons following diffuse brain injury in the immature rat.
Brain Res. 1263, 174-182

Kallakuri, S. et al. (2012) Impaired axoplasmic transport is the
dominant injury induced by an impact acceleration injury device:
an analysis of traumatic axonal injury in pyramidal tract and
corpus callosum of rats. Brain Res. 1452, 29-38

Marmarou, C.R. and Povlishock, J.T. (2006) Administration of
the immunophilin ligand FK506 differentially attenuates neuro-
filament compaction and impaired axonal transport in injured
axons following diffuse traumatic brain injury. Exp. Neurol. 197,
353-362

Campbell, J.N. et al. (2012) Traumatic brain injury causes an
FK506-sensitive loss and an overgrowth of dendritic spines in rat
forebrain. J. Neurotrauma 29, 201-217

Singleton, R.H. et al. (2001) The immunophilin ligand FK506
attenuates axonal injury in an impact-acceleration model of trau-
matic brain injury. J. Neurotrauma. 18, 607-614

Staal, J.A. et al. (2010) Initial calcium release from intracellular
stores followed by calcium dysregulation is linked to secondary
axotomy following transient axonal stretch injury. J. Neurochem.
112, 1147-11565

Campbell, J.N. et al. (2014) Traumatic brain injury causes a
tacrolimus-sensitive increase in non-convulsive seizures in a
rat model of post-traumatic epilepsy. Int. J. Neurol. Brain Disord.
1, 1-11

Oda, Y. et al. (2011) Combinational therapy using hypothermia
and the immunophilin ligand FK506 to target altered pial arteriolar
reactivity, axonal damage, and blood-brain barrier dysfunction
after traumatic brain injury in rat. J. Cereb. Blood Flow Metab. 31,
1143-1154

Kleele, T. et al. (2014) An assay to image neuronal microtubule
dynamics in mice. Nat. Commun. 5, 4827

322  Trends in Neurosciences, May 2016, Vol. 39, No. 5

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Cross, D.J. et al. (2015) Paclitaxel improves outcome from
traumatic brain injury. Brain Res. 1618, 299-308

Baas, P.W. and Ahmad, F.J. (2013) Beyond Taxol: microtubule-
based treatment of disease and injury of the nervous system.
Brain 136, 2937-2951

Brizuela, M. et al. (2015) The microtubule-stabilizing drug epo-
thilone D increases axonal sprouting following transection injury
in vitro. Mol. Cell. Neurosci. 66, 129-140

Ruschel, J. et al. (2015) Systemic administration of epothilone B
promotes axon regeneration after spinal cord injury. Science 348,
347-352

Aikman, J. et al. (2006) Alpha-ll-spectrin after controlled
cortical impact in the immature rat brain. Dev. Neurosci.
28, 457-465

McGinn, M.J. et al. (2009) Biochemical, structural, and biomarker
evidence for calpain-mediated cytoskeletal change after diffuse
brain injury uncomplicated by contusion. J. Neuropathol. Exp.
Neurol. 68, 241-249

Posmantur, R. et al. (1997) A calpain inhibitor attenuates cortical
cytoskeletal protein loss after experimental traumatic brain injury
in the rat. Neuroscience 77, 875-888

Saatman, K.E. et al. (2010) Calpain as a therapeutic target in
traumatic brain injury. Neurotherapeutics 7, 31-42

Reeves, T.M. et al. (2010) Proteolysis of submembrane cytoskel-
etal proteins ankyrin-G and «ll-spectrin following diffuse brain
injury: a role in white matter vulnerability at nodes of Ranvier.
Brain Pathol. 20, 1065-1068

Lindner, M. et al. (2013) Neurofascin 186 specific autoanti-
bodies induce axonal injury and exacerbate disease severity
in experimental autoimmune encephalomyelitis. Exp. Neurol.
247, 259-266

Kanamori, A. et al. (2012) Retrograde and Wallerian axonal
degeneration occur synchronously after retinal ganglion cell axot-
omy. Am. J. Pathol. 181, 62-73

Rishal, I. and Fainzilber, M. (2014) Axon-soma communication in
neuronal injury. Nat. Rev. Neurosci. 15, 32-42

Gao, X. etal. (2011) Moderate traumatic brain injury causes acute
dendritic and synaptic degeneration in the hippocampal dentate
gyrus. PLoS ONE 6, e24566

Conforti, L. et al. (2014) Wallerian degeneration: an emerging
axon death pathway linking injury and disease. Nat. Rev. Neuro-
sci. 15, 394-409

