Filter

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific facilities. Pre-prints by Institute authors can be viewed on the Institute's bioRxiv channel. We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

V Katsanou, S Milatos, A Yiakouvaki, N Sgantzis, A Kotsoni, M Alexiou, V Harokopos, V Aidinis, M Hemberger, DL Kontoyiannis Epigenetics

HuR is an RNA-binding protein implicated in a diverse array of pathophysiological processes due to its effects on the posttranscriptional regulation of AU- and U-rich mRNAs. Here we reveal HuR's requirement in embryonic development through its genetic ablation. Obligatory HuR-null embryos exhibited a stage retardation phenotype and failed to survive beyond midgestation. By means of conditional transgenesis, we restricted HuR's mutation in either embryonic or endothelial compartments to demonstrate that embryonic lethality is consequent to defects in extraembryonic placenta. HuR's absence impaired the invagination of allantoic capillaries into the chorionic trophoblast layer and the differentiation of syncytiotrophoblast cells that control the morphogenesis and vascularization of the placental labyrinth and fetal support. HuR-null embryos rescued from these placental defects proceeded to subsequent developmental stages but displayed defects in skeletal ossification, fusions in limb elements, and asplenia. By coupling gene expression measurements, data meta-analysis, and HuR-RNA association assays, we identified transcription and growth factor mRNAs controlled by HuR, primarily at the posttranscriptional level, to guide morphogenesis, specification, and patterning. Collectively, our data demonstrate the dominant role of HuR in organizing gene expression programs guiding placental labyrinth morphogenesis, skeletal specification patterns, and splenic ontogeny.

+view abstract Molecular and cellular biology, PMID: 19307312 2009

E Meyer, D Lim, S Pasha, LJ Tee, F Rahman, JR Yates, CG Woods, W Reik, ER Maher Epigenetics

Beckwith-Wiedemann syndrome (BWS) is a fetal overgrowth and human imprinting disorder resulting from the deregulation of a number of genes, including IGF2 and CDKN1C, in the imprinted gene cluster on chromosome 11p15.5. Most cases are sporadic and result from epimutations at either of the two 11p15.5 imprinting centres (IC1 and IC2). However, rare familial cases may be associated with germline 11p15.5 deletions causing abnormal imprinting in cis. We report a family with BWS and an IC2 epimutation in which affected siblings had inherited different parental 11p15.5 alleles excluding an in cis mechanism. Using a positional-candidate gene approach, we found that the mother was homozygous for a frameshift mutation in exon 6 of NLRP2. While germline mutations in NLRP7 have previously been associated with familial hydatidiform mole, this is the first description of NLRP2 mutation in human disease and the first report of a trans mechanism for disordered imprinting in BWS. These observations are consistent with the hypothesis that NLRP2 has a previously unrecognised role in establishing or maintaining genomic imprinting in humans.

+view abstract PLoS genetics, PMID: 19300480 2009

A Saudemont, F Garçon, H Yadi, M Roche-Molina, N Kim, A Segonds-Pichon, A Martín-Fontecha, K Okkenhaug, F Colucci Immunology

The mechanisms that regulate NK cell trafficking are unclear. Phosphoinositide-3 kinases (PI3K) control cell motility and the p110gamma and p110delta isoforms are mostly expressed in leukocytes, where they transduce signals downstream of G protein coupled receptors (GPCR) or tyrosine kinase receptors, respectively. Here, we set out to determine the relative contribution of p110gamma and p110delta to NK cell migration in mice. Using a combination of single-cell imaging analysis of transgenic cells reporting on PI3K activity in real time and small molecule inhibitors of p110gamma and p110delta, we show here that the tyrosine-kinase coupled p110delta is linked to GPCR signaling and, depending on the GPCR, may even be preferentially activated over p110gamma. Using gene-targeted mice, we showed that both isoforms were essential for NK cell chemotaxis to CXCL12 and to CCL3 and, in vivo, for normal NK cell migration during pregnancy and to the inflamed peritoneum. By contrast, only p110delta was indispensable for chemotaxis to S1P and CXCL10 and for NK cell distribution throughout lymphoid and nonlymphoid tissues and for extravasation to tumors. These results implicate p110delta downstream of GPCRs in NK cells and highlight its nonredundant role as a key regulator of NK cell trafficking in health and disease.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 19297623 2009

B Stockinger, M Veldhoen, K Hirota Immunology

The elucidation of the crucial differentiation factors for the new Th17 CD4 effector T-cell subset spurred an explosive growth in research publications focused on these cells and led to rapid advances in knowledge concerning their regulation and functional activities. Here we discuss recent discoveries linking the development and functional potential of Th17 cells to a transcription factor that mediates the response to exogenous and endogenous environmental signals.

