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SUMMARY

Genes targeted by Polycomb repressive complex 2
(PRC2) are regulated in cis by chromatin modifica-
tions and also in trans by diffusible regulators such
as transcription factors. Here, we introduce a mathe-
matical model in which transcription directly antago-
nizes Polycomb silencing, thereby linking these cis-
and trans-regulatory inputs to gene expression. The
model is parameterized by recent experimental
data showing that PRC2-mediated repressive chro-
matin modifications accumulate extremely slowly.
The model generates self-perpetuating, bistable
active and repressed chromatin states that persist
through DNA replication, thereby ensuring high-fidel-
ity transmission of the current chromatin state.
However, sufficiently strong, persistent activation
or repression of transcription promotes switching
between active and repressed chromatin states.
We observe that when chromatin modification dy-
namics are slow, transient pulses of transcriptional
activation or repression are effectively filtered, such
that epigenetic memory is retained. Noise filtering
thus depends on slow chromatin dynamics and
may represent an important function of PRC2-based
regulation.

INTRODUCTION

Models of chromatin-based epigenetic memory are based on
the hypothesis that chromatin states determine gene expression
(Moazed, 2011). Specific post-translational modifications of his-
tones (histone modifications) that are associated with active and
repressed chromatin states are proposed to act as heritable
marks that drive re-establishment of the parental chromatin state
on daughter chromosomes following DNA replication (Angel
et al., 2011; Dodd et al., 2007). In this way, the chromatin state
can be maintained through mitotic cell division and thereby
maintain a particular expression state of the underlying gene.
There is considerable support for this model in the case of Pol-
ycomb repressive complex 2 (PRC2)-dependent gene repres-
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sion. PRC2 is a multiprotein complex containing an enzymatic
subunit that methylates histone H3 at Lys-27 (H3K27) (Kuzmi-
chev et al, 2002), and also a non-catalytic subunit that
recognizes H3K27me3 (Margueron et al., 2009). These two activ-
ities are proposed to underlie positive feedback between
H3K27me3 and PRC2, which contributes to the maintenance
of H3K27-methylated chromatin domains (Hansen et al., 2008;
Margueron et al., 2009). It has also been shown that histone
H3 Lys-27 is required for PRC2-mediated repression (Pengelly
et al., 2013), that methylated H3K27 can be passed on to
daughter chromosomes (Gaydos et al., 2014), and that tethering
of PRC2 subunits to chromatin can initiate transcriptional repres-
sion (Hansen et al., 2008; Pasini et al., 2010a). Moreover, two
copies of a PRC2 target gene can exist in alternative, heritable
expression states in the same cell, indicating that the memory
of gene expression can be stored in cis—in the local chromatin
environment (Berry et al., 2015). Together, these findings sug-
gest that methylation of H3K27 can establish a repressed chro-
matin state, which can then maintain itself, i.e., a local, cis-based
epigenetic memory.

In contrast to this model of chromatin-based regulation, it
is known that expression of PRC2 target genes can also
be controlled by gene-specific regulators acting in trans (re-
viewed in Ringrose, 2007). However, since the process of tran-
scription directly influences chromatin, these cis- and trans-reg-
ulatory modes are not independent. Specifically, studies in
mammalian cells have shown that PRC2 and H3K27me3 can
accumulate in response to transcriptional repression and can
also be removed by transcriptional activation (Gillespie and Gu-
das, 2007; Hosogane et al., 2013; Riising et al., 2014; Yuan
etal., 2012).

To investigate the interplay between trans-regulation and
chromatin states, we have developed a mathematical model
of PRC2-based epigenetic repression in which transcription
acts antagonistically to Polycomb silencing. The model repre-
sents a generic PRC2 target gene in which the whole locus is
enriched in H3K27me2/me3 when repressed (Brookes et al.,
2012; Mikkelsen et al., 2007). We constrain the model by quan-
titatively fitting to time-resolved mass spectrometry data for
H3K27me3 accumulation (Alabert et al., 2015). Overall, our
analysis demonstrates how trans-regulatory signals can be
integrated with bistable chromatin states to quantitatively regu-
late gene expression, yet also provide robust cis epigenetic
memory.
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Figure 1. Model of PRC2 Target-Gene Chromatin
(A) Schematic of alternative chromatin states. Active state characterized by presence of Pol Il, which can carry H3K27-demethylases (KDM), and drive nucle-
osome exchange. Repressed state characterized by H3K27me3 (orange hexagons), which can positively feedback to recruit PRC2.

(legend continued on next page)
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RESULTS

Previous mathematical models of epigenetic memory based on
local inheritance of histone modifications have not explicitly
considered the effect of transcription. These models instead
rely on mutually exclusive activating and repressive histone
modifications (Angel et al., 2011; Dodd et al., 2007): each modi-
fication positively feeds back to recruit the enzymatic complexes
necessary to place more of the same modification, and also re-
move the other. In this way, a region of chromatin can be set into
one of two states, characterized by high levels of one of the his-
tone modifications.

Here, we hypothesize that transcription itself antagonizes
PRC2 activity, without the need for activating histone modifica-
tions. Potentially, this system could also generate bistable
states: an actively transcribed state (with low H3K27me3) and
a poorly transcribed state (with high H3K27me3) (Figure 1A).
To investigate this, we formulated a mathematical model and
performed stochastic simulations in which we tracked transcrip-
tional initiation events and the H3K27 methylation status for each
histone within a region of chromatin. In our model, PRC2 activity
results in methylation of H3K27, and transcription results in
H3K27 demethylation and histone exchange. H3K27me1/me2
act as intermediates between H3K27me0 and fully methylated
H3K27me3 (Figure 1B). Previous theoretical studies have shown
that bistability requires nonlinearity in histone modification
conversions (Dodd et al., 2007). Incorporating intermediate
methylation states naturally generates this nonlinearity because
typically more than one feedback transition must occur to
convert a given histone between the two extreme states (Dodd
et al., 2007; Sneppen and Dodd, 2012). Indeed, we found that
a model without these intermediate states was not bistable
(STAR Methods, Figure S1). Below we introduce and justify the
six main features of our model (Figure 1, Tables S1-S5, STAR
Methods). Unless otherwise specified, all references refer to
studies in mammalian systems.

Six Model Features

Feature 1: Positive Feedback in H3K27 Methylation
Required for Self-Sustaining Repressive States

In addition to catalyzing methylation of H3K27 (Cao et al., 2002;
Kuzmichev et al., 2002), PRC2 also binds to H3K27me3 via a
non-catalytic subunit, resulting in allosteric activation (Mar-
gueron et al., 2009). This positive feedback was included in the
model by allowing H3K27me3-modified histones to activate
PRC2 to methylate any neighboring histone. Such cis-acting

positive feedback is fundamental to the model; without it, self-
sustaining repressive transcriptional states would not be
possible. In agreement with in vitro studies, H3K27me?2 is also
able to activate PRC2 in the model, but with a 10-fold reduced
efficacy (Margueron et al., 2009). H3K27me1 does not activate
PRC2 in vitro or in the model (Margueron et al., 2009). The
meO0/me1 modification states can therefore be grouped as
neutral marks and me2/me3 as repressive marks (Figure 1B).

The mechanism by which PRC2 is recruited to its targets is an
active area of research and likely to be context-specific (Bauer
et al.,, 2016). Here, we assume that the mechanisms driving
PRC2 recruitment (e.g., DNA sequence-specific elements,
CpG islands) allow PRC2 to be targeted to the modeled region.
This is captured by the parameter (8, which represents the rela-
tive rates of PRC2 activity between different loci (i.e., strength
of recruitment and local enzymatic activity). We initially consider
a PRC2 target gene with 8 = 1 (in contrast to non-PRC2 targets
with 8 <« 1). Putting this together, the rate for the stimulated addi-
tion of methylation in our model for the jth histone is (Figures 1C
and 1D):

r;g?imulated = 5(68,-,meokme0—1 Ei + 68,-,me1 kme1 —2Ei + 6Sf,m92km52—3Ei) )
E = (pmezés/..meg + 6S/,me3)> S,E {me0, me1, me2, me3}
j € neighbors of i

(Equation 1)

where E; incorporates the positive feedback from neighboring
H3K27me2/me3, pme2 = 0.1 accounts for the reduced efficiency
of H3K27me2-activated PRC2, and where ¢;; is the Kronecker
delta, equal to 1 if i = j and 0 otherwise. The transition rates
between methylation states Kneo_1, Kmet1_2, Kmeo_3 are dis-
cussed below.

Feature 2: Transcription-Mediated PRC2 Antagonism

For the process of transcription to directly antagonize PRC2
silencing, it must cause removal of H3K27me3. In the model,
this occurs in two ways: via H3K27 demethylation and histone
exchange, both of which are coupled to transcription. The first
is motivated by the observation that H3K27 demethylases
localize to promoters and coding regions of PRC2 target genes
(Chen et al., 2012; Lee et al., 2007) and can associate with
transcription elongation factors (Chen et al., 2012). The second
reflects the observation that histone exchange correlates posi-
tively with transcriptional activity, and negatively with Polycomb
silencing (Deaton et al., 2016; Kraushaar et al., 2013) (STAR
Methods). We model each passage of Pol Il through the gene
as a single discrete event that causes H3K27 demethylation

(B) Diagrammatic representation of feedbacks in mathematical model. States me0 to me3 refer to methylation state of H3K27. Neutral marks me0/me1 indicated
in yellow, repressive marks me2/me3 in orange. Black arrows represent state transitions; colored arrows represent feedback interactions. For clarity, histone
exchange and H3K27me2-mediated recruitment of PRC2 are omitted.