Johnson, V.E. et al. (2013) Inflammation and white matter degen-
eration persist for years after a single traumatic brain injury. Brain
136, 28-42

Maxwell, W.L. et al. (2015) Wallerian degeneration in the optic
nerve stretch-injury model of traumatic brain injury: a stereologi-
cal analysis. J. Neurotrauma 32, 780-790

Fox, G.B. and Faden, A.l. (1998) Traumatic brain injury causes
delayed motor and cognitive impairment in a mutant mouse
strain known to exhibit delayed Wallerian degeneration. J. Neuro-
sci. Res. 53, 718-727

Henninger, N. et al. (2016) Attenuated traumatic axonal injury and
improved functional outcome after traumatic brain injury in mice
lacking Sarm1. Brain Published online February 11, 2016. http://
dx.doi.org/10.1093/brain/aww001

Pieper, A.A. et al. (2014) P7C3 and an unbiased approach to
drug discovery for neurodegenerative diseases. Chem. Soc. Rev.
43, 6716-6726

Wang, G. et al. (2014) P7C3 neuroprotective chemicals function
by activating the rate-limiting enzyme in NAD salvage. Cell 158,
1324-1334

Yin, T.C. et al. (2014) P7C3 neuroprotective chemicals block
axonal degeneration and preserve function after traumatic brain
injury. Cell Rep. 8, 1731-1740

Blaya, M.O. et al. (2014) Neuroprotective efficacy of a proneuro-
genic compound after traumatic brain injury. J. Neurotrauma 31,
476-486

Di Stefano, M. et al. (2015) A rise in NAD precursor nicotinamide
mononucleotide (NMN) after injury promotes axon degeneration.
Cell Death Differ. 22, 731-742


http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0065
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0065
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0065
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0070
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0070
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0070
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0075
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0075
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0080
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0080
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0080
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0080
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0085
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0085
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0085
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0085
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0090
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0090
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0090
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0095
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0095
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0095
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0100
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0100
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0100
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0105
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0105
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0110
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0110
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0115
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0115
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0115
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0120
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0120
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0120
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0125
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0125
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0125
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0130
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0130
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0130
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0130
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0135
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0135
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0135
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0135
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0140
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0140
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0140
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0140
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0140
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0145
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0145
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0145
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0150
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0150
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0150
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0155
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0155
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0155
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0155
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0160
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0160
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0160
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0160
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0165
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0165
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0165
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0165
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0165
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0170
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0170
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0175
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0175
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0180
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0180
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0180
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0185
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0185
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0185
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0190
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0190
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0190
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0195
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0195
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0195
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0200
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0200
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0200
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0200
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0205
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0205
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0205
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0210
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0210
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0215
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0215
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0215
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0215
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0215
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0220
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0220
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0220
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0220
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0225
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0225
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0225
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0230
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0230
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0235
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0235
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0235
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0240
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0240
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0240
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0245
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0245
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0245
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0250
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0250
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0250
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0255
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0255
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0255
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0255
http://dx.doi.org/10.1093/brain/aww001
http://dx.doi.org/10.1093/brain/aww001
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0265
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0265
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0265
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0270
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0270
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0270
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0275
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0275
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0275
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0280
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0280
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0280
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0285
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0285
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0285

Trends in Neurosciences

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Stiring, D.P. et al. (2014) Axoplasmic reticulum Ca®* release
causes secondary degeneration of spinal axons. Ann. Neurol.
75, 220-229

Wolf, J.A. et al. (2001) Traumatic axonal injury induces calcium
influx modulated by tetrodotoxin-sensitive sodium channels. J.
Neurosci. 21, 1923-1930

Farkas, O. et al. (2006) Mechanoporation induced by diffuse
traumatic brain injury: an irreversible or reversible response to
injury. J. Neurosci. 26, 3130-3140

Hemphill, M.A. et al. (2015) Traumatic brain injury and the neu-
ronal microenvironment: a potential role for neuropathological
mechanotransduction. Neuron 85, 1177-1192

Barsukova, A.G. et al. (2012) Focal increases of axoplasmic Ca®
*, aggregation of sodium-calcium exchanger, N-type Ca®* chan-
nel, and actin define the sites of spheroids in axons undergoing
oxidative stress. J. Neurosci. 32, 12028-12037

BUki, A. and Povlishock, J.T. (2006) All roads lead to disconnec-
tion? Traumatic axonal injury revisited. Acta Neurochir. (Wien)
148, 181-193