+view abstract European journal of immunology, PMID: 19283715 2009

DR Higazi, CJ Fearnley, FM Drawnel, A Talasila, EM Corps, O Ritter, F McDonald, K Mikoshiba, MD Bootman, HL Roderick

Ca(2+) elevations are fundamental to cardiac physiology-stimulating contraction and regulating the gene transcription that underlies hypertrophy. How Ca(2+) specifically controls gene transcription on the background of the rhythmic Ca(2+) increases required for contraction is not fully understood. Here we identify a hypertrophy-signaling module in cardiac myocytes that explains how Ca(2+) discretely regulates myocyte hypertrophy and contraction. We show that endothelin-1 (ET-1) stimulates InsP(3)-induced Ca(2+) release (IICR) from perinuclear InsP(3)Rs, causing an elevation in nuclear Ca(2+). Significantly, we show that IICR, but not global Ca(2+) elevations associated with myocyte contraction, couple to the calcineurin (CnA)/NFAT pathway to induce hypertrophy. Moreover, we found that activation of the CnA/NFAT pathway and hypertrophy by isoproterenol and BayK8644, which enhance global Ca(2+) fluxes, was also dependent on IICR and nuclear Ca(2+) elevations. The activation of IICR by these activity-enhancing mediators was explained by their ability to stimulate secretion of autocrine/paracrine ET-1.

+view abstract Molecular cell, PMID: 19250908 2009

R Gilley, HN March, SJ Cook Signalling

Growth factor-stimulated expression and activation of c-Fos is regulated by the ERK1/2 pathway. However, recent reports have also suggested a prominent role for the closely related ERK5 pathway in regulating the expression, transcriptional activation and nuclear localization of c-Fos. Here we have compared the role of ERK1/2 and ERK5 in regulating c-Fos using a combination of conditional protein kinases, selective biochemical inhibitors and ERK5 null fibroblasts. We demonstrate that activation of the ERK1/2 pathway, but not ERK5, is sufficient for c-Fos phosphorylation and transcriptional activation. Furthermore, growth factor-dependent expression of c-Fos is blocked by low doses of PD184352 that selectively inhibit the ERK1/2 pathway but proceeds normally in ERK5-/- 3T9 cells; in addition, nuclear localization of c-Fos is normal in ERK5-/- cells. ERK5-/- cells are, however, defective for c-Jun expression but this is reversed by re-expression of ERK5. In addition to ERK5, neither the JNK nor p38 pathways can substitute for ERK1/2 in the regulation of c-Fos transcriptional activity. These results demonstrate that c-Fos transcriptional activity is not regulated by the ERK5 pathway; rather, of all the MAPKs and SAPKs, c-Fos activation appears to be predominantly linked to the ERK1/2 pathway.

+view abstract Cellular signalling, PMID: 19249353 2009

ST da Rocha, M Charalambous, SP Lin, I Gutteridge, Y Ito, D Gray, W Dean, AC Ferguson-Smith Epigenetics

Genomic imprinting is a normal process that causes genes to be expressed according to parental origin. The selective advantage conferred by imprinting is not understood but is hypothesised to act on dosage-critical genes. Here, we report a unique model in which the consequences of a single, double, and triple dosage of the imprinted Dlk1/Pref1, normally repressed on the maternally inherited chromosome, can be assessed in the growing embryo. BAC-transgenic mice were generated that over-express Dlk1 from endogenous regulators at all sites of embryonic activity. Triple dosage causes lethality associated with major organ abnormalities. Embryos expressing a double dose of Dlk1, recapitulating loss of imprinting, are growth enhanced but fail to thrive in early life, despite the early growth advantage. Thus, any benefit conferred by increased embryonic size is offset by postnatal lethality. We propose a negative correlation between gene dosage and survival that fixes an upper limit on growth promotion by Dlk1, and we hypothesize that trade-off between growth and lethality might have driven imprinting at this locus.

+view abstract PLoS genetics, PMID: 19247431 2009

J Houseley, D Tollervey Epigenetics

From the earliest comparisons of RNA production with steady-state levels, it has been clear that cells transcribe more RNA than they accumulate, implying the existence of active RNA degradation systems. In general, RNA is degraded at the end of its useful life, which is long for a ribosomal RNA but very short for excised introns or spacer fragments, and is closely regulated for most mRNA species. RNA molecules with defects in processing, folding, or assembly with proteins are identified and rapidly degraded by the surveillance machinery. Because RNA degradation is ubiquitous in all cells, it is clear that it must be carefully controlled to accurately recognize target RNAs. How this is achieved is perhaps the most pressing question in the field.