(C) Mathematical description of model. Sum over neighbors in E; includes the other histone on same nucleosome, and four histones on neighboring nucleosomes.
Pme2/mes is the fraction of H3 histones carrying K27me2 or K27me3.

(D) Model parameters.

(E) Example stochastic simulation of H3K27me0 and H3K27me3 levels over time for a bistable model (initial uniform me3). Parameters indicated in (D) (kme = 10~*
histone™" s, pgem = 0.056 histone ™" transcription™).

(F) Same as (E), for a demethylation-biased model (kme = 10~ histone ™' s, pgem = 0.1 histone ™ transcription™).

(G) Heatmap showing bistability measure B, calculated from simulations. Each panel shows B as function of ke and pgem, for fmax shown in panel label. For each
parameter set, 100 simulations were initialized in each of the uniform me0 or me3 states and simulated for 50 cell cycles. Results averaged over all simulations. In
(E)~(G), pex = 1072 histone ™" transcription—". See also Figures S1-S5 and Tables S1-S5.
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(one methyl group at a time) and nucleosome exchange
(two neighboring H3 histones with mex/mex —me0/me0), with
probability pgem and pex per histone, respectively (Figures 1C
and 1D).

Feature 3: H3K27-Methylation-Based Transcriptional
Repression

The mechanistic basis of transcriptional repression by PRC2 and
H3K27me2/me3 is poorly understood. In vitro, both mammalian
(Margueron et al., 2008) and Drosophila (Francis et al., 2004) Pol-
ycomb complexes can compact chromatin and repress tran-
scription. Moreover, in vivo, genes enriched for H3K27me2/
me3 show reduced levels of productive transcription (Brookes
et al., 2012), increased chromatin compaction (Deaton et al.,
2016; Eskeland et al., 2010), and deacetylated histones (Pasini
et al., 2010b). To incorporate the repressive effect of PRC2 we
made RNA production dependent on H3K27me2/me3 levels.
We allow H3K27me2/me3 marks anywhere in the modeled re-
gion to have an equally repressive effect on transcription, with
the transcriptional initiation rate f a simple linear function of the
proportion of H3K27me2/me3 marked histones at the gene.
This is appropriate if, for example, repression is mediated
through compaction of chromatin at the scale of many nucleo-
somes (Boettiger et al., 2016; Eskeland et al., 2010). Altogether
this leads to

f= a(fmax - Pmez/mes (fnax — fmin)) (Equation 2)
where Peo/mes i the proportion of me2/me3 marks, fnax (fmin)
are the maximum (minimum) transcription initiation rates, and
where « is discussed below (Figures 1C and 1D).
Feature 4: Non-processivity
Methylation of H3K27 by PRC2 could be accomplished in two
ways: in a processive mechanism, PRC2 would remain bound
to its substrate until all three methyl groups are added, whereas
in a non-processive mechanism, PRC2 would dissociate after
adding each methyl group. Experimentally, it has been shown
that mammalian PRC2 can monomethylate H3K27me0,
H3K27me1, and H3K27me2 peptides in vitro (McCabe et al.,
2012), and that in vivo, PRC2 activity is required for all
H3K27me2/me3 and intragenic H3K27mel1 (Ferrari et al.,
2014). Furthermore, mass spectrometry has revealed that
H3K27me3 is mostly formed in vivo from monomethylation of ex-
isting H3K27me2 substrates, and that H3K27me2 can arise
through monomethylation of H3K27mel1 (Zee et al., 2012).
Collectively, these data suggest that PRC2 acts non-proces-
sively, which we therefore assume in our model. We also simu-
lated the model with processive methylation; however, this
generated only limited bistability (STAR Methods, Figure S2B).
Our model also takes into account the relative catalytic activity
of PRC2 on H3K27me0, me1, and me2 substrates from in vitro
experiments (McCabe et al., 2012) as being 9:6:1, respectively,
which is captured by the parameters kmeo—1, Kme1—2, Kme2—3 =
kme in Equation 1. Noisy methylation rates, which reflect back-
ground PRC2 activity Ymeo_1, Yme1_2: Yme2_3 = Yme are set at
5% of the rate of allosterically activated PRC2, ke (Figures 1C
and 1D).

In humans, H3K27 demethylation is catalyzed by jumoniji-C
domain-containing proteins UTX and JMJD3 (Agger et al,
2007). To our knowledge, the processivity of H3K27 demethyla-
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tion has not been investigated in vivo. However, UTX can
sequentially remove single methyl groups from H3K27me3 pep-
tides in vitro (Agger et al., 2007). The model therefore assumes
non-processive demethylation, although this is not essential for
bistability (STAR Methods, Figure S2). The model also includes
noisy H3K27 demethylation with rate ygem (STAR Methods).
Feature 5: DNA Replication

Experiments in eukaryotes indicate that H3/H4 tetramers do not
dissociate during DNA replication and are normally shared
evenly between daughter chromosomes (Annunziato, 2005),
maintaining their pre-replication H3K27 methylation status (Ala-
bert et al., 2015; Gaydos et al., 2014). DNA replication occurs
once per cell cycle, at which time each nucleosome in the model
is replaced with a new me0/me0 nucleosome with a probability
of 0.5 (Figure 1C).

The model formulated above (Figure 1) contains an important
difference from previous models that include opposing acti-
vating and repressive histone modifications (Angel et al., 2011;
Dodd et al., 2007). Here, DNA replication results in deposition
of histone modifications associated with the active expression
state, rather than an intermediate state. Hence, DNA replication
only perturbs the repressed state, and actually biases the system
toward the active state.

Feature 6: trans Regulators

trans-factor-mediated regulation of gene expression is encoded
in our model as a multiplicative factor « in the transcription initi-
ation rate function f (Equation 2). This can be interpreted as a
direct, externally driven gene-activation strength, where « = 1
is neutral, « < 1 is repressive, and « > 1 is activating. To restrict
the average transcription rate to biologically reasonable values
when « >> 1, we also introduce an upper limit on the transcrip-
tion initiation rate (f < 1/60 s~"). In our model, transcription
events occur with constant probability per unit time f, depending
on the chromatin state and trans-activation level «. However, for
many genes, transcription occurs in bursts (reviewed in Raj and
van Oudenaarden, 2008). Nevertheless, we find that a modified
bursty model generates similar results to our main model (Fig-
ures S3 and S4; STAR Methods).

Together, these six features form the mathematical foundation
of our model. We now proceed to analyze the model using sto-
chastic simulations.

Chromatin States Can Store Memory of Gene
Expression

For the chromatin of a PRC2 target gene to act as a memory of
gene expression, it must be able to maintain both the high
H3K27me3 (low expression) and low H3K27me3 (high expres-
sion) states. To investigate the ability of our model to do this,
we performed stochastic simulations using the Gillespie algo-
rithm, tracking the transcription and chromatin status of a single
locus over time. At DNA replication, simulations follow only one
of the two daughter loci. Figure 1E shows a simulation with
parameters that maintain high H3K27me3 levels for several cell
cycles, while Figure 1F shows a simulation with parameters
biased toward demethylation.

When a model is capable of maintaining both active and
repressed states for the same parameter values, it is bistable.
Balanced bistability can be quantified as B = 4PgorrPon (Snep-
pen and Dodd, 2012), where Pon (Porr) is the probability over



time that the simulated gene is in the high/ON (or low/OFF)
expression state (STAR Methods). B is close to 1 for bistable
models. After specifying a minimum transcription initiation rate,
fmin = 107% 571, a system size of 60 histones (~5-6 kb of DNA)
and 22 hr cell-cycle duration, four free parameters remain in
our model: Kme, fmaxs Pdems and pex. We calculated B from simu-
lations performed over a range of values for these four parame-
ters (Figures 1G and S5). We find that values of B can be close to
1 (indicating cis epigenetic memory) if two criteria are satisfied:
methylation and demethylation processes are balanced, and
the increase in transcription between the active and repressed
states (F = fax/fmin) is sufficiently large (in Figure 1G, bistability
emerges for fmax>16fmin = 1.6 X 1073 s77). For the rest of this
work we set f,a = 4 x 1072 571 (F = 40). We also find that the
minimum methylation rate for which bistability is observed in-
creases as histones are exchanged more often (Figure S5).
This is because, for low methylation rates, H3K27me2/me3 is
not replaced quickly enough to counteract H3K27 demethyla-
tion, histone exchange, and dilution at DNA replication. In such
cases, the repressed state becomes unstable.

In summary, when H3K27 addition and removal processes are
balanced, the model can exhibit bistability, demonstrating that
the modeled chromatin domain can store memory of both active
and repressed gene expression states.

PRC2 Target-Gene Chromatin Can Also Respond to
Transcriptional Changes

After fitting our model to experimental data (Box 1, STAR
Methods), we next considered the effect of directly modifying
transcription on chromatin states. « represents the external
trans-activation level of the modeled gene, with « = 1 neutral,
« > 1 activated, and « < 1 repressed. After initialization in
either the uniform me0 or me3 state and equilibration of the
model for five cell cycles with « = 1, we permanently modified
« and studied the time-evolution of H3K27 methylation. This
protocol simulates recruitment of an activator or repressor
that directly modulates transcriptional activity (Figures 2A
and 2B).

