Life Sciences Research for Lifelong Health


The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific services.

Individual publications are linked to the website of the journal - subscriptions may be required to view the full text. The database also includes Open Access publications, which can be identified by the icons found on search results.

Open Access symbolWe are working to provide Open Access to as many publications as possible.

'Green' Open Access publications are marked by the PDF icon. Click on the PDF icon, to access a pre-print PDF version of the publication.

​'Gold' Open Access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription.

Title / Authors / Details Open Access Download

The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy.
Thienpont B, Aronsen JM, Robinson EL, Okkenhaug H, Loche E, Ferrini A, Brien P, Alkass K, Tomasso A, Agrawal A, Bergmann O, Sjaastad I, Reik W, Roderick HL

Cardiac hypertrophic growth in response to pathological cues is associated with reexpression of fetal genes and decreased cardiac function and is often a precursor to heart failure. In contrast, physiologically induced hypertrophy is adaptive, resulting in improved cardiac function. The processes that selectively induce these hypertrophic states are poorly understood. Here, we have profiled 2 repressive epigenetic marks, H3K9me2 and H3K27me3, which are involved in stable cellular differentiation, specifically in cardiomyocytes from physiologically and pathologically hypertrophied rat hearts, and correlated these marks with their associated transcriptomes. This analysis revealed the pervasive loss of euchromatic H3K9me2 as a conserved feature of pathological hypertrophy that was associated with reexpression of fetal genes. In hypertrophy, H3K9me2 was reduced following a miR-217-mediated decrease in expression of the H3K9 dimethyltransferases EHMT1 and EHMT2 (EHMT1/2). miR-217-mediated, genetic, or pharmacological inactivation of EHMT1/2 was sufficient to promote pathological hypertrophy and fetal gene reexpression, while suppression of this pathway protected against pathological hypertrophy both in vitro and in mice. Thus, we have established a conserved mechanism involving a departure of the cardiomyocyte epigenome from its adult cellular identity to a reprogrammed state that is accompanied by reexpression of fetal genes and pathological hypertrophy. These results suggest that targeting miR-217 and EHMT1/2 to prevent H3K9 methylation loss is a viable therapeutic approach for the treatment of heart disease.

+ View Abstract

The Journal of clinical investigation, , 1558-8238, , 2016

PMID: 27893464

Runx1 Orchestrates Sphingolipid Metabolism and Glucocorticoid Resistance in Lymphomagenesis.
Kilbey A, Terry A, Wotton S, Borland G, Zhang Q, Mackay N, McDonald A, Bell M, Wakelam MJ, Cameron ER, Neil JC

The three-membered RUNX gene family includes RUNX1, a major mutational target in human leukemias, and displays hallmarks of both tumor suppressors and oncogenes. In mouse models, the Runx genes appear to act as conditional oncogenes, as ectopic expression is growth suppressive in normal cells but drives lymphoma development potently when combined with over-expressed Myc or loss of p53. Clues to underlying mechanisms emerged previously from murine fibroblasts where ectopic expression of any of the Runx genes promotes survival through direct and indirect regulation of key enzymes in sphingolipid metabolism associated with a shift in the "sphingolipid rheostat" from ceramide to sphingosine-1-phosphate (S1P). Testing of this relationship in lymphoma cells was therefore a high priority. We find that ectopic expression of Runx1 in lymphoma cells consistently perturbs the sphingolipid rheostat, whereas an essential physiological role for Runx1 is revealed by reduced S1P levels in normal spleen after partial Cre-mediated excision. Furthermore, we show that ectopic Runx1 expression confers increased resistance of lymphoma cells to glucocorticoid-mediated apoptosis, and elucidate the mechanism of cross-talk between glucocorticoid and sphingolipid metabolism through Sgpp1. Dexamethasone potently induces expression of Sgpp1 in T-lymphoma cells and drives cell death which is reduced by partial knockdown of Sgpp1 with shRNA or direct transcriptional repression of Sgpp1 by ectopic Runx1. Together these data show that Runx1 plays a role in regulating the sphingolipid rheostat in normal development and that perturbation of this cell fate regulator contributes to Runx-driven lymphomagenesis. J. Cell. Biochem. 118: 1432-1441, 2017. © 2016 Wiley Periodicals, Inc.

+ View Abstract

Journal of cellular biochemistry, 118, 1097-4644, 1432-1441, 2017

PMID: 27869314

Open Access

TET-dependent regulation of retrotransposable elements in mouse embryonic stem cells.
de la Rica L, Deniz Ö, Cheng KC, Todd CD, Cruz C, Houseley J, Branco MR

Ten-eleven translocation (TET) enzymes oxidise DNA methylation as part of an active demethylation pathway. Despite extensive research into the role of TETs in genome regulation, little is known about their effect on transposable elements (TEs), which make up nearly half of the mouse and human genomes. Epigenetic mechanisms controlling TEs have the potential to affect their mobility and to drive the co-adoption of TEs for the benefit of the host.