+view abstract Cell, PMID: 19239894 2009

CP Ponting, PL Oliver, W Reik Epigenetics

RNA is not only a messenger operating between DNA and protein. Transcription of essentially the entire eukaryotic genome generates a myriad of non-protein-coding RNA species that show complex overlapping patterns of expression and regulation. Although long noncoding RNAs (lncRNAs) are among the least well-understood of these transcript species, they cannot all be dismissed as merely transcriptional "noise." Here, we review the evolution of lncRNAs and their roles in transcriptional regulation, epigenetic gene regulation, and disease.

+view abstract Cell, PMID: 19239885 2009

L Conforti, A Wilbrey, G Morreale, L Janeckova, B Beirowski, R Adalbert, F Mazzola, M Di Stefano, R Hartley, E Babetto, T Smith, J Gilley, RA Billington, AA Genazzani, RR Ribchester, G Magni, M Coleman Signalling

The slow Wallerian degeneration (Wld(S)) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70-amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide-synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of Wld(S)-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the Wld(S) VCP-binding domain with an alternative ataxin-3-derived VCP-binding sequence restores its protective function. Enzyme-dead Wld(S) is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. Wld(S) requires both of its components to protect axons from degeneration.

+view abstract The Journal of cell biology, PMID: 19237596 2009

Liston A, Kohler RE, Townley S, Haylock-Jacobs S, Comerford I, Caon AC, Webster J, Harrison JM, Swann J, Clark-Lewis I, Korner H, McColl SR Immunology

Chemokines are essential for homeostasis and activation of the immune system. The chemokine ligand/receptor pairing CCL20/CCR6 is interesting because these molecules display characteristics of both homeostatic and activation functions. These dual characteristics suggest a role for CCR6 in the priming and effector phases of the immune response. However, while CCR6 has been implicated in the effector phase in several models, a role in the priming phase is less clear. Herein we analyze the role of CCR6 in these two important arms of the immune response during experimental autoimmune encephalomyelitis (EAE). Both CCR6 and its chemokine ligand CCL20 were up-regulated in the draining lymph nodes and spinal cord during EAE, and CCR6 was up-regulated on CD4(+) T cells that had divided following induction of EAE. The functional role of this expression was demonstrated by impaired development of EAE in gene-targeted CCR6-deficient mice and in mice treated either with a neutralizing anti-CCR6 Ab or with a novel receptor antagonist. Inhibition of EAE was due to reduced priming of autoreactive CD4(+) T cells probably as a result of impaired late-stage influx of dendritic cells into draining lymph nodes. This was accompanied by reduced egress of activated lymphocytes from the lymph nodes. These results demonstrate a novel role for CCR6 in the mechanism of autoreactive lymphocyte priming and emigration to the efferent lymphatics.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 19234209 2009

S Kohlhaas, OA Garden, C Scudamore, M Turner, K Okkenhaug, E Vigorito Immunology

Foxp3 is a transcription factor that is essential for the normal development of regulatory T cells (Tregs). In the absence of microRNAs (miRNAs), Foxp3(+) Tregs develop but fail to maintain immune homeostasis, leading to a scurfy-like disease. Global analysis of the network of genes regulated by Foxp3 has identified the miRNA miR-155, which is highly expressed in Tregs, as a direct target of Foxp3. In this study we report that miR-155-deficient mice have reduced numbers of Tregs, both in the thymus and periphery, due to impaired development. However, we found no evidence for defective suppressor activity of miR-155-deficient Tregs, either in vitro or in vivo. Our results indicate that miR-155 contributes to Treg development, but that additional miRNAs control Treg function.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 19234151 2009

Linterman MA, Rigby RJ, Wong RK, Yu D, Brink R, Cannons JL, Schwartzberg PL, Cook MC, Walters GD, Vinuesa CG Immunology