When transcription is upregulated from an initially repressed
state, the increase in polymerase traffic leads to stochastic
loss of the repressed chromatin state over hours (Figure 2A).
Conversely, when transcription is downregulated from an active
initial state (Figure 2B), stochastic switching to the silenced state
and accumulation of H3K27me3 at the population level is slow,
taking several cell cycles. This is due to the slow intrinsic time-
scale of H3K27me3 addition. These results are reminiscent of
experiments showing that accumulation of H3K27me3 occurs
slowly after transcriptional shutdown (Buzas et al., 2011; Hoso-
ganeetal., 2013; Riising et al., 2014; Yuan et al., 2012). Together,
these results demonstrate that chromatin states in our model
can respond to sufficiently strong externally driven changes in
transcription.

Our model could be modified to allow shorter pulses of trans
activation to drive switching of chromatin states: transcription
events could be made to have a stronger effect on H3K27
methylation, either by increasing pgem Or Pex, Or alternatively
transcription-independent H3K27 demethylation (ygem) could
be transiently increased, perhaps through trans-factor-mediated
recruitment of H3K27-demethylases.

A Robust Window of cis Memory

So far, we have shown that both active and repressed expres-
sion states can be epigenetically maintained by the internal chro-
matin/transcription dynamics of our model (Figure 1G). This
instructive mode of PRC2 activity, also known as cis memory,
is consistent with observations of heritable silencing induced
by tethering PRC2 to reporter genes in mammalian systems
(Bintu et al., 2016; Hansen et al., 2008) and has been observed
experimentally in Arabidopsis (Berry et al., 2015). We have also
shown that strong external modulation of transcription in our
model can cause switching between chromatin states (Figures
2A and 2B). Such a responsive mode of PRC2 activity has also
been observed experimentally in mammalian cells (Gillespie
and Gudas, 2007; Hosogane et al., 2013; Riising et al., 2014;
Yuan et al., 2012). Taken together, this suggests that chromatin
states in our model can either respond to, or instruct gene
expression, depending on the strength of trans activation.

To further understand this interplay, and to probe the robust-
ness of the bistable chromatin states, we simulated the model
for different values of transcriptional activation «, starting from
either the repressed or active initial state (after equilibration for
five cell cycles at « = 1 starting from an either uniform me3 or
meO0 state). After 20 cell cycles, the transcriptional output was
then measured as the average number of transcription events
in the final cell cycle. This is plotted as a function of « in Figure 2C
(upper panel). For extreme values of «, transcriptional output is
independent of the initial chromatin state, with the H3K27 methyl-
ation status being dictated entirely by trans-acting regulators. For
a wide range of intermediate values of « (around 1), however, the
transcriptional output can depend strongly on the initial state. In
this regime, chromatin has a tendency to be maintained in its
initial state by the internal chromatin/transcription dynamics,
which therefore partly determine the transcriptional output of
the gene. This intermediate range of « can be thought of as a win-
dow of cis memory, within which chromatin states play an
instructive role in their own maintenance. However, even within
this cis memory window, the transcriptional output of each of
the bistable states can still be fine-tuned by trans-acting regula-
tors. To determine how the timescale of cis epigenetic memory
storage depends on the trans-activation strength, we also calcu-
lated the mean first passage time tgp as a function of « for the
repressed or active initial states (STAR Methods). Close to
a =1 (within the cis memory window), it takes over 200 cell cycles
(on average) to change from the me0 to me3 state or vice versa
(Figure 2D, upper panel), again demonstrating the robustness
of the bistable states. Increasing or decreasing « (simulating
trans-activation/repression) favors the active or repressed state,
respectively, leading to a reduction in the first passage time.
Similar results were also obtained with a more complex model
of bursty transcriptional regulation in which trans factors regulate
the probability of a promoter switching between transcriptionally
silent and active states (STAR Methods; Figures S4Q and S4R).

The ability of a gene to recruit PRC2 will depend on both its
DNA sequence and also the cellular and developmental context.
In our model, the local enzymatic activity and the context-spe-
cific strength of PRC2 recruitment are represented by the
parameter 8. To determine how changes in g affect the cis mem-
ory window, we performed simulations as described above,
except with a 2-fold increase in the local PRC2 activity: g = 2.
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Box 1. Fitting Quantitative Experimental Data Indicates that Sub-saturating H3K27me2/me3 Is Sufficient for Full Gene Repression

Nascent chromatin capture together with time-resolved stable isotope labeling by amino acids in cell culture (SILAC) was recently
used to experimentally measure the dynamics of histone modification accumulation after DNA replication (Alabert et al., 2015).
These data demonstrate that H3K27me3 accumulates very slowly on newly incorporated histones in dividing human somatic cells.
In fact, within one cell cycle, H3K27me3 levels on newly incorporated histones do not reach the pre-replication level on parentally
inherited histones. In contrast, previous mathematical models of histone-modification-based epigenetic memory have employed
histone modification rates significantly faster than this, with each histone tail typically undergoing many modification reactions per
cell cycle (Angel et al., 2011; Dodd et al., 2007; Sneppen and Dodd, 2012). Here we use these quantitative experimental data to
constrain our model, in particular the methylation rate kme. Throughout this box, we set the histone exchange rate as pey = 1072
histone ™" transcription~", a value that is justified in STAR Methods (Figure S6).
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Figure B1. Fitting the Model to Experiments

(A) Schematic of SILAC experiment: old histones (yellow) diluted by incorporation of new histones (blue) at first DNA replication. Chromatin from this replication
is followed through two subsequent replications, during which both old and new histones are diluted by incorporation of unlabeled histones.

(B and C) Forty over-plotted trajectories from simulated SILAC experiment. Plots show levels of K27me3-marked old, new, unlabeled, and total H3. Simu-
lations initialized in the uniform me3 state were equilibrated for six cell cycles (five shown) before introducing new histones. (B) The slowest bistable model with
Pr=1 (kme =3 x 10 ° histone ' s, pgem = 0.02 histone " transcription); (C) the best-fit model with P7 = 1/3 (kme = 8 X 10~° histone ' s, pgem = 0.004
histone ™" transcription"). Best-fit ke Obtained by minimizing the sum of squared errors (SSE) between simulated and experimental SILAC data.

(D and E). K27me3 levels on old and new H3 as a proportion of total old and new H3 incorporated, respectively. Points show experimental data from (Alabert
etal., 2015), error bars: SEM (n = 3). Solid lines in (D) and (E) correspond to model simulations shown in (B) and (C), respectively. Results averaged over 1,000
simulations and normalized so that simulated mean cell-cycle end value of H3K27me3 is equal to the experimental mean initial level on old H3 (STAR Methods).
Gene activity measured as number of transcription events per 30 min interval.

(F) Heatmap showing bistability measure, B (top panel) and SSE (bottom panel). Each panel shows B and SSE as a function of ke and pgem, for Pr shown in
panel labels. B calculated from 150 simulations initialized in each of the uniform me0 or me3 states, simulated for 20 cell cycles for each parameter set. SSE
calculated from 300 SILAC simulations for each parameter set. Simulations in (A)—(F) With finax = 40frmin and pex = 1072 histone ™" transcription™", with other
parameters as in Figure 1D.

The triple-SILAC experiment used to fit the model is illustrated in Figure B1A. Old histones (yellow) are distinguishable from new
histones (blue) and unlabeled histones (gray). New histones are incorporated during the first DNA replication, at which time newly
synthesized DNA is also labeled to allow specific isolation of this nascent chromatin at different times after the first DNA replication

(Continued on next page)
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Box 1. Continued

(Alabert et al., 2015). Cells underwent a further two DNA replications in the 48 hr after incorporation of new histones, consistent with
a 22 hr cell cycle. Accordingly, levels of both new and old histones incorporated in chromatin were diluted approximately 4-fold by
incorporation of unlabeled histones. To determine whether our model could reproduce this data, we simulated this experiment
(Figures B1B and B1C). Relative levels of H3K27me3 on old and new histones were extracted from model simulations 0, 10,
24, and 48 hr after new histones were first incorporated, and were quantitatively compared with corresponding experimental
data (STAR Methods). Strikingly, we observed that even the model with the slowest dynamics that retained robust bistability
(kme = 3 X 107° histone™" s™" = 2 histone™" cell cycle™" and pgem = 0.02 histone™" transcription~") was not slow enough to fit
the experimental rate of H3K27me3 accumulation (Figures B1D and S7A). The problem lies in the assumption that saturating
H3K27me2/me3 levels are necessary to achieve maximal gene repression (Equation 2). On such slow time scales, H3K27me2/
me3 saturation is not achieved in the model within a single cell cycle. Consequently, transcription is never maximally repressed,
causing an increased rate of loss of H3K27me2/me3 through transcription-coupled processes, which destabilizes the
repressed state.