Miller, B.F. et al. (2014) The pharmacokinetics and pharmacody-
namics of Kollidon VA64 dissociate its protective effects from
membrane resealing after controlled cortical impact in mice. J.
Cereb. Blood Flow Metab. 34, 1347-1353

Luo, C.L. et al. (2013) Poloxamer 188 attenuates in vitro trau-
matic brain injury-induced mitochondrial and lysosomal mem-
brane permeabilization damage in cultured primary neurons. J.
Neurotrauma 30, 597-607

Cho, Y. and Borgens, R.B. (2012) Polymer and nano-technology
applications for repair and reconstruction of the central nervous
system. Exp. Neurol. 233, 126-144

Mbye, L.H. et al. (2012) Kollidon VA64, a membrane-resealing
agent, reduces histopathology and improves functional outcome
after controlled cortical impact in mice. J. Cereb. Blood Flow
Metab. 32, 515-524

Ping, X. et al. (2014) PEG-PDLLA micelle treatment improves
axonal function of the corpus callosum following traumatic brain
injury. J. Neurotrauma 31, 1172-1179

Yang, J. et al. (2013) Regulation of axon degeneration after injury
and in development by the endogenous calpain inhibitor calpas-
tatin. Neuron 80, 1175-1189

Maas, A.l.R. et al. (2010) Clinical trials in traumatic brain injury:
past experience and current developments. Neurotherapeutics
7,115-126

Ma, M. et al. (2013) Calpains mediate axonal cytoskeleton
disintegration during Wallerian degeneration. Neurobiol. Dis.
56, 34-46

Mondello, S. et al. (2010) odll-Spectrin breakdown products
(SBDPs): diagnosis and outcome in severe traumatic brain injury
patients. J. Neurotrauma 27, 1203-1213

Temkin, N.R. et al. (2007) Magnesium sulfate for neuroprotection
after traumatic brain injury: a randomised controlled trial. Lancet
Neurol. 6, 29-38

Morris, G.F. et al. (1999) Failure of the competitive N-methyl-D-
aspartate antagonist selfotel (CGS 19755) in the treatment of
severe head injury: results of two Phase lll clinical trials. J. Neuro-
surg. 91, 737-743

Maas, A.l. et al. (2006) Efficacy and safety of dexanabinol in
severe traumatic brain injury: results of a Phase Ill randomised,
placebo-controlled, clinical trial. Lancet Neurol. 5, 38-45
Giacino, J.T. et al. (2012) Placebo-controlled trial of amantadine
for severe traumatic brain injury. N. Engl. J. Med. 366, 819-826
Court, F.A. and Coleman, M.P. (2012) Mitochondria as a central
sensor for axonal degenerative stimuli. Trends Neurosci. 35,
364-372

Shen, H. et al. (2013) Maintaining energy homeostasis is an
essential component of WIdS-mediated axon protection. Neuro-
biol. Dis. 59, 69-79

Godzik, K. and Coleman, M. (2014) The axon-protective WLD
protein partially rescues mitochondrial respiration and glycolysis
after axonal injury. J. Mol. Neurosci. 55, 865-871

Yang, J. et al. (2015) Pathological axonal death through a MAPK
cascade that triggers a local energy deficit. Cell 160, 161-176

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

108.

Loreto, A. et al. (2015) Wallerian degeneration is executed by an
NMN-SARM1-dependent late Ca®* influx but only modestly
influenced by mitochondria. Cell Rep. 13, 25639-2552

Cheng, G. et al. (2012) Mitochondria in traumatic brain injury and
mitochondrial-targeted multipotential therapeutic strategies. Br.
J. Pharmacol. 167, 699-719

Halestrap, A.P. (2009) What is the mitochondrial permeability
transition pore? J. Mol. Cell. Cardiol. 46, 821-831

Mazzeo, A.T. et al. (2009) The role of mitochondrial transition
pore, and its modulation, in traumatic brain injury and delayed
neurodegeneration after TBI. Exp. Neurol. 218, 363-370

Barrientos, S.A. et al. (2011) Axonal degeneration is mediated by
the mitochondrial permeability transition pore. J. Neurosci. 31,
966-978

Staal, J.A. et al. (2007) Cyclosporin-A treatment attenuates
delayed cytoskeletal alterations and secondary axotomy
following mild axonal stretch injury. Dev. Neurobiol. 67,
1831-1842