Production of high-affinity pathogenic autoantibodies appears to be central to the pathogenesis of lupus. Because normal high-affinity antibodies arise from germinal centers (GCs), aberrant selection of GC B cells, caused by either failure of negative selection or enhanced positive selection by follicular helper T (T(FH)) cells, is a plausible explanation for these autoantibodies. Mice homozygous for the san allele of Roquin, which encodes a RING-type ubiquitin ligase, develop GCs in the absence of foreign antigen, excessive T(FH) cell numbers, and features of lupus. We postulated a positive selection defect in GCs to account for autoantibodies. We first demonstrate that autoimmunity in Roquin(san/san) (sanroque) mice is GC dependent: deletion of one allele of Bcl6 specifically reduces the number of GC cells, ameliorating pathology. We show that Roquin(san) acts autonomously to cause accumulation of T(FH) cells. Introduction of a null allele of the signaling lymphocyte activation molecule family adaptor Sap into the sanroque background resulted in a substantial and selective reduction in sanroque T(FH) cells, and abrogated formation of GCs, autoantibody formation, and renal pathology. In contrast, adoptive transfer of sanroque T(FH) cells led to spontaneous GC formation. These findings identify T(FH) dysfunction within GCs and aberrant positive selection as a pathway to systemic autoimmunity.

+view abstract The Journal of experimental medicine, PMID: 19221396 2009

Linterman MA, Rigby RJ, Wong R, Silva D, Withers D, Anderson G, Verma NK, Brink R, Hutloff A, Goodnow CC, Vinuesa CG Immunology

During evolutionary adaptation in the immune system, host defense is traded off against autoreactivity. Signals through the costimulatory receptor CD28 enable T cells to respond specifically to pathogens, whereas those through the related costimulatory receptor, ICOS, which arose by gene duplication, are critical for affinity maturation and memory antibody responses. ICOS ligand, unlike the pathogen-inducible CD28 ligands, is widely and constitutively expressed in the immune system. Here, we show that crosstalk between these two pathways provides a mechanism for obviating the normal T cell dependence on CD28. Several CD28-mediated responses-generation of follicular helper T cells, germinal center formation, T helper 1 cell-dependent extrafollicular antibody responses to Salmonella and bacterial clearance, and regulatory T cell homeostasis-became independent of CD28 and dependent on ICOS when the E3 ubiquitin ligase Roquin was mutated. Mechanisms to functionally compartmentalize ICOS and CD28 signals are thus critical for two-signal control of normal immune reactions.

+view abstract Immunity, PMID: 19217324 2009

L Gillies, SC Lee, JS Long, N Ktistakis, NJ Pyne, S Pyne Signalling

We show here that the endogenous sphingosine 1-phosphate 5 receptor (S1P(5), a G protein coupled receptor (GPCR) whose natural ligand is sphingosine 1-phosphate (S1P)) and sphingosine kinases 1 and 2 (SK1 and SK2), which catalyse formation of S1P, are co-localised in the centrosome of mammalian cells, where they may participate in regulating mitosis. The centrosome is a site for active GTP-GDP cycling involving the G-protein, G(i) and tubulin, which are required for spindle pole organization and force generation during cell division. Therefore, the presence of S1P(5) (which normally functions as a plasma membrane guanine nucleotide exchange factor, GEF) and sphingosine kinases in the centrosome might suggest that S1P(5) may function as a ligand activated GEF in regulating G-protein-dependent spindle formation and mitosis. The addition of S1P to cells inhibits trafficking of S1P(5) to the centrosome, suggesting a dynamic shuttling endocytic mechanism controlled by ligand occupancy of cell surface receptor. We therefore propose that the centrosomal S1P(5) receptor might function as an intracellular target of S1P linked to regulation of mitosis.

+view abstract Cellular signalling, PMID: 19211033 2009

D Bending, H De la Peña, M Veldhoen, JM Phillips, C Uyttenhove, B Stockinger, A Cooke Immunology

Th17 cells are involved in the pathogenesis of many autoimmune diseases, but it is not clear whether they play a pathogenic role in type 1 diabetes. Here we investigated whether mouse Th17 cells with specificity for an islet antigen can induce diabetes upon transfer into NOD/SCID recipient mice. Induction of diabetes in NOD/SCID mice via adoptive transfer of Th1 cells from BDC2.5 transgenic mice was prevented by treatment of the recipient mice with a neutralizing IFN-γ-specific antibody. This result suggested a major role of Th1 cells in the induction of disease in this model of type 1 diabetes. Nevertheless, transfer of highly purified Th17 cells from BDC2.5 transgenic mice caused diabetes in NOD/SCID recipients with similar rates of onset as in transfer of Th1 cells. However, treatment with neutralizing IL-17-specific antibodies did not prevent disease. Instead, the transferred Th17 cells, completely devoid of IFN-γ at the time of transfer, rapidly converted to secrete IFN-γ in the NOD/SCID recipients. Purified Th17 cells also upregulated Tbet and secreted IFN-γ upon exposure to IL-12 in vitro and in vivo in NOD/SCID recipients. These results indicate substantial plasticity of Th17 commitment toward a Th1-like profile.