+ View Abstract

Genome biology, 17, 1474-760X, 234, 2016

PMID: 27863519

Open Access

Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters.
Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM, Sewitz S, Cairns J, Wingett SW, Várnai C, Thiecke MJ, Burden F, Farrow S, Cutler AJ, Rehnström K, Downes K, Grassi L, Kostadima M, Freire-Pritchett P, Wang F, , Stunnenberg HG, Todd JA, Zerbino DR, Stegle O, Ouwehand WH, Frontini M, Wallace C, Spivakov M, Fraser P

Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases.

+ View Abstract

Cell, 167, 1097-4172, 1369-1384.e19, 2016

PMID: 27863249

Open Access

Identifying Causal Genes at the Multiple Sclerosis Associated Region 6q23 Using Capture Hi-C.
Martin P, McGovern A, Massey J, Schoenfelder S, Duffus K, Yarwood A, Barton A, Worthington J, Fraser P, Eyre S, Orozco G

The chromosomal region 6q23 has been found to be associated with multiple sclerosis (MS) predisposition through genome wide association studies (GWAS). There are four independent single nucleotide polymorphisms (SNPs) associated with MS in this region, which spans around 2.5 Mb. Most GWAS variants associated with complex traits, including these four MS associated SNPs, are non-coding and their function is currently unknown. However, GWAS variants have been found to be enriched in enhancers and there is evidence that they may be involved in transcriptional regulation of their distant target genes through long range chromatin looping.

+ View Abstract

PloS one, 11, 1932-6203, e0166923, 2016

PMID: 27861577

Phospholipase D activity couples plasma membrane endocytosis with retromer dependent recycling.
Thakur R, Panda A, Coessens E, Raj N, Yadav S, Balakrishnan S, Zhang Q, Georgiev P, Basak B, Pasricha R, Wakelam MJ, Ktistakis NT, Padinjat R

During illumination, the light sensitive plasma membrane (rhabdomere) of Drosophila photoreceptors undergoes turnover with consequent changes in size and composition. However the mechanism by which illumination is coupled to rhabdomere turnover remains unclear. We find that photoreceptors contain a light-dependent phospholipase D (PLD) activity. During illumination, loss of PLD resulted in an enhanced reduction in rhabdomere size, accumulation of Rab7 positive, rhodopsin1-containing vesicles (RLVs) in the cell body and reduced rhodopsin protein. These phenotypes were associated with reduced levels of phosphatidic acid, the product of PLD activity and were rescued by reconstitution with catalytically active PLD. In wild type photoreceptors, during illumination, enhanced PLD activity was sufficient to clear RLVs from the cell body by a process dependent on Arf1-GTP levels and retromer complex function. Thus, during illumination, PLD activity couples endocytosis of RLVs with their recycling to the plasma membrane thus maintaining plasma membrane size and composition.

+ View Abstract

eLife, 5, 2050-084X, , 2016

PMID: 27848911

Open Access

Assembly of early machinery for autophagy induction: novel insights from high resolution microscopy.
Ktistakis NT, Walker SA, Karanasios E

Oncotarget, , 1949-2553, , 2016

PMID: 27829241

Open Access

Defining cell type with chromatin profiling.
Spivakov M, Fraser P

Nature biotechnology, 34, 1546-1696, 1126-1128, 2016

PMID: 27824844

Platelets in neutrophil recruitment to sites of inflammation.
Pitchford S, Pan D, Welch HC

This review describes the essential roles of platelets in neutrophil recruitment from the bloodstream into inflamed and infected tissues, with a focus on recent findings.

+ View Abstract

Current opinion in hematology, , 1531-7048, , 2016

PMID: 27820736

Using lipidomics analysis to determine signalling and metabolic changes in cells.
Nguyen A, Rudge SA, Zhang Q, Wakelam MJ

Recent advances in lipidomics tools and software assist in the identification and quantification of lipid species detected by mass spectrometry. By integrating mass spectrometric lipid data into mapped pathways and databases, an entire network of lipid species which both demonstrates the complexity of lipid structures and biochemical interactions can be constructed. Here we demonstrate lipidomics analysis at both systematic and molecular levels. This review focuses on four points: how lipid data can be collected and processed with the support of tools, software and databases; how lipidomic analysis is performed at the molecular level; how to integrate data analysis into a biological context; how the results of such analysis predict enzyme activities and potential sites for therapeutic interventions or manipulation of enzyme activities.