Experimentally, H3K27me3 levels were reduced by approximately one-half upon DNA replication, and then increased slowly with a
characteristic timescale longer than a cell cycle (Alabert et al., 2015). This suggests that repressed PRC2 target genes carry
K27me3 on only a fraction of their H3 histones at all stages of the cell cycle. If these H3K27me3 marks are also responsible for
gene repression, then maximal repression must be achieved at sub-saturating H3K27me3 levels. We therefore introduced into
the model a threshold proportion of me2/me3 marks, Pr < 1, with maximum repression above this level,

P
a(fmax _ Ty (fmax - fmin))’ Pme2/me3 <Pr

Pr
a(fmin)v

(Equation 3)

Pme2/meS ZPT

where P eo/mes i the proportion of me2/me3 marks (Figure 1C). Using the fixed parameter values shown in Figure 1D, simulations
were performed for a range of values of Pz, kme, and pgem (Figures B1C, B1E, and B1F). As anticipated, including this threshold
caused the region of bistability to extend to lower values of k.., and encompass a larger region of parameter space (Figure B1F).
For parameter values around P+ = 1/3, the model was robustly bistable at the low methylation rate required to fit the data (Figures
B1F and S7B). Figures B1C and B1E show simulation results for the best-fit methylation rate for Pr= 1/3, ke = 8 X 10~° histone ™"
s ' (~0.6 histone " cell cycle™), with pgem = 4 X 10~2 histone ™" transcription~" optimized for maximum bistability. Clearly, when
the threshold Pr is included, the quantitative fit to the data can be greatly improved (Figure B1E).

For all further simulations in this work, we incorporate the transcription initiation function as specified in Equation 3 with Pr= 1/3.
Fitted parameters are listed in Figure S6M, and spatially resolved example simulations are provided in Figures S7C and S7D.

In summary, slow increases in H3K27me3 levels within an H3K27me3-enriched domain imply that H3K27me3 levels are not satu-
rated throughout the cell cycle. By allowing a non-saturated H3K27me2/me3 domain to fully repress transcription, the model can
maintain both active and repressed states through many cell divisions and simultaneously fit the observed slow accumulation of
H3K27me3 over several cell cycles.

In this case, transcriptional output shows dependence on the
initial chromatin state over an even greater range of «, and the
difference in transcriptional output between the two initial
states occurs at higher « values (Figure 2C). This indicates that
chromatin can instruct gene expression over a wider range of
transcriptional activation levels (i.e., a wider cis memory win-
dow). Furthermore, mean first passage times are greater within
the cis memory window for 8 = 2 than for 8 = 1, for both
initial states (Figure 2D). Therefore, the ability of chromatin to
instruct gene expression can itself be quantitatively modulated
through the local activity of PRC2. Other factors affecting
the width of the cis memory window are the same as those
that influence bistability, such as the number of histones in
the gene, and the strength of model feedbacks (Dodd et al.,
2007). In some cases, the cis memory window may be so
narrow that chromatin is effectively always responsive to trans
regulators.

Overall, over a wide range of external transcriptional inputs, bi-
stable chromatin states persist, instructing their own inheritance.

However, when transcription is increased or decreased beyond
certain limits, beyond the cis memory window, bistability is abol-
ished and the chromatin state becomes purely responsive (Fig-
ure 2E). The level of transcriptional activation or repression
required to abolish bistability depends on properties such as
the local PRC2 activity that may differ between PRC2 target
genes and cellular contexts.

Slow Dynamics Underlies Chromatin-Based Noise
Filtering

Our integrated model generates both chromatin-based epige-
netic memory and trans-factor-mediated control of gene exp-
ression. After fitting the model to experimental SILAC data
(Box 1), we found that large, persistent perturbations to
external transcriptional activation are necessary to change
the chromatin state (Figure 2). This suggests that chromatin
may resist state changes driven by transcription and thereby
buffer fluctuations in the concentration of regulatory trans
factors.
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A Transcriptional activation B

H3K27me3

Transcriptional repression

Figure 2. Integration of cis and trans Regu-
lation

(A) Top: schematic of transcriptional activation.
Below: 30 over-plotted simulated H3K27me3 time
courses. After initialization in the uniform me3 state
and equilibration for five cell cycles at a = 1, « then
changed to the value shown in panel label at ¢t = 0.

H3K27me3

Simulations show a further eight cell cycles.
(B) Same as (A) for transcriptional repression from

initial uniform me0 state.
(C) Gene activity measured as average number of
transcription events (gene ' hr~ ") inthe 20" cell cycle
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then « as indicated on x axis for further 20 cell cycles.
(D) Mean first passage time, tep (STAR Methods) as
function of «, averaged over 1,000 simulations
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To investigate this hypothesis, we used a stochastic model
of gene expression (Ozbudak et al., 2002) to simulate a fluc-
tuating gene-activation function, «(f) (STAR Methods). The
noisiness of this input signal is measured from simulations
as the coefficient of variation of «(f). In simulations, the size
of fluctuations can be modulated without affecting the mean
(i.e., {(«a(t))=1, where () indicates a time average). Although
the methylation rate k. was constrained using experimental
data (Box 1, Figure B1E), we now allow this parameter to
vary in order to understand how its value influences the
noise-filtering capability of this system. With input functions
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the model to maintain both active
and repressed states (STAR Methods).

Gene FP ranges from 0 to 1, with larger

activity values indicating greater average state
lifetimes.

Strikingly, we observed that systems

with fast dynamics (high kme, high pgem)
that were bistable (FP = 1) when noise
was low showed a marked decrease
in FP, indicating weakened bistability
as noise was increased (Figures 3A
and S8A). Conversely, bistable models with slower dynamics
were better able to maintain long chromatin state lifetimes
(high FP) as noise in the input signal was increased. Example
simulations are shown in Figures 3B-3E and S8B-S8E. We
observed that the model with the methylation rate obtained
from fitting the SILAC data (kme = 8 X 107° histone™' s7',
~0.6 histone™" cell cycle™") also showed greater bistability
than systems with even slower dynamics (Figure 3A) regardless
of the noise strength. This is due to an inability of the slower
models to counteract the loss of H3K27me2/me3 that occurs
at DNA replication.



A Methylation rate ke (histone's) Figure 3. Slow H3K27 Methylation Dyna-
> mics Generate Robustness to Noise
4x10°° 5.6x10°° 8x10°° 16x10° 355107 6.4x10°° (A) First passage time measure, FP, as a function of
1.0+ —_— noise in the gene-activation input signal «(t). Noise
\X\%3 measured as coefficient of variation (CV) in «ft).
A, For each parameter set, 3,000 simulations were
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and simulated for 20 cell cycles. FP calculated as
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The model therefore suggests a rationale for why experimental
H3K27me3 accumulation is slow: genes that change H3K27me3
levels slowly in response to varying trans-factor inputs offer more
stable memory storage than genes with faster chromatin dy-
namics because neither prolonged absences nor pulses of tran-
scriptional regulators are sufficient to change chromatin states.
Interestingly, a previous study of mammalian heterochromatin
also used modeling to suggest that fluctuations of chromatin
regulators on shorter timescales (minutes) would not perturb
H3K9 methylation status (Muller-Ott et al., 2014). In contrast to

Population snapshot activate the chromatin state, resulting in lower
uniform expression of the PRC2 target gene. See

also Figure S8.

Noise transmitted

our model, however, the heterochromatin

Population snapshot model was monostable.

DISCUSSION

In this work, we have introduced a math-
ematical model which mechanistically
integrates transcription and chromatin-
based epigenetic regulation. The model
exhibits bistable cis epigenetic memory over a wide range of
parameter values and is able to quantitatively reproduce the
slow H3K27me3 accumulation rates observed in vivo (Box 1).
When dynamics are slow, we also find that chromatin of PRC2
targets can effectively ignore transient pulses of activation or
repression so that fluctuations in levels of trans regulators do
not lead to loss of cis epigenetic memory (Figure 3F). Fundamen-
tally, these results rest on two main features: transcription
antagonizing chromatin silencing, and cis-acting positive feed-
backs maintaining repressive histone modifications. Thus, the

L

Noise filtered
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concepts we have highlighted may be widely applicable, e.g., to
heterochromatic H3K9 methylation in S. pombe (Kowalik
et al., 2015).

Many PRC2 target genes are under the control of gene-regu-
latory networks and would therefore seem to have no need for
PRC2 in maintenance of epigenetic memory. This observation
has led to questions regarding the function of PRC2 in such
cases (Ringrose, 2007). The ability to filter noise may explain
why PRC2 is repeatedly employed in gene-regulatory networks,
sometimes acting as a short-term rather than long-term memory.
Given that many transcription factors are themselves PRC2 tar-
gets, such noise filtering at the transcriptional level may endow
regulatory networks with greatly increased robustness. The ma-
chinery required for chromatin-based noise filtering is generic
and can act simultaneously at many different genomic loci, and
may therefore be regarded as an example of passive noise
filtering (Stoeger et al., 2016).