+view abstract The Journal of clinical investigation, PMID: 19188681 2009

Wilson S, Taskila T, Ismail T, Stocken DD, Martin A, Redman V, Wakelam M, Perry I, Hobbs R Signalling

Bowel cancer is common and a major cause of death. The NHS is currently rolling out a national bowel cancer screening programme that aims to cover the entire population by 2010. The programme will be based on the Faecal Occult Blood test (FOBt) that reduces mortality from colon cancer by 16%. However, FOB testing has a relatively low positive predictive value, with associated unnecessary cost, risk and anxiety from subsequent investigation, and is unacceptable to a proportion of the target population. Increased levels of an enzyme called matrix metalloproteinase 9 (MMP9) have been found to be associated with colorectal cancer, and this can be measured from a blood sample. MMP9 has potential for detecting those at risk of having colorectal cancer. The aim of this study is to assess whether MMP9 estimation enhances the predictive value of a positive FOBt.

+view abstract BMC cancer, PMID: 19175925 2009

G Morreale, L Conforti, J Coadwell, AL Wilbrey, MP Coleman Signalling

Endoplasmic reticulum (ER)-associated degradation (ERAD) is a cell-autonomous process that eliminates large quantities of misfolded, newly synthesized protein, and is thus essential for the survival of any basic eukaryotic cell. Accordingly, the proteins involved and their interaction partners are well conserved from yeast to mammals, and Saccharomyces cerevisiae is widely used as a model system with which to investigate this fundamental cellular process. For example, valosin-containing protein (VCP) and its yeast homologue cell division cycle protein 48 (Cdc48p), which help to direct polyubiquitinated proteins for proteasome-mediated degradation, interact with an equivalent group of ubiquitin ligases in mouse and in S. cerevisiae. A conserved structural motif for cofactor binding would therefore be expected. We report a VCP-binding motif (VBM) shared by mammalian ubiquitin ligase E4b (Ube4b)-ubiquitin fusion degradation protein 2a (Ufd2a), hydroxymethylglutaryl reductase degradation protein 1 (Hrd1)-synoviolin and ataxin 3, and a related sequence in M(r) 78,000 glycoprotein-Amfr with slightly different binding properties, and show that Ube4b and Hrd1 compete for binding to the N-terminal domain of VCP. Each of these proteins is involved in ERAD, but none has an S. cerevisiae homologue containing the VBM. Some other invertebrate model organisms also lack the VBM in one or more of these proteins, in contrast to vertebrates, where the VBM is widely conserved. Thus, consistent with their importance in ERAD, evolution has developed at least two ways to bring these proteins together with VCP-Cdc48p. However, the differing molecular architecture of VCP-Cdc48p complexes indicates a key point of divergence in the molecular details of ERAD mechanisms.

+view abstract The FEBS journal, PMID: 19175675 2009

Roychoudhuri R,Robinson D,Coupland V,Holmberg L,Moller H Immunology

Several epidemiological studies have shown an association between the season in which certain cancers are diagnosed and survival, with diagnosis in summer and autumn being associated with better survival. In this study, we have added resolution to the analysis of seasonality in cancer survival by considering mortality within several nonoverlapping time periods following diagnosis, thereby quantifying the separate contributions of mechanisms operating in the short term and in the longer term. We found evidence of seasonality acting on mortality within 2 distinct periods following diagnosis. Diagnosis in the summer was associated with substantially decreased mortality within the first month of diagnosis compared with winter in men with prostate cancer, those of both sexes with colorectal or lung cancer, and most strikingly, amongst women with breast cancer (hazard ratio 0.81 [95% confidence interval 0.75-0.86]). Adjusting for monthly variations in general mortality greatly attenuated the seasonal effects on short-term mortality. At long-term follow-up (>5 years), there was a consistent shift in the seasonality pattern, with autumn diagnosis alone being associated with decreased mortality, both in female breast cancer cases and in lung cancer cases of both sexes. We conclude that the higher survival observed amongst patients diagnosed in summer and autumn is predominantly a short-term phenomenon that is largely attributable to generally higher mortality in winter. However, the distinct mortality reduction observed in the long term amongst those diagnosed in the autumn, especially amongst breast cancer patients, may indicate the presence of a seasonally variable protective mechanism.