Waldmeier, P.C. et al. (2002) Inhibition of the mitochondrial
permeability transition by the nonimmunosuppressive cyclo-
sporin derivative NIM811. Mol. Pharmacol. 62, 22-29

Mbye, L.H. et al. (2008) Attenuation of acute mitochondrial
dysfunction after traumatic brain injury in mice by NIM811, a
non-immunosuppressive cyclosporin A analog. Exp. Neurol.
209, 243-253

Readnower, R.D. et al. (2011) Post-injury administration of the
mitochondrial permeability transition pore inhibitor, NIM811, is
neuroprotective and improves cognition after traumatic brain
injury in rats. J. Neurotrauma 28, 1845-1853

Eakin, K. et al. (2014) Efficacy of N-acetyl cysteine in traumatic
brain injury. PLoS ONE 9, 90617

Hoffer, M.E. et al. (2013) Amelioration of acute sequelae of blast
induced mild traumatic brain injury by N-acetyl cysteine: a dou-
ble-blind, placebo controlled study. PLoS ONE 8, e54163

Oron, A. et al. (2012) Near infrared transcranial laser therapy
applied at various modes to mice following traumatic brain injury
significantly reduces long-term neurological deficits. J. Neuro-
trauma 29, 401-407

Xuan, W. et al. (2013) Transcranial low-level laser therapy
improves neurological performance in traumatic brain injury in
mice: effect of treatment repetition regimen. PLoS ONE 8,
e53454

Gonzalez-Lima, F. and Auchter, A. (2015) Protection against
neurodegeneration with low-dose methylene blue and near-infra-
red light. Front. Cell. Neurosci. 9, 179

Fenn, AM. et al. (2015) Methylene blue attenuates traumatic
brain injury-associated neuroinflammation and acute depressive-
like behavior in mice. J. Neurotrauma 32, 127-138

Zhao, M. et al. (2016) Methylene blue exerts a neuroprotective
effect against traumatic brain injury by promoting autophagy and
inhibiting microglial activation. Mol. Med. Rep. 13, 13-20

Ji, J. et al. (2012) Lipidomics identifies cardiolipin oxidation as a
mitochondrial target for redox therapy of brain injury. Nat. Neuro-
sci. 15, 1407-1413

Sullivan, P.G. et al. (2000) Dietary supplement creatine protects
against traumatic brain injury. Ann. Neurol. 48, 723-729

Sakellaris, G. et al. (2008) Prevention of traumatic headache,
dizziness and fatigue with creatine administration. A pilot study.
Acta Paediatr. 97, 31-34

Helmy, A. et al. (2011) Cytokines and innate inflammation in the
pathogenesis of human traumatic brain injury. Prog. Neurobiol.
95, 352-372

Helmy, A. et al. (2012) Principal component analysis of the
cytokine and chemokine response to human traumatic brain
injury. PLoS ONE 7, e39677

Roberts, I. et al. (2004) Effect of intravenous corticosteroids on
death within 14 days in 10008 adults with clinically significant
head injury (MRC CRASH trial): randomised placebo-controlled
trial. Lancet 364, 1321-1328

Helmy, A. et al. (2014) Recombinant human interleukin-1 recep-
tor antagonist in severe traumatic brain injury: a Phase Il ran-
domized control trial. J. Cereb. Blood Flow Metab. 34, 845-851

Trends in Neurosciences, May 2016, Vol. 39, No. 5

323



http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0290
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0290
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0290
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0290
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0295
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0295
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0295
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0300
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0300
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0300
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0305
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0305
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0305
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0310
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0310
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0310
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0310
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0310
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0310
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0315
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0315
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0315
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0320
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0320
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0320
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0320
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0325
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0325
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0325
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0325
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0330
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0330
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0330
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0335
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0335
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0335
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0335
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0340
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0340
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0340
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0345
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0345
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0345
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0350
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0350
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0350
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0355
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0355
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0355
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0360
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0360
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0360
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0360
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0365
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0365
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0365
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0370
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0370
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0370
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0370
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0375
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0375
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0375
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0380
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0380
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0385
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0385
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0385
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0390
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0390
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0390
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0390
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0395
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0395
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0395
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0400
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0400
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0405
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0405
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0405
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0405
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0410
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0410
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0410
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0415
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0415
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0420
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0420
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0420
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0425
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0425
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0425
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0430
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0430
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0430
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0430
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0435
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0435
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0435
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0440
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0440
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0440
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0440
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0445
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0445
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0445
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0445
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0450
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0450
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0455
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0455
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0455
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0460
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0460
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0460
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0460
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0465
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0465
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0465
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0465
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0470
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0470
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0470
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0475
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0475
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0475
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0480
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0480
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0480
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0485
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0485
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0485
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0490
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0490
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0495
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0495
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0495
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0500
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0500
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0500
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0505
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0505
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0505
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0510
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0510
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0510
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0510
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0515
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0515
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0515

Trends in Neurosciences

104.

