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Abstract

Wallerian degeneration is delayed when sufficient levels of proteins with NMNAT activity are maintained within axons after
injury. This has been proposed to form the basis of ’slow Wallerian degeneration’ (WldS), a neuroprotective phenotype
conferred by an aberrant fusion protein, WldS. Proteasome inhibition also delays Wallerian degeneration, although much
less robustly, with stabilization of NMNAT2 likely to play a key role in this mechanism. The pan-MEK inhibitor U0126 has
previously been shown to reverse the axon-protective effects of proteasome inhibition, suggesting that MEK-ERK signaling
plays a role in delayed Wallerian degeneration, in addition to its established role in promoting neuronal survival. Here we
show that whilst U0126 can also reverse WldS-mediated axon protection, more specific inhibitors of MEK1/2 and MEK5,
PD184352 and BIX02189, have no significant effect on the delay to Wallerian degeneration in either situation, whether used
alone or in combination. This suggests that an off-target effect of U0126 is responsible for reversion of the axon protective
effects of WldS expression or proteasome inhibition, rather than inhibition of MEK1/2-ERK1/2 or MEK5-ERK5 signaling.
Importantly, this off-target effect does not appear to result in alterations in the stabilities of either WldS or NMNAT2.
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Introduction

Effective therapeutic targeting of Wallerian degeneration and

other types of axon degeneration that share a common molecular

basis (Wallerian-like axon degeneration) could have profound

implications for numerous neurodegenerative diseases where

axonopathy contributes to pathogenesis [1]. An aberrant fusion

protein, WldS, naturally only found in a single mutant mouse

(WldS), can delay Wallerian degeneration markedly [2,3]. Studies

of WldS function have provided considerable insight into the

intrinsic mechanisms involved in the process and have recently led

to the identification of a number of key regulatory molecules and

pathways [4–14]. This includes the finding that NMNAT2, which

shares critical nicotinamide mononucleotide adenylyltransferase

(NMNAT) activity with WldS, is an endogenous axon mainte-

nance factor, with depletion of NMNAT2 in axons likely acting as

a trigger for degeneration [6]. Despite being predominantly

nuclear, a small pool of axonal WldS appears to be responsible for

protection [15–17]. Consequently, because WldS is much more

stable than very short-lived NMNAT2, it has been suggested that

it delays axon degeneration by directly substituting for NMNAT2

loss in compromised axons [6]. However, the relationship between

NMNAT activity and other regulators and/or executers of the

degeneration pathway has yet to be fully established.

Canonical MEK1/2-ERK1/2 signaling, and more recently

MEK5-ERK5 signaling, have been shown to be critical for

neuronal stress responses and/or neurotrophin-mediated neuronal

survival [18–20]. However, a study using the pan-MEK inhibitor

U0126 has also implicated MEK-ERK signaling in the protection

against injury-induced or developmental axon degeneration after

proteasome inhibition [21]. NMNAT2 levels are stabilized after

proteasome inhibition [6], providing one possible explanation for

delayed axon degeneration under these conditions. We therefore

assessed the effects of U0126 on the WldS phenotype to test the

hypothesis that NMNAT activity keeps axons healthy by

sustaining MEK-ERK signaling. As U0126 can inhibit both

MEK1/2 and MEK5 [22,23], we also used more specific small

molecule inhibitors of MEK1/2 and MEK5 to differentiate the

roles of these pathways in relation to axon protection. Surprisingly,

our results appear to rule out involvement of either target.

Results

U0126 can revert the slow Wallerian degeneration (WldS)
phenotype

The ability of the pan-MEK inhibitor U0126 (at 50 mM) to

reverse delayed Wallerian degeneration of neurites in rat superior

cervical ganglion (SCG) cultures after proteasome inhibition

suggested that MEK-ERK signaling might play an important role

in axon maintenance [21]. We therefore investigated whether

MEK-ERK signaling also contributes to the delay of Wallerian

degeneration in WldS neurons.