+view abstract International journal of cancer. Journal international du cancer, PMID: 19165867 2009

Wakelam MJ Signalling

+view abstract Methods in molecular biology (Clifton, N.J.), PMID: 19160657 2009

B Beirowski, E Babetto, J Gilley, F Mazzola, L Conforti, L Janeckova, G Magni, RR Ribchester, MP Coleman Signalling

Axon degeneration contributes widely to neurodegenerative disease but its regulation is poorly understood. The Wallerian degeneration slow (Wld(S)) protein protects axons dose-dependently in many circumstances but is paradoxically abundant in nuclei. To test the hypothesis that Wld(S) acts within nuclei in vivo, we redistributed it from nucleus to cytoplasm in transgenic mice. Surprisingly, instead of weakening the phenotype as expected, extranuclear Wld(S) significantly enhanced structural and functional preservation of transected distal axons and their synapses. In contrast to native Wld(S) mutants, distal axon stumps remained continuous and ultrastructurally intact up to 7 weeks after injury and motor nerve terminals were robustly preserved even in older mice, remaining functional for 6 d. Moreover, we detect extranuclear Wld(S) for the first time in vivo, and higher axoplasmic levels in transgenic mice with Wld(S) redistribution. Cytoplasmic Wld(S) fractionated predominantly with mitochondria and microsomes. We conclude that Wld(S) can act in one or more non-nuclear compartments to protect axons and synapses, and that molecular changes can enhance its therapeutic potential.

+view abstract The Journal of neuroscience : the official journal of the Society for Neuroscience, PMID: 19158292 2009

PA Lochhead Signalling

Autophosphorylation of the activation loop in cis is an underappreciated and poorly understood mode of activation of protein kinases. Here, I describe four examples of protein kinases that are activated in this way, concentrating on their biochemical properties and how their autophosphorylation in cis is achieved.

+view abstract Science signaling, PMID: 19155529 2009

G Sanchez-Andrade, KM Kendrick

There is increasing evidence for specialised processing of social cues in the brain. This review considers how the main olfactory system of mammals is designed to process social odours and the effects of learning in a social context. It focuses mainly on extensive research carried out on offspring, mate or conspecific learning carried out in sheep and rodents. Detailing the roles of the olfactory bulb and its projections, classical neurotransmitters, nitric oxide, oestrogen and neuropeptides such as oxytocin and vasopressin in mediating plasticity changes in the olfactory system arising from these different social learning contexts. The relative simplicity of the organisation of the olfactory system, the speed and robustness of these forms of social learning together with the similarity in brain regions and neurochemical contributions across the different learning paradigms make them important and useful models for investigating general principles of learning and memory in the brain.

+view abstract Behavioural brain research, PMID: 19150375 2009

L Redrup, MR Branco, ER Perdeaux, C Krueger, A Lewis, F Santos, T Nagano, BS Cobb, P Fraser, W Reik Epigenetics

Long noncoding RNAs are implicated in a number of regulatory functions in eukaryotic genomes. The paternally expressed long noncoding RNA (ncRNA) Kcnq1ot1 regulates epigenetic gene silencing in an imprinted gene cluster in cis over a distance of 400 kb in the mouse embryo, whereas the silenced region extends over 780 kb in the placenta. Gene silencing by the Kcnq1ot1 RNA involves repressive histone modifications, including H3K9me2 and H3K27me3, which are partly brought about by the G9a and Ezh2 histone methyltransferases. Here, we show that Kcnq1ot1 is transcribed by RNA polymerase II, is unspliced, is relatively stable and is localised in the nucleus. Analysis of conditional Dicer mutants reveals that the RNAi pathway is not involved in gene silencing in the Kcnq1ot1 cluster. Instead, using RNA/DNA FISH we show that the Kcnq1ot1 RNA establishes a nuclear domain within which the genes that are epigenetically inactivated in cis are frequently found, whereas nearby genes that are not regulated by Kcnq1ot1 are localised outside of the domain. The Kcnq1ot1 RNA domain is larger in the placenta than in the embryo, consistent with more genes in the cluster being silenced in the placenta. Our results show for the first time that autosomal long ncRNAs can establish nuclear domains, which might create a repressive environment for epigenetic silencing of adjacent genes. Long ncRNAs in imprinting clusters and the Xist RNA on the inactive X chromosome thus appear to regulate epigenetic gene silencing by similar mechanisms.

+view abstract Development (Cambridge, England), PMID: 19144718 2009