Previous theoretical models of histone-modification-based
epigenetics found that bistability requires modified histones to
recruit enzymatic complexes that act beyond neighboring nucle-
osomes (Dodd et al., 2007). These long-range interactions are
attributed to DNA looping, which bring together nucleosomes
that are distant in the one-dimensional chromatin fiber. Intuitively,
long-range interactions ensure that a set of histones within an in-
dividual domain coordinate their modification status, preventing
the formation of stable sub-domains of opposing activating and
repressive modifications. However, preventing such models
from exhibiting uncontrolled spreading to nearby genomic loci
is problematic (Dodd and Sneppen, 2011). In contrast to such
long-range interactions, our model requires only local interac-
tions between histones and their modifying complexes, where
PRC2 recruited to one nucleosome only acts on its immediately
neighboring nucleosomes. The reason that bistability is still
observed in this model is two-fold. First, the model contains no
locally self-reinforcing opposing mark, so the problem of an
opposing mark invading a repressed domain does not exist. Sec-
ond, although histone modifications recruit complexes that act
only on neighboring nucleosomes, the opposing state of tran-
scription can act anywhere within the gene. This effectively gen-
erates a demethylation rate that is determined by the average
chromatin state of the entire gene. In this sense, the process of
transcription and the mechanism by which it is regulated by
H3K27me2/me3 fulfill the requirement for long-range interac-
tions. Nevertheless, our model has advantages over models
with explicit long-range action of histone modifiers. First, the
chromatin state of the entire gene is naturally coordinated by
the process of transcription. Second, the DNA sequence used
to control the initiation and termination of transcription can also
be used to naturally define the boundaries of chromatin activa-
tion. It is also possible that the rare transcriptional events that
occur in the repressed state could help in specifying the bound-
aries of H3K27me3 domains. Moreover, unlike models with long-
range interactions between histone modifiers, spreading of
repressive chromatin in our model is strictly one-dimensional;
along the chromatin fiber. This means that H3K27me3 could
also be prevented from spreading by one-dimensional insulator
elements consisting of nucleosome-depleted regions, regions
of high histone exchange (such as actively transcribed regions),
or histones that are somehow refractory to H3K27-methylation.
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The model developed in this work fundamentally integrates
bistable cis-acting epigenetic memory with trans-acting tran-
scriptional control. One key difference between these two reg-
ulatory modes is that the chromatin states are digital (on/off),
whereas trans regulators can act in an analog manner, with
transcriptional output depending continuously on the concen-
trations of the regulators (Giorgetti et al., 2010). The concepts
of digital and analog regulation provide an alternative way of
thinking about the results of our model: within the cis memory
window, bistable (digital) chromatin states persist (instructing
their own inheritance). However, the expression levels of these
digital chromatin states can be fine-tuned in a continuous
analog way by the activity of trans regulators (Figure 2E). In
this way, our model exhibits a fusion of digital and analog tran-
scriptional control.

Experimental Outlook

Our model makes two further specific predictions that are exper-
imentally testable. First, the model predicts that for each PRC2
target there is an upper threshold of trans activation above which
chromatin-based repression cannot be established; a lower
threshold below which chromatin-based repression is guaran-
teed; and an intermediate range of trans-activation strengths
over which the chromatin state instructs its own inheritance
and contributes to determining gene expression. Understanding
how these thresholds depend on various features of PRC2
target-gene sequence and chromatin features will be essential
in understanding genome-wide functions of PRC2. Second,
the model predicts that slow chromatin dynamics allow PRC2
target genes to filter noise in trans regulators.

Monitoring gene expression at the single-cell level while
dynamically tethering PRC2 and other chromatin modifiers has
recently been used in a synthetic system to reveal that chromatin
silencing is generally an all-or-none phenomenon (Bintu et al.,
2016), in agreement with results from naturally occurring Poly-
comb systems (Berry et al., 2015). Using similar synthetic ap-
proaches, one could combine dynamic recruitment of chromatin
modifiers with simultaneous quantitative modulation of tran-
scription. This would enable detailed mechanistic dissection of
the interplay between transcription and PRC2 activity. In such
an experimental system, the prediction of noise filtering could
also be explicitly tested by providing pulses of trans activation
of different strengths and durations.

Inducible tethering of transcriptional activators and chromatin
modifiers (Gilbert et al., 2014) could also be used at endogenous
PRC2 targets, and should enable quantitative comparisons of
the memory-storage capabilities of different PRC2 targets, or
the same target in different cellular contexts. Similar to our
previous experimental work (Berry et al., 2015), assays with sin-
gle-cell resolution and an ability to trace cell lineages will be
essential.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited Data

SILAC histone mass spectrometry data (Alabert et al., 2015) N/A

Software and Algorithms

Gillespie’s stochastic simulation algorithm (Gillespie, 1977) N/A

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Martin
Howard (martin.howard@jic.ac.uk).

METHOD DETAILS

Computational Methods and Simulation Details

Programming Languages and Computing Resources

All simulations were written in C and compiled using GCC (version 4.4.7). Pseudo-random numbers were generated in the GNU sci-
entific library (GSL, version 1.13) random number environment using the Mersenne Twister 19937 algorithm (Matsumoto and Nishi-
mura, 1998). The seed was either specified manually (for code development and simulating specific trajectories) or set based on the
system clock using the time function of the C standard library. Simulations were run on the Howard group cluster, which comprises 4
compute nodes, each equipped with 16-core Xeon E5-2650 processors, running at 2.6 GHz, with 16 GB of system memory. The clus-
ter runs the CentOS 6.6 distribution of the Linux operating system.

Mathematical Modeling of Chromatin

Stochastic simulations of H3K27 methylation, demethylation and transcription were simulated according to the ‘direct’ Gillespie
algorithm (Gillespie, 1977). The algorithm is completely defined by a set of possible state transitions (reactions), and a corresponding
propensity for each of the reactions to occur. At each iteration, the time-step At and the next reaction are selected probabilistically.
The selected reaction is then performed by updating the system state, and system time is incremented by At.

In our simulations, we explicitly track the methylation status, S; of each H3 histone i € [1, N] within a simulated region of chromatin
(Si e {me0, me1, me2, me3}). Since we are considering methylation of H3K27, in the following we refer to H3 histones simply as his-
tones. Each nucleosome consists of a pair of histones, (k, k+1) for odd numbers k such that 1 < k < N—1, with N even. Methylation
and demethylation reactions increase or decrease by one, respectively, the number of methyl groups at histone i. Initiation of tran-
scription is also modelled as a reaction. Therefore, for a system of N histones there are a total of 2N + 1 possible reactions (N histone
methylations, N histone demethylations and transcription). However, not all reactions are possible at all times, e.g. methylation of
me3 histones, so these reactions have zero propensity. Reaction propensities, r, are re-calculated after each system update.

According to the model shown in Figure 1, the propensity of methylation, r/™ for each histone j depends on the methylation status of
each of the histones on neighboring nucleosomes and also the other histone on the same nucleosome. r"® also depends on the rates
of recruited methylation ke, Noisy methylation, vne, and relative local PRC2 activity, 6. For 1 < i < N, the methylation reaction pro-
pensities are calculated as,

rime = ﬁ(53f~m60 (7me0—1 + kmeO*1Ef) + 5Si-me1 (7me1—2 +kme1—2Ei) + 5Sf.me2("/me2—3 + kmeEi))7 (Equation S1)
where 0y = { 2)’ ))((;)}// , is the Kronecker delta and
Ei=">" (Pmez0s,mez + 05,mes). (Equation S2)
je M

is summed over ‘neighboring’ histones, where

M = {{"*37/*2,i717i+1,i+2}, i even,

(i—2,i—1,i+1,i+2,i+3)}, iodd. " (Equation S3)

This reflects the fact that each nucleosome consists of one even-numbered and one odd-numbered histone. Histones outside the
simulated region are not considered. Consequently, histones on boundary nucleosomes have only one-sided recruitment of methyl-
ation. This introduces a slight bias toward the active state, as the boundary histones only have one-sided recruitment. However, since
the region of chromatin domain simulated is relatively large (60 histones) relative to the boundaries (4 histones), we expect that this
effect will be small.
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Each histone i undergoes noisy removal of methyl groups (one methyl group at a time) with propensity,

ridem ="Ydem (68(,me1 + 68,-,me2 + 68,-,me3) . (Equation 84)

Demethylation is also coupled directly to transcription, which itself has propensity given by Equation 3. Each transcription event
can result in removal of methyl groups (one methyl group at a time) at each histone (with probability pgem per histone) and also
replacement of each nucleosome (mex/mex— me0/me0, with probability peyx per histone). Since pey is a probability per histone
and histone exchange actually results in replacement of a pair of H3 histones, the average rate of loss of histones through exchange
is = 2fDex-

To replicate DNA, the Gillespie algorithm simulation was interrupted if the projected time for the next reaction exceeded the time at
which DNA would have been replicated. In this case, system time was updated to the forecast time of DNA replication. After repli-
cation of DNA, reaction propensities were then re-calculated and the Gillespie algorithm was repeated for another cell cycle. A similar
approach was previously used to incorporate reactions with delays in Gillespie algorithm simulations (Bratsun et al., 2005).
Quantities Calculated from Simulations
Time-Averaging. For an individual simulation time-course comprising K reactions, the Gillespie algorithm determines the state of
the system at K simulation time-points {; (the trajectory). The time-step 4t = t;,1 — t; is not constant. Time-averaging for a quantity x;
(e.g. Porr or Pon) between tg and tx was performed using the formula,

K-1

Zx,»tm -t (Equation S5)
o Wkl

Bistability Measures. The quantity introduced in (Sneppen and Dodd, 2012) to determine the time-averaged probability of the sys-
tem being in one of the epigenetic ‘states’ is equivalent to Porr, the probability that the number of repressive me2/me3 marks ex-
ceeds the number of neutral me0/me1 marks by at least half the total number of histones,

N .
POFF =Pr <nme3 +MNme2 — Nmet1 — Nmeo > E) . (Equatlon SG)
With N = Npes+tNmes+Nme1+Nmeo, this reduces to,
3N .
Porr = Pr{ Nmes + Nme2 > =) (Equation S7)
Similarly,
N .
Pon=Pr{ Nmes +Nmez < 7) (Equation S8)

and the bistability measure (Sneppen and Dodd, 2012) is given by,
B =4PorrPon. (Equation S9)

Since the histone type that is randomly inserted during DNA replication is identified with the high transcription state, it was neces-
sary to allow the system to recover from this perturbation before assessing the stability of the state after DNA replication. For this
reason, results were calculated only for the last hour of each cell cycle. This allowed systems with slow recovery times after DNA
replication to attain high values of B, consistent with their long-term stability.