Neurites in SCG explant cultures from WldS mice are protected

from Wallerian degeneration for at least 72 hours after being
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separated from their cell bodies. In contrast, transected wild-type

neurites begin to degenerate after a short latent phase of just 4–

6 hours [6,12]. We found that 50 mM U0126 partially reverted the

slow Wallerian degeneration phenotype of cut WldS neurites

(Figure 1A and 1B). Neurites treated with U0126 consistently

showed physical signs of degeneration by 24 hours after cut,

whereas untreated transected neurites remained healthy for at

least 48 hours, as expected. Intriguingly, we found that the ability

of U0126 to revert the WldS phenotype appeared highly dose-

dependent but did not fully correlate with inhibition of MEK1/2-

ERK1/2 signaling. ERK1/2 phosphorylation was robustly

inhibited by both 10 mM and 20 mM U0126 (Figure 1C) even

though these doses were much less effective at reverting WldS-

mediated neurite protection (Figure 1A and 1B). Uncut WldS

neurites treated with U0126 remained healthy over the same time-

course (Figure 1D) indicating that this effect was specific to severed

neurites.

Importantly, U0126 can also inhibit the MEK5-ERK5 signaling

pathway [22,23], which is functional in this type of neuron [18].

Consistent with this, we noted a reduction in the proportion of

ERK5 showing retarded electrophoretic mobility after U0126

treatment in these experiments (Figure 1C). Efforts were made to

assess changes in ERK5 phosphorylation directly, but none of the

phosphorylation-dependent antibodies tested were sensitive

enough to specifically detect endogenous levels of the phosphor-

ylated protein. However, retarded electrophoretic mobility of

ERK5 has previously been used as an indicator of ERK5

phosphorylation in SCG neurons [18], and phosphorylation of

the TEY motif in the ERK5 activation loop correlates with

retarded ERK5 electrophoretic mobility in extracts from cell lines

overexpressing components of the MEK5-ERK5 pathway [24].

Interestingly, we found that in addition to full-length ,110 kDa

ERK5 (Figure 1C), SCG neurons also express a ,60 kDa

truncated form of the protein, ERK5-T, which is the result of

alternative splicing [25] (Figure S1). Like full-length ERK5, this

truncated variant can be phosphorylated by MEK5 [25], but we

have so far been unable to detect this in SCG neurons, and

consequently determine its sensitivity to U0126 (data not shown).

Nevertheless, the fact that U0126 inhibits phosphorylation of full-

length ERK5 at concentrations that effectively revert WldS-

mediated axon protection meant that MEK5-ERK5 signaling,

either alone or in combination with MEK1/2-ERK1/2 signaling,

could mediate the effects of WldS.

Combined inhibition of MEK1/2 and MEK5 with
PD184352 and BIX02189 does not replicate the effects of
U0126

In order to define the relative contributions of MEK1/2-

ERK1/2 and MEK5-ERK5 signaling to the slow Wallerian

degeneration (WldS) phenotype we used other, more selective

MEK inhibitors as alternatives to U0126. PD184352 is a highly

selective inhibitor of MEK1/2 [23,26], whilst BIX02189 has

recently been identified as a selective inhibitor of MEK5/ERK5

signaling that fails to inhibit MEK1/2 [27]. Surprisingly, we found

that, unlike U0126, PD184352 and BIX02189 whether alone, or

in combination, did not significantly accelerate degeneration of

transected WldS neurites (Figure 2A and 2B). This was despite the

fact that we confirmed (a) maximal inhibition of each pathway at

the concentrations of PD184352 and BIX02189 used and (b) each

drug exhibited the expected selectivity (Figure 2C). These results

indicated that U0126 reverses the slow Wallerian degeneration

(WldS) phenotype through a mechanism that must be largely

independent of MEK1/2-ERK1/2 or MEK5-ERK5 signaling.

In light of this result, we confirmed the U0126-mediated

reversion of delayed Wallerian degeneration after proteasome

inhibition reported previously [21] and assessed whether this was

also independent of MEK-ERK signaling. Inhibition of protea-

some function with MG-132 three hours prior to cutting resulted

in protection of transected wild-type neurites for at least 6 hours

(Figure 3A and 3B), consistent with previous reports [6,12].

Although the delay in degeneration in this system appears less

robust than that reported using other read-outs [21], we

nevertheless found that U0126 similarly reversed the protection

(Figure 3A and 3B). In contrast, the combined action of PD184352

and BIX02189 had no significant effect (Figure 3A and 3B),

despite again inhibiting ERK1/2 and ERK5 phosphorylation

robustly (Figure 3C). Therefore, our findings suggest that the

ability of U0126 to reverse delayed neurite degeneration after

proteasome inhibition also occurs via a mechanism that is

independent of MEK-ERK signaling.