+ View Abstract

Current opinion in biotechnology, 43, 1879-0429, 96-103, 2017

PMID: 27816901

International Society for Advancement of Cytometry (ISAC) flow cytometry shared resource laboratory (SRL) best practices.
Barsky LW, Black M, Cochran M, Daniel BJ, Davies D, DeLay M, Gardner R, Gregory M, Kunkel D, Lannigan J, Marvin J, Salomon R, Torres C, Walker R

The purpose of this document is to define minimal standards for a flow cytometry shared resource laboratory (SRL) and provide guidance for best practices in several important areas. This effort is driven by the desire of International Society for the Advancement of Cytometry (ISAC) members in SRLs to define and maintain standards of excellence in flow cytometry, and act as a repository for key elements of this information (e.g. example SOPs/training material, etc.). These best practices are not intended to define specifically how to implement these recommendations, but rather to establish minimal goals for an SRL to address in order to achieve excellence. It is hoped that once these best practices are established and implemented they will serve as a template from which similar practices can be defined for other types of SRLs. Identification of the need for best practices first occurred through discussions at the CYTO 2013 SRL Forum, with the most important areas for which best practices should be defined identified through several surveys and SRL track workshops as part of CYTO 2014. © 2016 International Society for Advancement of Cytometry.

+ View Abstract

Cytometry. Part A : the journal of the International Society for Analytical Cytology, 89, 1552-4930, 1017-1030, 2016

PMID: 27813253

Turning the tide on 3D nuclear organization.
Fraser P

Nature reviews. Molecular cell biology, , 1471-0080, , 2016

PMID: 27808275

From the stem of the placental tree: trophoblast stem cells and their progeny.
Latos PA, Hemberger M

Trophoblast stem cells (TSCs) retain the capacity to self-renew indefinitely and harbour the potential to differentiate into all trophoblast subtypes of the placenta. Recent studies have shown how signalling cascades integrate with transcription factor circuits to govern the fine balance between TSC self-renewal and differentiation. In addition, breakthroughs in reprogramming strategies have enabled the generation of TSCs from fibroblasts, opening up exciting new avenues that may allow the isolation of this stem cell type from other species, notably humans. Here, we review these recent advances in light of their importance for understanding placental pathologies and developing personalised medicine approaches for pregnancy complications.

+ View Abstract

Development (Cambridge, England), 143, 1477-9129, 3650-3660, 2016

PMID: 27802134

Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23.
McGovern A, Schoenfelder S, Martin P, Massey J, Duffus K, Plant D, Yarwood A, Pratt AG, Anderson AE, Isaacs JD, Diboll J, Thalayasingam N, Ospelt C, Barton A, Worthington J, Fraser P, Eyre S, Orozco G

The identification of causal genes from genome-wide association studies (GWAS) is the next important step for the translation of genetic findings into biologically meaningful mechanisms of disease and potential therapeutic targets. Using novel chromatin interaction detection techniques and allele specific assays in T and B cell lines, we provide compelling evidence that redefines causal genes at the 6q23 locus, one of the most important loci that confers autoimmunity risk.

+ View Abstract

Genome biology, 17, 1474-760X, 212, 2016

PMID: 27799070

Open Access

Survival of mature T cells in the periphery is intrinsically dependent on GIMAP1 in mice.
Datta P, Webb LM, Avdo I, Pascall J, Butcher GW

An effective immune system depends upon the survival of mature T cells in the periphery. Members of the GIMAP family of GTPases have been proposed to regulate this homeostasis, supported by the paucity of peripheral T cells in rodents deficient for either GIMAP1 or GIMAP5. It is unclear whether this lack of T cells is a consequence of an ontological defect, causing the thymus to generate and export T cells incapable of surviving in the periphery, or whether (alternatively or additionally) mature T cells intrinsically require GIMAP1 for survival. Using the ER(T2) Cre(+) transgene, we conditionally deleted Gimap1 in C57BL/6 mice and demonstrate that GIMAP1 is intrinsically required for the survival of mature T cells in the periphery. We show that, in contrast to GIMAP5, this requirement is independent of the T cell's activation status. We investigated the nature of the survival defect in GIMAP1-deficient CD4(+) T cells and show that the death occurring after GIMAP1 ablation is accompanied by mitochondrial depolarisation and activation of the extrinsic apoptotic pathway. This study shows that GIMAP1 is critical for maintaining the peripheral T-cell pool in mice and offers a potent target for the treatment of T-cell-mediated diseases. This article is protected by copyright. All rights reserved.