After introduction of the threshold, P+ (Equation 3), these definitions of Pon and Porr No longer accurately reflect the chromatin
state in terms of its control on expression. In this case, the gene is defined as being in the OFF-state if the chromatin-based regulation
of transcription is in its lower quartile. For fnax # fmin,

POFF =Pr (fmax - % (fmax - fmin) < fmin + @) ) (Equation S1 0)
T
which can be simplified to,
Pors =Pr (nmeg +Nmep > %) , (Equation S11)
and likewise for Poy,
NP
Pon =Pr (nmes +Nme2 < TT> . (Equation S12)

With Pr=1, Equations S11 and S12 reduce to Equations S7 and S8, respectively. These latter definitions are therefore consistent
with earlier usage of the bistability measure B (Sneppen and Dodd, 2012). For all figures (except for the two-state model - Figure S1)
Equations S11 and S12 were used to calculate the bistability measure B, according to Equation S9.
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First Passage Times. Mean first passage times, trpmeo) @and trpmes), are defined as the average time taken for the system to change
to the opposite chromatin state, when initialized in the uniform me0O or me3 state, respectively. For example, for an initially
active state,

4

NP
trp(meo) = Min (t Nime3 + Nime2 > 8 T> . (Equation S13)

In the simulations, mean first passage times were bounded above by the total simulation time. This allowed the introduction of a
quantity to measure the mutual stability of the two states, the ‘combined first passage’,

trp(me0) tFP(me3)
T

where T is the total simulation time. Since trpmeo), trrmes) < T, then 0 < FP < 1.

FP= (Equation S14)

Two-State Model
Toinvestigate if a simple two-state model (H3K27me0, H3K27me3) including transcription was capable of generating bistability, we
constructed the model shown in Figure S1. In this model, PRC2 places me3 marks and transcription removes me3 marks. In addi-
tion, H3K27me3 represses transcription (Figure S1B, equation for f) and participates in positive feedback to recruit more PRC2
(Margueron et al., 2009). Previous studies have shown that bistability is most robust when interactions are ‘long-ranged’ (Dodd
and Sneppen, 2011; Dodd et al., 2007). That is, PRC2 recruited anywhere in the gene can act on any other histone. Since we
are interested in the ability of this model to generate bistability, we included such long-range interactions in this model. This
was achieved by making the overall methylation rate dependent on the proportion of H3K27me3 marks at the gene (Figure S1B,
equation for Pp,e3). The model also includes explicit noisy methylation and implicit noisy demethylation through stochastic tran-
scription in the repressed state.

Simulations were performed in a similar manner to that described for the main model. Explicitly, for a system of N histones, the
following reaction propensities r were calculated at every step of the Gillespie algorithm simulation:

k N
I™ = 85, meo <7me +ﬁ > 63/,meg> , (Equation S15)
i=1
. 1 N
rtranscrlptlon —_ fmax _ N (fmax _ fmin) Z 5SI,me37 (Equation S1 6)
=1

where 1 </ < N and Sje {me0, me3}. Methylation reactions selected for histone i resulted in me0 to me3 conversion, whereas tran-
scription events resulted in demethylation of each histone with probability, pgem per histone.

We simulated this model over a large region of parameter space at high resolution, either in the presence or absence of DNA repli-
cation. Bistability was calculated using Equation S9, with

Porr = Pr (nmeg > %) , (Equation S17)
and
N .
Pon=Pr{ nmes < 1) (Equation S18)

When included, DNA replication was modeled as a discrete event that occurred every 22 hr.

We were unable to find parameter sets that gave stability for both the active and repressed expression states (Figure S1D). Figures
S1E and S1F show example trajectories of biased and balanced models without DNA replication. Note that even when methylation
and demethylation processes are relatively balanced, neither state is stable over long periods of time (Figures S1E and S1F central
panels).

Our results are in agreement with previous work showing that bistability is not obtained without nonlinearity in the histone modi-
fication conversion reactions (Dodd et al., 2007). Rather than adding such nonlinearity arbitrarily to generate the main model consid-
ered in this work, we find that nonlinearity arises parsimoniously from the non-processivity of H3K27-methylation by PRC2.

Processivity in Methylation or Demethylation

SET-domain histone methyltransferases, such as the catalytic subunit of PRC2, can be either processive or non-processive (Chin
et al., 2006; Patnaik et al., 2004). However, as discussed in the main text there is in vitro and in vivo evidence that PRC2 acts
non-processively when methylating H3K27. Moreover, the two-state model considered above, which did not generate bistability,
corresponds approximately to a model with processive methylation and demethylation. We argued that the failure of the two-state
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model was due to a lack of nonlinearity in the reactions converting between H3K27me0 and H3K27me3. It is therefore interesting to
consider the ability of the full model to maintain both the active and repressed expression states when either methylation or deme-
thylation (but not both) occur processively (Figure S2).
Processive Methylation
Toinvestigate if bistability in our full model is dependent on non-processivity of the methyltransferase, we modified the model structure
so that PRC2 catalyses the conversions me0— me3, me1 — me3 and me2 — me3 instead of adding methyl groups one at a time (Fig-
ure S2B). All reaction propensity calculations remain unchanged. The model retains the relative catalytic activity of PRC2 on
H3K27me0, me1 and me2 substrates of 9:6:1, respectively, because these quantities were calculated from experiments without refer-
ence to the reaction product produced (McCabe et al., 2012). Both noisy and recruited methylations are considered as processive.
In agreement with the results of our two-state model, we observed very limited bistability (Figure S2B), suggesting that non-proc-
essivity in methylation is an important feature for our model to provide cis epigenetic memory.
Processive Demethylation
In the model, processive demethylation plays a similar role to histone exchange — with the exception that processive demethylation
results in conversion of one histone (mex — me0) while histone exchange results in removal of both histones on a nucleosome (mex/
mex — me0/me0). Since the full model can generate bistability at reasonably high levels of histone exchange (Figure S5), we ex-
pected that including processive demethylation would not have a dramatic effect on bistability. We modified the model structure
so that K27-demethylases (including noisy demethylation) performed the conversions me3— me0, me2 — me0 and me1— me0,
rather than removing one methyl group at a time (Figure S2C). Again, all reaction propensity calculations remain unchanged. As ex-
pected, we found that the model was still able to generate bistability — albeit over a smaller region in parameter space (Figure S2C).

Transcriptional Bursting

In the main model developed in this work, transcription events occur stochastically with constant probability per unit time f at all
times — where f depends on the current chromatin state and trans-activation level. That is, transcription is modeled as a Poisson pro-
cess. However, it is known from studies in both prokaryotes and eukaryotes, that transcription often occurs in episodic ‘bursts’, inter-
spersed with intervals of transcriptional inactivity (reviewed in (Raj and van Oudenaarden, 2008)). Models that explain this ‘transcrip-
tional bursting’ typically consist of two or more promoter states, each with different characteristic transcriptional activities (Paulsson,
2005; Peccoud and Ycart, 1995; Raj et al., 2006). To verify that the conclusions presented in this work are valid even when transcrip-
tion occurs in bursts, we now consider incorporating a more complex ‘promoter-switching’ description of transcription into our in-
tegrated chromatin/transcription model.

The model is shown in Figure S3, with additional parameters defined in Figures 1D and S6M. Following (Peccoud and Ycart, 1995),
we assume that the promoter can exist in either an ‘open’ or ‘closed’ state. Transitions between these states occur with probabilities
per unit time, ko, and ks When in the open-promoter state, transcription occurs with constant rate f,, independent of the chromatin
state and trans-activation level. For a given gene that displays transcriptional bursting, experiments suggest that transcriptional
output can be regulated either by modulating burst size (transcripts per burst) or by modulating burst frequency, or a combination
of both (Dar et al., 2012; Raj et al., 2006; Senecal et al., 2014). In our model, we consider the case in which regulation by chromatin
and trans-factors alters the probability of transition from a closed to an open promoter state, ko, while k. is kept constant. That is,
transcriptional regulation occurs through changes to burst frequency, with both the transcription rate of the open promoter state and
the burst duration remaining, on average, fixed. However, since we consider large ranges of values for fy, and k¢, a range of burst
sizes and durations are also considered (in different simulations). Other than the changes to the regulation of transcription, the model
remains unmodified from that considered in the main text.