U0126 does not alter the stability of NMNAT2 or WldS

Reduced turnover of short-lived NMNAT2 has been correlated

with the delay of Wallerian degeneration after proteasome

inhibition in SCG explant cultures and we proposed that WldS

protects neurites because it is relatively much more stable [6]. We

therefore investigated whether U0126 accelerates turnover of

WldS or NMNAT2 to account for its effects on neurite

preservation. We assessed protein stability in a HEK 293T cell

culture-based transfection assay employing a protein synthesis

block which broadly reflects rates of turnover in SCG neurites [6].

We found no evidence for increased turnover of FLAG-WldS

following U0126 treatment (Figure 4A). In addition, proteasome

inhibition stabilized very short-lived FLAG-NMNAT2 after

protein synthesis inhibition, as expected, but this stabilization

was not altered by U0126 (Figure 4B). Therefore, it appears

unlikely that U0126 reverses the slow Wallerian degeneration

phenotype, or delayed Wallerian degeneration after proteasome

inhibition, by reducing levels of WldS or NMNAT2 respectively.

Discussion

A protective or maintenance role for MEK-ERK signaling in

injured axons and during developmental axon pruning was

previously postulated based on the negative effects of the pan-

MEK inhibitor U0126 on neurite health when modeling these

conditions in primary rat SCG cultures [21]. Our finding that

U0126 similarly reverses WldS-mediated protection of severed

mouse SCG neurites initially appeared to support this general

conclusion. However, use of more selective MEK1/2 and MEK5

inhibitors demonstrated that the effects of U0126, both in injured

WldS neurites and injured wild-type neurites after proteasome

inhibition, are independent of MEK/ERK signaling and must

therefore be a consequence of an off-target effect.

Many small molecule kinase inhibitors have unexpected off-

target effects on unrelated kinases [28-30]. Whilst U0126 appears

relatively selective towards MEKs [29,30], the panels of kinases

tested, whilst extensive, were not complete. Therefore the effects of

U0126 seen in this study could be due to as yet uncharacterized

off-target kinase inhibition. We have already provisionally ruled

out reductions in steady-state levels of WldS or levels of NMNAT2

after proteasome inhibition as downstream consequences of such

off-target inhibition, given their critical axonal survival and

maintenance functions. Interestingly, U0126 has previously been

shown to reduce ATP levels in cultured cells resulting in an

increased AMP:ATP ratio and activation of AMPK via what

appears to be a MEK-independent mechanism [31–33]. Since

Axon Protection Does Not Require MEK-ERK Signaling
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Figure 1. Reversion of the Wld S phenotype by MEK inhibitor U0126. (A) Representative phase contrast images of transected neurites in WldS

SCG explant cultures treated with different concentrations of U0126 as indicated (untreated = DMSO). Images of the same field of distal neurites

Axon Protection Does Not Require MEK-ERK Signaling
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declining ATP levels might contribute to the initiation or

execution of Wallerian degeneration [34], a U0126-mediated

reduction in ATP could thus account for its effects on preservation

of transected axons, although PD184352 may have similar off-

target effects in some cell types [31]. Interestingly, mitochondrial

ATP production and Ca2+ buffering have respectively been shown

were captured at the times after transection shown on the left. (B) Quantification of neurite degeneration for transected WldS neurites as in (A).
Degeneration index (6 SEM) was calculated from multiple fields in n = 4 independent experiments. * p,0.05, ** p,0.01, and *** p,0.001, 2-way
repeated measures ANOVA with Tukey’s multiple comparisons post hoc tests. All statistically significant differences are marked. All other comparisons
were not significant. (C) Representative immunoblots showing inhibition of ERK1/2 and ERK5 phosphorylation in whole WldS SCG explant cultures
(cell bodies and neurites combined) 48 hours after treatment with different concentrations of U0126. Phosphorylated ERK1/2 was detected using a
phosphorylation-dependent antibody. Phosphorylated ERK5 was detected as a slower migrating band (indicated by an arrow) using a
phosphorylation-independent antibody. Total ERK1/2 and ERK5 levels act as sample references. (D) Representative phase contrast image (left)
showing cut and uncut neurites in WldS SCG explant cultures 48 hours after transection and treatment with 50 mM U0126. Boxed regions are
magnified to show morphology of cut and uncut neurites.
doi:10.1371/journal.pone.0076505.g001