106.

106.

107.

108.

109.

110.

11

112.

118.

114.

116.

116.

7.

118.

11

©

120.

12

122

Choo, AM. et al. (2013) Antagonism of purinergic signalling
improves recovery from traumatic brain injury. Brain 136, 65-80
Corps, K.N. et al. (2015) Inflammation and neuroprotection in
traumatic brain injury. JAMA Neurol. 72, 355-362

Kimbler, D.E. et al. (2012) Activation of P2X7 promotes cerebral
edema and neurological injury after traumatic brain injury in mice.
PL0S ONE 7, e41229

Wang, Y.C. etal. (2015) Neuroprotective effects of Brilliant Blue G
on the brain following traumatic brain injury in rats. Mol. Med.
Rep. 12, 2149-2154

Wang, G. et al (2013) Microglia/macrophage polarization
dynamics in white matter after traumatic brain injury. J. Cereb.
Blood Flow Metab. 33, 1864-1874

Ramlackhansingh, A.F. et al. (2011) Inflammation after trauma:
microglial activation and traumatic brain injury. Ann. Neurol. 70,
374-383

Loane, D.J. et al. (2014) Progressive neurodegeneration after
experimental brain trauma: association with chronic microglial
activation. J. Neuropathol. Exp. Neurol. 73, 14-29

. Loane, D.J. and Kumar, A. (2015) Microglia in the TBI brain: the

good, the bad, and the dysregulated. Exp. Neurol. 275, 316-327
Morganti, J.M. et al. (2016) Call off the dog(ma): M1/M2 polari-
zation is concurrent following traumatic brain injury. PLoS ONE
11, 0148001

Sierra, A. et al. (2013) Janus-faced microglia: beneficial and
detrimental consequences of microglial phagocytosis. Front.
Cell. Neurosci. 7, 6

Brown, G.C. and Neher, J.J. (2014) Microglial phagocytosis of
live neurons. Nat. Rev. Neurosci. 15, 209-216

Perry, V.H. and Holmes, C. (2014) Microglial priming in neuro-
degenerative disease. Nat. Rev. Neurol. 10, 217-224

Neher, J.J. et al. (2012) Primary phagocytosis of neurons by
inflamed microglia: potential roles in neurodegeneration. Front.
Pharmacol. 3, 27

Xiong, Y. et al. (2013) Animal models of traumatic brain injury.
Nat. Rev. Neurosci. 14, 128-142

Kobeissy, F.H. et al. (2015) Degradation of Bll-spectrin protein by
calpain-2 and caspase-3 under neurotoxic and traumatic brain
injury conditions. Mol. Neurobiol. 52, 696-709

. Zetterberg, H. et al. (2013) Biomarkers of mild traumatic brain

injury in cerebrospinal fluid and blood. Nat. Rev. Neurol. 9,
201-210

Gatson, J.W. et al. (2014) Detection of neurofilament-H in
serum as a diagnostic tool to predict injury severity in patients
who have suffered mild traumatic brain injury. J. Neurosurg.
121, 1232-1238

. Okonkwo, D.O. et al. (2013) GFAP-BDP as an acute diagnostic

marker in traumatic brain injury: results from the prospective
transforming research and clinical knowledge in traumatic brain
injury study. J. Neurotrauma 30, 1490-1497

. Carpenter, K.L. et al. (2015) Systemic, local, and imaging bio-

markers of brain injury: more needed, and better use of those
already established? Front. Neurol. 6, 26

324  Trends in Neurosciences, May 2016, Vol. 39, No. 5

123.

124.

125.

126.

127.

128.

129.

130.

13

=

132.

138.

134.

136.

136.

137.

138.

130.