The probability of being in the open promoter state when the gene is fully repressed is Popen(min) = Konminy/ (Konmin) + Kofr), While when
the gene is maximally active the corresponding probability is Pogenimax) = Konmaxy/ (Konmax) + Koff). The maximal fold-change in tran-
scription rate between the active and repressed chromatin states is therefore given by

F= f(JPopen(max) _ kon(max) (kon(min) +koff). (Equation S1 9)
fOPopen(min) kon(min) (kon(max) + koff)
To ensure that this transcriptional fold-change is the same in the promoter-switching model as the main model (F = fax/fmin = 40), we
must therefore set

kon(max)koff

39K on(max) + 40Koft (Equation S20)

kon(min) =

Furthermore, to ensure that average transcription rates in the active and repressed states are the same as those of the main model,
we also set

frnin = fOPopen(min)~ (Equation 821)
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With fmin = 107 s~ (Figure 1D), we therefore obtain,

-4
fy = 107 (Kontrin) +hon) (Equation S22)
kon(min)

With this formulation, the promoter is 40 times more likely to be open in the active than the repressed chromatin state; average burst
duration is constant (determined by k.¢); and the average rate of transcription from an open promoter is scaled to maintain the
same mean transcription rate in the fully repressed state as in the main model. It is important to note, however, that for
Kongminy > Kofts Popenminy = 1, and fo = 1074 s~ . That is, the promoter is always ‘open’, even in the repressed chromatin state. In
this regime, the model breaks down because transcription cannot be up-regulated by increasing k., and neither the chromatin state
nor trans-factors can exert an activating effect on transcription. To ensure that the required transcriptional regulation can be achieved
through modulation of k., alone, we restrict our analysis to the region of parameter space where Konmax) < Kofr. This ensures that the
average time between bursts is always longer than the average burst duration, which is consistent with experimental observations in
mammalian cells (Dar et al., 2012; Molina et al., 2013; Skinner et al., 2016; Suter et al., 2011).

With this model formulation there are two free parameters that control the extent to which transcription occurs constitutively or in
episodic bursts: konmax) and kos. Parameter values for chromatin dynamics obtained from fitting the main model remain unchanged in
this model (Pr = 1/3, kme = 8 X 107 histone ™ 's™", pgem = 4 x 1072 histone ™ 'transcription™", pex = 102 histone ™ 'transcription).

We simulated the promoter switching model over a range of values of konmax) and ks (Figure S4) and calculated Pon, Porr, B, and
FP from simulations. B was determined using Equation S9, with Poy, Porr as in Equations S11 and S12. FP was calculated using
Equation S14. Parameter ranges chosen include (but are not limited to) promoter on- and off-rates estimated from experiments
(Dar et al., 2012; Molina et al., 2013; Skinner et al., 2016; Suter et al., 2011). Figures S4G-S4N show example simulations for selected
parameters indicated in Figure S4A. Over this parameter range, average promoter-closed durations in the active expression state
vary from much shorter than a cell cycle (e.g Figures S4G and S4H), to much longer than a cell cycle (e.g. Figures S4M and S4N).
When konmax) @nd Koz are both fast (short open and closed durations), burst size is < 1, and transcription becomes approximately
Poissonian. As expected, the model generates bistability in such cases (Figure S4E). However, as konmax) is reduced, burst frequency
is reduced (Figure S4B) and the transcription rate in the ‘open’ state increases (Figure S4A). For small enough values of Konmax), this
causes instability of the active state because transcription does not occur frequently enough to prevent the accumulation of
H3K27me2/me3 (as shown by the increase in Porr and reduction in B and FP as konmax) is reduced in Figures S4D-S4F). However,
this loss of bistability only occurs for very low values of konmax) = 5 X 107%s™", which corresponds to average promoter-closed du-
rations of approximately 5 hr in the active state. Typical literature estimates for k,,, in mammalian cells range from 10~%to 1073 s~
(Dar et al., 2012; Molina et al., 2013; Skinner et al., 2016; Suter et al., 2011). Over this range, both the active and repressed states
remain quite stable over a wide range of burst sizes and durations (Figures S4E and S4F), demonstrating that our model is capable
of maintaining cis epigenetic memory even when transcription occurs in bursts.

Next, we determined the consequences of bursty transcription on robustness by examining its effect on the cis memory window.
We first selected parameter values that gave bursty transcription within the range observed experimentally: Konmax) =5 X 10745
and ko =5 X 1073 s~ (corresponding to open-promoter durations of 3 minutes and closed durations of 30 minutes for the active
state). Example simulations are shown in Figures S40 and S4P. Like the chromatin state, « influences k., rather than £y in this model
(see equation for ko, in Figure S3B). The main model considered in this work included a limit on the maximum probability per unit time
of transcription initiation, f < 1/60 s~ . Inthe promoter state-switching model, the rate of transcription initiation in the open promoter
state, fy is determined by Equation S22. To maintain correspondence with the average transcription rates of the main model when fy >
1/60 s, we introduce a restriction on ko, by requiring that

foPopen<1/60s7". (Equation S23)
Substituting Popen = kon/(Kon + Koff) gives the condition,

koff

<L—
Kon < 60 8)f, — 1

(Equation S24)
With these selected values of konmax and Ko, and the limitation on k., imposed by Equation S24, we then performed simulations of
the promoter-switching model at different fixed values of the trans-activation strength, « (similar to Figures 2C and 2D). Similar to the
main model, we observed a robust window of trans-activation strengths within which the initial chromatin state tends to be main-
tained and therefore contributes to transcriptional output. Outside this window the H3K27 methylation state is determined entirely
by the trans-activation strength (Figure S4Q). The transcriptional output increases more slowly as a function of « for the pro-
moter-switching model than the non-bursty transcription model in the main text. This is because in the promoter-switching model,
transcription is no longer a linear function of «, but rather it is a linear function of Pgpen = kon(@)/(Kon(c)+kos). We also calculated the
mean first passage times for the active and repressed initial states as a function of « (Figure S4R). For both states, lifetimes are
very slightly reduced for bursty versus non-bursty transcription, however average lifetimes greater than 200 cell cycles were still
achieved when « = 1, again underlining the robustness of these states.

Overall, we have shown that our integrated model of transcription and chromatin is able to provide robust cis epigenetic memory
over a wide range of transcriptional burst sizes and durations.
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Additional Details of the Main Model

In the main text, we presented an overview and brief justification for features included in the model. For the sake of brevity, some
details and additional considerations were omitted from the main text. We now discuss these points in more detail.

Noisy Demethylation

Transcription-coupled demethylation occurs on average with rate fpgem. In the model, noisy demethylation occurs through both
transcription-dependent and transcription-independent mechanisms. For simplicity, the rate of transcription-independent noisy
demethylation, yqem is set equal to the rate of transcription-dependent noisy demethylation fin0gem- This ensures that in the maxi-
mally repressed state, demethylation occurs through both transcription-dependent and transcription-independent mechanisms with
equal probability. With f,,ax = 40frin, transcription-coupled demethylation in the repressed state (fminPgem) is equal to 2.5% of the rate
of transcription-coupled demethylation in the active state (fhaxPgem). TOgether with transcription-independent noisy demethylation,
Ydem = fminPdem, the total rate of (noisy) demethylation in the repressed state is 5% of the maximum rate of transcription-coupled
demethylation in the active state. This ‘signal-to-noise’ level in demethylation is therefore equivalent to that of noisy methylation
(5%), which is captured by the parameters vmeo—1 = kmeo—1/20, Yme1—2 = Kme1—-2/20, Ymes_3 = kme/20, as described in the main text.
Mitosis

Throughout this work, the effect of chromosome condensation during mitosis on chromatin states has been ignored. During mitosis,
histones are retained at similar locations and their H3K27-methylation status is maintained (Alabert et al., 2015; Annunziato, 2005;
Gaydos et al., 2012). It is also known experimentally that transcription is actively repressed (Spencer et al., 2000) and that the majority
of Polycomb group proteins dissociate from chromatin (Fonseca et al., 2012). This suggests that both transcription and H3K27-
methylation occur with lower probability on condensed chromatin during mitosis. Based on these data, it is assumed that chromatin
states are not substantially biased toward activation or repression during mitosis. With this assumption, mitosis effectively represents
a ‘pause’ in the state of the system and is therefore not included in the model.

Active Chromatin Marks

In our main model, we showed that transcription-coupled histone demethylation and histone exchange constitute sufficient antag-
onism of PRC2 silencing to ensure robust stability of the active state. However, considerable molecular and genetic evidence indi-
cates that Polycomb repression is also antagonized by the Trithorax group of proteins (Klymenko and Mdller, 2004; Petruk et al.,
2001). This is thought to be mediated in part by H3K4 and H3K36 methylation, which are commonly associated with highly tran-
scribed genes and are refractory to PRC2-mediated H3K27 methylation (Tie et al., 2014; Yuan et al., 2011). However, it is currently
unclear if any of these ‘active marks’ are capable of positive feedback independent from transcription. Without such direct positive
feedback, these ‘active marks’ are not sufficient to instruct their own maintenance and were therefore omitted from our model. One
possibility to explain the requirement for Trithorax group proteins in antagonism of PRC2 (Klymenko and Muller, 2004; Tie et al., 2014)
is that these active histone marks are laid down by transcription-coupled processes in order to antagonize PRC2-silencing. In addi-
tion, these marks could increase the probability of transcription initiation by promoting histone acetylation, including that of H3K27
(Tie et al., 2014). Together, these two effects would generate an indirect positive feedback for active marks mediated by transcription.
This could easily be included as an extension to our model and would constitute another mechanism by which transcription antag-
onizes PRC2. By stabilizing the active state, this would increase the width of the cis-memory window. However, there may still be
cases where transcription is less involved in the antagonism of Polycomb silencing, a potential example being the bxd Polycomb
Response Element (PRE) in Drosophila (Erokhin et al., 2015).