Figure 2. MEK1/2 inhibitor PD184352 and MEK5 inhibitor BIX02189 fail to revert the Wld S phenotype. (A) Representative phase
contrast images of transected neurites in WldS SCG explant cultures treated with U0126 (50 mM), PD184352 (5 mM) and/or BIX02189 (10 mM) as
indicated (untreated = DMSO). Images of the same field of distal neurites were captured just after transection and 48 hours later. (B) Quantification
of neurite degeneration for transected WldS neurites as in (A). Degeneration index (6 SEM) was calculated from multiple fields in n = 3 or 4
independent experiments. * p,0.05, ** p,0.01 and *** p,0.001, 2-way repeated measures ANOVA with Tukey’s multiple comparisons post hoc tests.
All statistically significant differences are marked. All other comparisons were not significant. (C) Representative immunoblots showing inhibition of
ERK1/2 and ERK5 phosphorylation in whole WldS SCG explant cultures (cell bodies and neurites combined) after 48 hours treatment with U0126
(50 mM), PD184352 (5 mM) and/or BIX02189 (10 mM) as indicated (untreated = DMSO). Phosphorylated ERK1/2 was detected using a
phosphorylation-dependent antibody. Phosphorylated ERK5 was detected as a slower migrating band (indicated by an arrow) using a
phosphorylation-independent antibody. Total ERK1/2 and ERK5 levels act as sample references.
doi:10.1371/journal.pone.0076505.g002

Axon Protection Does Not Require MEK-ERK Signaling
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to be enhanced in WldS mice and in transgenic flies expressing

WldS [35,36]. Given the established link between mitochondrial

Ca2+ levels and ATP generation [37], this raises the possibility that

the critical off-target effect of U0126 in this study might be to

influence mitochondrial Ca2+ homeostasis in some way. However,

a recent report suggesting that mitochondria are not required for

WldS-mediated axon protection in flies [38], seems to challenge

this idea.

Our finding that U0126 does not affect the short-term

maintenance and survival of uninjured WldS neurites is in

agreement with the previous finding that it only impacts delayed

degeneration of severed or otherwise compromised wild-type

neurites [21]. Irrespective of any off-target effects of U0126, this

clearly indicates that loss of ERK1/2 and ERK5 signaling is not

sufficient to induce spontaneous degeneration of intact neurites.

Declining ERK1/2 phosphorylation, which appears to precede

loss of total ERK1 in transected wild-type neurites [21], could

Figure 3. Delayed Wallerian degeneration after proteasome inhibition is not reverted by PD184352 and BIX02189 combined. (A)
Representative phase contrast images of transected wild-type neurites in SCG explant cultures treated with U0126 (50 mM), or PD184352 (5 mM) plus
BIX02189 (10 mM) combined, after proteasome inhibition by MG-132 (20 mM) (untreated = DMSO). Images of the same field of distal neurites were
captured just after transection and 6 hours later. (B) Quantification of neurite degeneration for transected neurites as in (A). Degeneration index (6
SEM) was calculated from multiple fields in n = 3 independent experiments. ** p,0.01, 2-way repeated measures ANOVA with Tukey’s multiple
comparisons post hoc tests. All statistically significant differences are marked. All other comparisons were not significant. (C) Representative
immunoblots showing inhibition of ERK1/2 and ERK5 phosphorylation in whole wild-type SCG explant cultures (cell bodies and neurites combined) 9
hours after proteasome inhibition by MG-132 (20 mM) and 6 hours after treatment with U0126 (50 mM), or a combination of PD184352 (5 mM) plus
BIX02189 (10 mM) (untreated = DMSO). Phosphorylated ERK1/2 was detected using a phosphorylation-dependent antibody. Phosphorylated ERK5
was detected as a slower migrating band (indicated by an arrow) using a phosphorylation-independent antibody. Total ERK1/2 and ERK5 levels act as
sample references.
doi:10.1371/journal.pone.0076505.g003

Axon Protection Does Not Require MEK-ERK Signaling
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nevertheless still contribute to the progression of Wallerian

degeneration, but the possibility that this is simply an early

consequence of the degeneration process itself also cannot be ruled

out.

We conclude that MEK-ERK signaling, specifically through

MEK1/2 or MEK5, is not required for the preservation of

transected neurites by WldS or proteasome inhibition. Rather, the

widely-used MEK inhibitor U0126 appears to reverse this

protection via an as yet unidentified target. Importantly, this

study highlights the risk of interpreting results based solely on data

obtained with this compound. Reassessment of findings using

more selective MEK1/2 and MEK5 inhibitors, such as PD184352

and BIX02189, should be performed as standard and could lead to

important new insights into cellular signaling.