Mack, T.G.A. et al. (2001) Wallerian degeneration of injured axons
and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat.
Neurosci. 4, 1199-1206

Gerdts, J. et al. (2015) SARM1 activation triggers axon degen-
eration locally via NAD" destruction. Science 348, 453-457

Osterloh, J.M. et al. (2012) dSarm/Sarm1 is required for acti-
vation of an injury-induced axon death pathway. Science 337,
481-484

Gilley, J. et al. (2015) Absence of SARM1 rescues develop-
ment and survival of NMNAT2-deficient axons. Cell Rep. 10,
1974-1981

Smith, D.H. et al. (2013) Chronic neuropathologies of single and
repetitive TBI: substrates of dementia? Nat. Rev. Neurol. 9,
211-221

McKee, A.C. et al. (2010) TDP-43 proteinopathy and motor
neuron disease in chronic traumatic encephalopathy. J. Neuro-
pathol. Exp. Neurol. 69, 918-929

Evans, T.M. et al. (2015) The effect of mild traumatic brain injury
on peripheral nervous system pathology in wild-type mice and
the G93A mutant mouse model of motor neuron disease. Neu-
roscience 298, 410-423

Wang, H.K. et al. (2015) Traumatic brain injury causes fronto-
temporal dementia and TDP-43 proteolysis. Neuroscience 300,
94-108

. Benilova, |. et al. (2012) The toxic A oligomer and Alzheimer's

disease: an emperor in need of clothes. Nat. Neurosci. 15,
349-357

Washington, P.M. et al. (2014) Experimental traumatic brain injury
induces rapid aggregation and oligomerization of amyloid-betainan
Alzheimer's disease mouse model. J. Neurotrauma 31, 125-134

Hong, Y.T. et al. (2014) Amyloid imaging with carbon 11-labeled
Pittsburgh compound B for traumatic brain injury. JAMA Neurol.
71, 23-31

Gatson, J.W. et al. (2015) Evidence of increased brain amyloid in
severe TBI survivors at 1, 12, and 24 months after injury: report of
2 cases. J. Neurosurg. Published online November 27, 2015.
http://dx.doi.org/10.3171/2015.6.JNS15639

Mondello, S. et al. (2014) CSF and plasma amyloid-p temporal
profiles and relationships with neurological status and mortality
after severe traumatic brain injury. Sci. Rep. 4, 6446

Magnoni, S. et al. (2012) Tau elevations in the brain extracellular
space correlate with reduced amyloid-f3 levels and predict
adverse clinical outcomes after severe traumatic brain injury.
Brain 135, 1268-1280

Kondo, A. et al. (2015) Antibody against early driver of neuro-
degeneration cis P-tau blocks brain injury and tauopathy. Nature
523, 431-436

Nakamura, K. et al. (2012) Proline isomer-specific antibodies
reveal the early pathogenic tau conformation in Alzheimer's dis-
ease. Cell 149, 232-244

Hay, J. et al. (2016) Chronic traumatic encephalopathy: the
neuropathological legacy of traumatic brain injury. Annu. Rev.
Pathol. 11, 21-45


http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0520
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0520
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0525
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0525
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0530
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0530
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0530
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0535
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0535
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0535
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0540
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0540
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0540
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0545
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0545
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0545
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0550
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0550
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0550
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0555
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0555
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0560
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0560
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0560
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0565
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0565
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0565
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0570
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0570
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0575
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0575
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0580
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0580
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0580
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0585
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0585
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0590
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0590
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0590
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0595
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0595
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0595
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0600
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0600
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0600
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0600
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0605
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0605
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0605
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0605
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0610
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0610
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0610
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0615
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0615
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0615
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0620
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0620
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0620
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0625
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0625
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0625
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0630
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0630
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0630
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0635
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0635
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0635
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0640
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0640
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0640
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0645
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0645
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0645
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0645
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0650
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0650
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0650
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0655
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0655
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0655
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0660
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0660
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0660
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0665
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0665
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0665
http://dx.doi.org/10.3171/2015.6.JNS15639
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0675
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0675
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0675
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0680
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0680
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0680
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0680
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0685
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0685
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0685
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0690
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0690
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0690
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0695
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0695
http://refhub.elsevier.com/S0166-2236(16)00050-3/sbref0695

	Traumatic Axonal Injury: Mechanisms and Translational Opportunities
	TAI is a Common and Severe Subtype of TBI
	Axonal Structure and the Initial Mechanical Injury
	Cytoskeletal Protection
	Cell-Autonomous Axonal Death Pathways
	Mechanotransduction and Calcium Permeability
	Calpains as a Convergence Point in Axonal Degeneration
	Mitochondria and Energetics in TAI
	Inflammation and Microglial Phagocytosis and Phagoptosis
	Concluding Remarks: Mechanistic Understanding May Translate to Therapies
	Acknowledgments
	References