Histone Exchange

Many experimental studies have attempted to quantify rates of histone exchange. Metabolic labelling experiments in Saccharomyces
cerevisiae indicated that H2B is exchanged more often than H3, and that H3 exchange is correlated with gene expression level (Dion
et al., 2007; Jamai et al., 2007). These studies found that up to 50% of H3 over the coding region could be replaced within one hour,
but failed to detect H3 exchange at inactive genes. Similarly, pulse-chase experiments in Drosophila cell culture estimated mean his-
tone residence times of a few hours at actively transcribed genes (Deal et al., 2010). These measurements were, however, limited to a
short labelling duration, preventing accurate determination of slow rates of exchange.

Histone exchange rates have also been measured by microscopy, using Fluorescence Recovery After Photobleaching (FRAP) of
fluorescently-labelled histones (Kimura and Cook, 2001). In HeLa cells, this suggested a wide range of histone exchange rates across
the genome, with a substantial portion of H3 and H4 histones remaining in place over the entire experiment, lasting 8.5 hr.

Relative rates of histone exchange across the genome have also been inferred from the patterns of accumulation of H3 var-
iants H3.1 and H3.3 (Jin et al., 2009). Histone H3.3 is incorporated in chromatin independently of DNA replication, while H3.1
incorporation is coupled to replication (Tagami et al., 2004). In human and mouse cells, H3.3 levels are positively correlated
with transcriptional activity (Ray-Gallet et al., 2011), and both H3.3 and histone exchange are reduced at repressed Polycomb
targets (Deaton et al., 2016; Kraushaar et al., 2013). These data are consistent with histone exchange being slow at repressed
PRC2 target genes, but occurring on time-scales similar to (or faster than) the cell cycle when these same genes are highly
transcribed.

The mechanistic basis of the transcription-dependence of histone exchange is unknown (reviewed in (Venkatesh and Workman,
2015)). This effect may be due to a more compact chromatin structure and lower levels of histone acetylation at repressed genes,
which tends to promote retention of histones (reviewed in (Zentner and Henikoff, 2013)). Alternatively, transcription may be physically
coupled to the exchange machinery (Ray-Gallet et al., 2011), or histones may sometimes be lost as Pol Il traverses the nucleosome
(Kulaeva et al., 2013). All of these possibilities result in removal of modified histones with low probability at each transcription event. In
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the model, we therefore chose to couple histone exchange to transcription. That is, each passage of Pol Il in the model has the
capacity to remove an H3/H4 tetramer. Actual histone exchange rates in the model depend on both the probability of histone ex-
change per transcription event, and the transcription initiation rate, . Because histone exchange is directly coupled to transcription,
the maximum fold-change in the transcription initiation rate, F = f,,2x/fmin Provides an upper bound on the fold-change in histone resi-
dence times between the active and repressed states. To break this linear coupling would require a more complicated function
relating transcription and histone exchange. Without additional information about how histone exchange changes as a function of
transcriptional activation, there is little rationale for such a change. Therefore, we chose the simplest function that yields the
conserved correlation between histone lifetime and transcription level.

Transcription-Dependent H3.3 Accumulation Constrains the Histone Exchange Probability

Having adopted this functional relationship between transcription and histone exchange in our model, it is necessary to set a param-
eter value for the histone exchange probability, pex. The value adopted in Box 1, and used throughout the remainder of the manuscript
was pex = 1072 histone™ transcription—". We now show that with this parameter value, our model can reproduce the experimental
observations of transcription-dependent H3.3 accumulation, and low histone exchange in the repressed state (Deaton et al., 2016;
Kraushaar et al., 2013; Ray-Gallet et al., 2011).

To quantify H3.3 accumulation in our model, we performed simulations in which histones incorporated during transcription-depen-
dent histone exchange were labelled as ‘H3.3’, while those incorporated at DNA replication were labelled as ‘H3.1’ (Figures S6A and
S6B). We then calculated the difference in H3.3 levels between simulations initialized in the active state and those initialized in the
repressed state (H = \ (H3.3)on — <H3.3)OFF|, where () indicates a time-average). In the bistable regime, high H values indicate strong
transcription-dependence of H3.3 abundance, as experimentally observed. Although histone exchange is directly coupled to tran-
scription in our model, transcription-dependent H3.3 accumulation is not automatically obtained for all bistable parameter sets (Fig-
ures S6C and S6D). For example, if pey is too low, H3.3 does not accumulate even in the active state (Figure S6F), and if pey is too high,
H3.3 accumulates even in the repressed state (Figure S6K). However, with pey = 1072 histone ™" transcription ', and the fitted param-
eter values in Figure S6M, our model reproduces two semi-quantitative experimental results: low histone exchange in the repressed
state and transcription-dependent H3.3 accumulation.

Fitting Triple-SILAC Mass Spectrometry Data

Published SILAC data (Alabert et al., 2015) were generated in the laboratories of Anja Groth (Biotech Research and Innovation Center,
Copenhagen) and Axel Imhof (Ludwig-Maximilians Universitat, Munich), and were obtained as processed data from Carsten Marr
(Institute of Computational Biology, Helmholtz Zentrum, Munich), with permission.

As described in (Alabert et al., 2015), data were normalised to yield H3K27me3 levels on ‘old’ and ‘new’ histones as a proportion of
the total old and new labeled peptides measured at each time point. Simulation results for H3K27me3 levels on old and new histones
were initially also expressed as a proportion of the levels of old and new histones, respectively. However, because mass spectrom-
etry data represent a genome-wide average, and simulations represent a single PRC2-target gene, simulation data must be scaled in
order to make a quantitative comparison with experiments. To do so, simulation data were further normalised so that the average
simulated cell-cycle-end value of H3K27me3 on total histones, Pnes eng Was equal to the proportion of H3K27me3 on old histones
att =0 (0.301), obtained experimentally. That is, each simulation time point was multiplied by the factor 0.301/Ppe3 eng- This is valid
because all histones are labeled as old at t = 0, so the value 0.301 also represents the relative amount of H3K27me3 on total histones
at the end of each cell cycle.

After this normalisation, the t = 0, 10, 24, 48 hr experimental time points for old and new histones were compared with equivalent
model time-points using the sum of squared errors. Three biological replicates were available for each time point (Alabert
et al., 2015).

The normalisation procedure requires that the model is epigenetically stable over many cell cycles in the repressed state in
order that the extracted Pne3 eng COrrectly normalises the simulated data at the start of the cell cycle in which ‘new’ histones
are added. In Figures S7A and S7B, it can be seen that the normalisation fails for some of the unstable models for low values
of kme. This is because the repressed (high-me3) state is generally not maintained through the equilibration cycles before new
histones are added.

We did not attempt to fit our model to time-dependent data for H3K27me1 because not all H3K27me1 in the genome is dependent
on PRC2 (Ferrari et al., 2014). Nor did we fit H3K27me2, because this modification forms large intergenic and intragenic domains
beyond the scope of our current model (Ferrari et al., 2014). Nevertheless, since our model incorporates non-processive H3K27
methylation with rates Kmeo_1 > Kme1_2 > Kme2_3 = Kme, it is qualitatively consistent with slower accumulation of H3K27me3 than
H3K27me1 and H3K27me2, as observed experimentally (Alabert et al., 2015).

Itis also important to remember that the SILAC data represent genome-wide averages. It is therefore not guaranteed that the time-
scale extracted through the analysis reflects that of a gene whose repression actually depends on H3K27me2/me3. For this reason,
faster H3K27 methylation dynamics (similar to Figures B1B and B1D) cannot be excluded in all cases.
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Stochastic Model of a Noisy Transcriptional Regulator

The following model was used in (Ozbudak et al., 2002) to investigate how rates of transcription and translation affect variability in
protein abundance over time. In the present work it is used as an arbitrary ‘noisy’ input function representing the expression of a
trans-regulator:

DNAZ mRNA S ¢ (Equation S25)
sp . dp .
mRNA — Protein — ¢. (Equation S26)

In steady state, (MRNA) =sg/dr and (Protein) =sgb/dp, where () indicates an average over time and b = sp/dg is the average num-
ber of proteins synthesised per mRNA transcript (Ozbudak et al., 2002). The ‘noise’ in protein abundance is controlled by the value
of b, with larger b giving a more variable output.

To simulate a transcriptional regulatory protein with variable concentration r(t), the following parameter values were used, dg =
1/2 hr™', dp = 1/12 hr™", Sg=d,(r(t))/b hour™', sp = drb hour~'. Specifying the mean number of regulatory proteins as
(r(t))=1000, the noise can then be varied using the single parameter (B) Higher values of b indicate greater noise. The variable
gene activation function «(t) is then given by «(t) = r(t)/(r(t)).

The number of protein and RNA molecules were explicitly simulated using the Gillespie algorithm according to the model specified
in Equations S25 and S26. These simulations to generate «(t) were performed concurrently with simulations of the chromatin state.

To generate Figure 3A, stochastic simulations of «(t) used be {1, 2, 9, 23, 43, 71, 106, 149, 200, 259, 327, 404, 489, 583, 687, 799,
922, 1053, 1195}. This generated stochastic inputs «(t) with noise ranging from CV = 0-1. Figures 3B-3E and S8B-S8E used b = 1 for
‘low noise’ (CV = 0) and b = 1,000 for ‘high noise’ (CV = 1).
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