Materials and Methods

Ethical treatment of animals
All animal work was carried out in strict accordance with the

UK Animals (Scientific Procedures) Act, 1986, under Project

Licenses PPL 80/1778 and 80/2254 and was approved by the

Babraham Institute Animal Welfare, Experimentation and Ethics

Committee. Postnatal day 1 or 2 (P1 or P2) mouse pups were

sacrificed by decapitation, with every effort made to limit suffering.

Cell culture
Superior cervical ganglia were dissected from P1 or P2 mouse

pups. Cleaned explants were placed in the center of 3.5 cm tissue

culture dishes pre-coated with poly-L-lysine (20 mg/ml for 1–

2 hours; Sigma) and laminin (20 mg/ml for 1–2 hours; Sigma).

Explants were cultured in Dulbecco’s Modified Eagle’s Medium

(DMEM) with 4500 mg/L glucose and 110 mg/L sodium

pyruvate (Sigma), 2 mM glutamine, 1% penicillin/streptomycin,

100 ng/ml 7S NGF (all Invitrogen), and 10% fetal bovine serum

(Sigma). 4 mM aphidicolin (Calbiochem) was used to reduce

proliferation and viability of non-neuronal cells. Experiments were

performed after 5–7 days in vitro.

C57BL/6JOlaHsd and homozygous C57BL/6OlaHsd-Wld

(WldS) mice were originally obtained from Harlan UK (Bicester,

UK) and maintained as a long-term breeding colony at the

Babraham Institute.

HEK 293T cells were cultured under standard conditions in

DMEM with 4500 mg/L glucose and 110 mg/L sodium pyruvate

(PAA), supplemented with 2 mM glutamine and 1% penicillin/

streptomycin (both Invitrogen), and 10% fetal bovine serum

(Sigma).

Inhibitor treatments
The MEK inhibitors U0126 (Promega), PD184352 (Selleck),

and BIX02189 (a kind gift from Roger Snow, Boehringer

Figure 4. U0126 does not alter FLAG-NMNAT2 or FLAG-WldS turnover in transfected HEK 293T cells. Immunoblot analyses assessing the
effects of U0126 (50 mM) on natural turnover of FLAG-WldS (A) and stabilization of FLAG-NMNAT2 after proteasome inhibition (B) in HEK 293T cells.
Cells were co-transfected with FLAG-WldS and FLAG-NMNAT2 expression constructs. 24 hours after transfection cells were treated with emetine
(10 mM), together with proteasome inhibitor MG-132 (20 mM) and/or U0126 (50 mM), as indicated, for a further 24 hours. Control cells (–) treated with
DMSO were collected at the time of emetine addition (0 hours) to act as a reference for expression levels before protein synthesis was blocked. ß-
Actin acts as the sample reference. Blots of FLAG-NMNAT2 and FLAG-WldS in (A) and (B) respectively (bottom panels) are included only as controls
(for transfection efficiency or emetine efficacy). Representative images are shown. Relative mean levels (6 SEM) of FLAG-WldS (A) and FLAG-NMNAT2
(B) are shown below the relevant lanes on each blot after normalization to ß-Actin (based on data from n = 2 and n = 4 respectively). Data are
presented relative to the DMSO controls (–) (set at 1).
doi:10.1371/journal.pone.0076505.g004

Axon Protection Does Not Require MEK-ERK Signaling
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Ingelheim) were dissolved in DMSO as 10 mM stock solutions and

diluted in media as required. InSolution MG-132 (Calbiochem)

was added to SCG explant cultures at a final concentration of

20 mM 3 hours prior to neurite transection. This pre-treatment is

required to see neurite protection in these cultures [6,12].

Quantification of transected neurite degeneration
Neurites were cut with a disposable scalpel roughly half-way

between their cell bodies and their most distal ends. Inhibitors or

vehicle (DMSO) were added to the media less than 10 minutes

before transection. Phase contrast images of transected neurites

were captured on an Olympus IX81 inverted microscope using a

Soft Imaging Systems (SIS) F-View camera linked to a PC running

the appropriate SIS imaging software and 10x or 20x objectives.

Images of the same field of transected neurites were captured at

different time points after cut. Images were processed for

manuscript presentation using Adobe Photoshop Elements 4.0.

Neurite degeneration was quantified as a Degeneration Index

essentially as described previously [39], except that for calculating

the area representing degenerated axon fragments using the

ImageJ Particle Analyzer function a size range of 20–350 pixels

was used for images captured with the 20x objective (total image

size = 137661032 pixels).