+ View Abstract

European journal of immunology, , 1521-4141, , 2016

PMID: 27792288

Open Access

Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations.
Huang-Doran I, Tomlinson P, Payne F, Gast A, Sleigh A, Bottomley W, Harris J, Daly A, Rocha N, Rudge S, Clark J, Kwok A, Romeo S, McCann E, Müksch B, Dattani M, Zucchini S, Wakelam M, Foukas LC, Savage DB, Murphy R, O'Rahilly S, Barroso I, Semple RK

Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome.

+ View Abstract

JCI insight, 1, , e88766, 2016

PMID: 27766312

Open Access

Crosstalk between pluripotency factors and higher-order chromatin organization.
Lopes Novo C, Rugg-Gunn PJ

Pluripotent cells are characterized by a globally open and accessible chromatin organization that is thought to contribute to cellular plasticity and developmental decision-making. We recently identified the pluripotency factor Nanog as a key regulator of this form of chromatin architecture in mouse embryonic stem cells. In particular, we demonstrated that the transcription factors Nanog and Sall1 co-dependently mediate the epigenetic state of pericentromeric heterochromatin to reinforce a more open and accessible organization in pluripotent cells. Here, we summarize our main findings and place the work into a broader context. We explore how heterochromatin domains could be targets of transcriptional networks in pluripotent cells and are coordinated with cell state. We propose this integration may be to balance the requirement for a dynamic and plastic chromatin organization in pluripotent cells, together with priming for a more restrictive nuclear compartmentalization that is triggered rapidly upon lineage commitment.

+ View Abstract

Nucleus (Austin, Tex.), , 1949-1042, 0, 2016

PMID: 27759487

Open Access

Epigenetic inheritance of proteostasis and ageing.
Li C, Casanueva O

Abundant evidence shows that the genome is not as static as once thought and that gene expression can be reversibly modulated by the environment. In some cases, these changes can be transmitted to the next generation even if the environment has reverted. Such transgenerational epigenetic inheritance requires that information be stored in the germline in response to exogenous stressors. One of the most elusive questions in the field of epigenetic inheritance is the identity of such inherited factor(s). Answering this question would allow us to understand how the environment can shape human populations for multiple generations and may help to explain the rapid rise in obesity and neurodegenerative diseases in modern society. It will also provide clues on how we might be able to reprogramme the epigenome to prevent transmission of detrimental phenotypes and identify individuals who might be at increased risk of disease. In this article, we aim to review recent developments in this field, focusing on research conducted mostly in the nematode Caenorhabditis elegans and mice, that link environmental modulators with the transgenerational inheritance of phenotypes that affect protein-folding homoeostasis and ageing.

+ View Abstract

Essays in biochemistry, 60, 1744-1358, 191-202, 2016

PMID: 27744335

Open Access

Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms.
Hore TA, von Meyenn F, Ravichandran M, Bachman M, Ficz G, Oxley D, Santos F, Balasubramanian S, Jurkowski TP, Reik W

Epigenetic memory, in particular DNA methylation, is established during development in differentiating cells and must be erased to create naïve (induced) pluripotent stem cells. The ten-eleven translocation (TET) enzymes can catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives, thereby actively removing this memory. Nevertheless, the mechanism by which the TET enzymes are regulated, and the extent to which they can be manipulated, are poorly understood. Here we report that retinoic acid (RA) or retinol (vitamin A) and ascorbate (vitamin C) act as modulators of TET levels and activity. RA or retinol enhances 5hmC production in naïve embryonic stem cells by activation of TET2 and TET3 transcription, whereas ascorbate potentiates TET activity and 5hmC production through enhanced Fe(2+) recycling, and not as a cofactor as reported previously. We find that both ascorbate and RA or retinol promote the derivation of induced pluripotent stem cells synergistically and enhance the erasure of epigenetic memory. This mechanistic insight has significance for the development of cell treatments for regenenerative medicine, and enhances our understanding of how intrinsic and extrinsic signals shape the epigenome.