Immunoblot analysis
Whole SCG explant extracts were collected at the end of each

experiment as indicated in the figure legends. Cell bodies and

proximal neurites were combined with transected neurites to

provide sufficient non-degenerated material for assessment of the

effects of inhibitors on ERK1/2 and ERK5 phosphorylation.

HEK 293T cells at 60–80% confluence in 12-well plates were co-

transfected with 100 ng FLAG-WldS and 250 ng FLAG-

NMNAT2 expression constructs (described previously [6]) per

well using Lipofectamine 2000 reagent (Invitrogen). Twenty-four

hours after transfection cells were treated with inhibitors as

described. In both cases cells were washed in cold PBS containing

cOmplete Mini protease inhibitor cocktail (Roche) prior to lysis

directly into 2x Laemmli sample buffer.

Extracts were separated by standard SDS-PAGE on 6 or 12%

gels (depending on the proteins being detected) and transferred to

Immobilon-P membrane (Millipore) or nitrocellulose (for ERK5

detection) using the Bio-Rad Mini-PROTEAN III wet transfer

system. Blots were blocked and incubated with primary antibodies

overnight at 4uC in 1x TBS p.H. 8.3 with 0.05% Tween 20 and

5% milk powder, followed by the appropriate HRP-conjugated

secondary antibody (1 hour room temperature at 1:2000–1:5000)

and detection by ECL or ECL plus (GE Healthcare), with washes

between each stage. Antibody-specific instructions provided by the

supplier were followed for detection of ERK5. The following

primary antibodies were used; mouse monoclonal anti-FLAG M2

(1:2000, Sigma), rabbit polyclonal Wld18 anti-WldS (1:4000),

mouse monoclonal anti-ß-Actin clone AC-74 (1:5000, Sigma

A5316), rabbit polyclonal anti-BMK1/ERK5 (1:750, Upstate/

Millipore 07-039), mouse monoclonal anti-ERK1 (1:2000, BD

Transduction Laboratories 610031) which also recognizes ERK2,

and mouse monoclonal anti-phospho-ERK1/2 (1:2000, Cell

Signaling Technology 9106).

Statistical analysis
Data are presented as mean 6 SEM. The statistical analyses

described in the text were performed using Microsoft Excel and

Prism (GraphPad Software Inc., La Jolla, CA, USA) software.

Differences were considered statistically significant if p,0.05.

Supporting Information

Figure S1 SCG neurons express the truncated ERK5
splice variant, ERK5-T. (A) Erk5 mRNA encodes 806 amino

acid ERK5. Failure to remove intron 4 in the Erk5-T splice variant

introduces an alternative termination codon resulting in a

truncated protein of 502 amino acids that shares the N-terminal

492 amino acids with ERK5 (protein lengths indicated here do not

include the termination codon) [25]. (B) RT-PCR analysis of SCG

mRNA using primers flanking intron 4 in Erk5-T mRNA (5’-

CCTCCAGCACTGCCACCAT-3’ and 5’-CGCTTCTCTTCT

CGTTCTCG-3’). A product of 260 bp was amplified from Erk5

mRNA, lacking the 103 bp intron 4, and a product of 363 bp was

amplified from Erk5-T mRNA. Erk5-T mRNA appears to be

significantly less abundant than Erk5 mRNA. RT-PCR was

performed as described previously [6]. (C) Immunoblot analysis

using antibodies (Biosource MBS615166 and SantaCruz ERK5 N-

19) raised against conserved epitopes in ERK5-T (shared with

ERK5). A ,60 kDa band, corresponding to the expected size of

ERK5-T, was detected by both antibodies in the SCG extract but

was absent from Erk52/2 mouse embryo fibroblasts (MEFs). Both

antibodies failed to detect endogenous levels of full-length ERK5

in the SCG extract (even though Erk5 mRNA appears more

abundant than Erk5-T mRNA), but did detect stably overex-

pressed exogenous ERK-5 (HA-tagged). Both antibodies cross-

reacted with several non-specific bands. The most intense cross-

reacting bands are marked (*). A different antibody (Upstate/

Millipore, 07-039) was used to detect full-length ERK5 in SCGs

(Figures 1, 2 and 3). This was raised against C-terminal amino

acids (783-806) in human ERK5 that are not present in ERK5-T.

(TIF)
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