+ View Abstract

Proceedings of the National Academy of Sciences of the United States of America, , 1091-6490, , 2016

PMID: 27729528

Open Access

Comparative Principles of DNA Methylation Reprogramming during Human and Mouse In Vitro Primordial Germ Cell Specification.
von Meyenn F, Berrens RV, Andrews S, Santos F, Collier AJ, Krueger F, Osorno R, Dean W, Rugg-Gunn PJ, Reik W

Primordial germ cell (PGC) development is characterized by global epigenetic remodeling, which resets genomic potential and establishes an epigenetic ground state. Here we recapitulate PGC specification in vitro from naive embryonic stem cells and characterize the early events of epigenetic reprogramming during the formation of the human and mouse germline. Following rapid de novo DNA methylation during priming to epiblast-like cells, methylation is globally erased in PGC-like cells. Repressive chromatin marks (H3K9me2/3) and transposable elements are enriched at demethylation-resistant regions, while active chromatin marks (H3K4me3 or H3K27ac) are more prominent at regions that demethylate faster. The dynamics of specification and epigenetic reprogramming show species-specific differences, in particular markedly slower reprogramming kinetics in the human germline. Differences in developmental kinetics may be explained by differential regulation of epigenetic modifiers. Our work establishes a robust and faithful experimental system of the early events of epigenetic reprogramming and regulation in the germline.

+ View Abstract

Developmental cell, 39, 1878-1551, 104-115, 2016

PMID: 27728778

Open Access

Dynamics of mTORC1 activation in response to amino acids.
Manifava M, Smith M, Rotondo S, Walker S, Niewczas I, Zoncu R, Clark J, Ktistakis NT

Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere.

+ View Abstract

eLife, 5, 2050-084X, , 2016

PMID: 27725083

Open Access

Shaping Variation in the Human Immune System.
Liston A, Carr EJ, Linterman MA

Immune responses demonstrate a high level of intra-species variation, compensating for the specialization capacity of pathogens. The recent advent of in-depth immune phenotyping projects in large-scale cohorts has allowed a first look into the factors that shape the inter-individual diversity of the human immune system. Genetic approaches have identified genetic diversity as drivers of 20-40% of the variation between the immune systems of individuals. The remaining 60-80% is shaped by intrinsic factors, with age being the predominant factor, as well as by environmental influences, where cohabitation and chronic viral infections were identified as key mediators. We review and integrate the recent in-depth large-scale studies on human immune diversity and its potential impact on health. VIDEO ABSTRACT.

+ View Abstract

Trends in immunology, , 1471-4981, , 2016

PMID: 27693120

MERVL/Zscan4 Network Activation Results in Transient Genome-wide DNA Demethylation of mESCs.
Eckersley-Maslin MA, Svensson V, Krueger C, Stubbs TM, Giehr P, Krueger F, Miragaia RJ, Kyriakopoulos C, Berrens RV, Milagre I, Walter J, Teichmann SA, Reik W

Mouse embryonic stem cells are dynamic and heterogeneous. For example, rare cells cycle through a state characterized by decondensed chromatin and expression of transcripts, including the Zscan4 cluster and MERVL endogenous retrovirus, which are usually restricted to preimplantation embryos. Here, we further characterize the dynamics and consequences of this transient cell state. Single-cell transcriptomics identified the earliest upregulated transcripts as cells enter the MERVL/Zscan4 state. The MERVL/Zscan4 transcriptional network was also upregulated during induced pluripotent stem cell reprogramming. Genome-wide DNA methylation and chromatin analyses revealed global DNA hypomethylation accompanying increased chromatin accessibility. This transient DNA demethylation was driven by a loss of DNA methyltransferase proteins in the cells and occurred genome-wide. While methylation levels were restored once cells exit this state, genomic imprints remained hypomethylated, demonstrating a potential global and enduring influence of endogenous retroviral activation on the epigenome.

+ View Abstract

Cell reports, 17, 2211-1247, 179-92, 2016

PMID: 27681430

Establishment and functions of DNA methylation in the germline.
Stewart KR, Veselovska L, Kelsey G

Epigenetic modifications established during gametogenesis regulate transcription and other nuclear processes in gametes, but also have influences in the zygote, embryo and postnatal life. This is best understood for DNA methylation which, established at discrete regions of the oocyte and sperm genomes, governs genomic imprinting. In this review, we describe how imprinting has informed our understanding of de novo DNA methylation mechanisms, highlight how recent genome-wide profiling studies have provided unprecedented insights into establishment of the sperm and oocyte methylomes and consider the fate and function of gametic methylation and other epigenetic modifications after fertilization.

+ View Abstract

Epigenomics, , 1750-192X, , 2016

PMID: 27659720

The Phospholipase D2 Knock Out Mouse Has Ectopic Purkinje Cells and Suffers from Early Adult-Onset Anosmia.
Vermeren MM, Zhang Q, Smethurst E, Segonds-Pichon A, Schrewe H, Wakelam MJ

Phospholipase D2 (PLD2) is an enzyme that produces phosphatidic acid (PA), a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO) mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA) regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction.

+ View Abstract

PloS one, 11, 1932-6203, e0162814, 0

PMID: 27658289

Open Access