Life Sciences Research for Lifelong Health

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific services.

Individual publications are linked to the website of the journal - subscriptions may be required to view the full text. The database also includes Open Access publications, which can be identified by the icons found on search results.

Open Access symbolWe are working to provide Open Access to as many publications as possible. 'Green' Open Access publications are marked by the pink 'Download' icon. Click on the icon to access a pre-print PDF version of the publication. ​'Gold' Open Access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription.
 

Title / Authors / Details Open Access Download

Heterochronic faecal transplantation boosts gut germinal centres in aged mice.
Stebegg M, Silva-Cayetano A, Innocentin S, Jenkins TP, Cantacessi C, Gilbert C, Linterman MA

Ageing is a complex multifactorial process associated with a plethora of disorders, which contribute significantly to morbidity worldwide. One of the organs significantly affected by age is the gut. Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This change in microbial composition with age occurs in parallel with a decline in function of the gut immune system; however, it is not clear whether there is a causal link between the two. Here we report that the defective germinal centre reaction in Peyer's patches of aged mice can be rescued by faecal transfers from younger adults into aged mice and by immunisations with cholera toxin, without affecting germinal centre reactions in peripheral lymph nodes. This demonstrates that the poor germinal centre reaction in aged animals is not irreversible, and that it is possible to improve this response in older individuals by providing appropriate stimuli.

+ View Abstract

Nature communications, 10, 2041-1723, 2443, 2019

PMID: 31164642


Open Access

Establishment of porcine and human expanded potential stem cells.
Gao X, Nowak-Imialek M, Chen X, Chen D, Herrmann D, Ruan D, Chen ACH, Eckersley-Maslin MA, Ahmad S, Lee YL, Kobayashi T, Ryan D, Zhong J, Zhu J, Wu J, Lan G, Petkov S, Yang J, Antunes L, Campos LS, Fu B, Wang S, Yong Y, Wang X, Xue SG, Ge L, Liu Z, Huang Y, Nie T, Li P, Wu D, Pei D, Zhang Y, Lu L, Yang F, Kimber SJ, Reik W, Zou X, Shang Z, Lai L, Surani A, Tam PPL, Ahmed A, Yeung WSB, Teichmann SA, Niemann H, Liu P

We recently derived mouse expanded potential stem cells (EPSCs) from individual blastomeres by inhibiting the critical molecular pathways that predispose their differentiation. EPSCs had enriched molecular signatures of blastomeres and possessed developmental potency for all embryonic and extra-embryonic cell lineages. Here, we report the derivation of porcine EPSCs, which express key pluripotency genes, are genetically stable, permit genome editing, differentiate to derivatives of the three germ layers in chimeras and produce primordial germ cell-like cells in vitro. Under similar conditions, human embryonic stem cells and induced pluripotent stem cells can be converted, or somatic cells directly reprogrammed, to EPSCs that display the molecular and functional attributes reminiscent of porcine EPSCs. Importantly, trophoblast stem-cell-like cells can be generated from both human and porcine EPSCs. Our pathway-inhibition paradigm thus opens an avenue for generating mammalian pluripotent stem cells, and EPSCs present a unique cellular platform for translational research in biotechnology and regenerative medicine.

+ View Abstract

Nature cell biology, 21, 1476-4679, 687-699, 2019

PMID: 31160711


Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition.
Habets RA, de Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, Narlawar R, Demeyer S, Dooley J, Liston A, Taghon T, Cools J, de Strooper B

Given the high frequency of activating mutations in T cell acute lymphoblastic leukemia (T-ALL), inhibition of the γ-secretase complex remains an attractive target to prevent ligand-independent release of the cytoplasmic tail and oncogenic NOTCH1 signaling. However, four different γ-secretase complexes exist, and available inhibitors block all complexes equally. As a result, these cause severe "on-target" gastrointestinal tract, skin, and thymus toxicity, limiting their therapeutic application. Here, we demonstrate that genetic deletion or pharmacologic inhibition of the presenilin-1 (PSEN1) subclass of γ-secretase complexes is highly effective in decreasing leukemia while avoiding dose-limiting toxicities. Clinically, T-ALL samples were found to selectively express only PSEN1-containing γ-secretase complexes. The conditional knockout of in developing T cells attenuated the development of a mutant NOTCH1-driven leukemia in mice in vivo but did not abrogate normal T cell development. Treatment of T-ALL cell lines with the selective PSEN1 inhibitor MRK-560 effectively decreased mutant NOTCH1 processing and led to cell cycle arrest. These observations were extended to T-ALL patient-derived xenografts in vivo, demonstrating that MRK-560 treatment decreases leukemia burden and increased overall survival without any associated gut toxicity. Therefore, PSEN1-selective compounds provide a potential therapeutic strategy for safe and effective targeting of T-ALL and possibly also for other diseases in which NOTCH signaling plays a role.

+ View Abstract

Science translational medicine, 11, 1946-6242, , 2019

PMID: 31142678


Calcium Signaling and Tissue Calcification.
Proudfoot D

Calcification is a regulated physiological process occurring in bones and teeth. However, calcification is commonly found in soft tissues in association with aging and in a variety of diseases. Over the last two decades, it has emerged that calcification occurring in diseased arteries is not simply an inevitable build-up of insoluble precipitates of calcium phosphate. In some cases, it is an active process in which transcription factors drive conversion of vascular cells to an osteoblast or chondrocyte-like phenotype, with the subsequent production of mineralizing "matrix vesicles." Early studies of bone and cartilage calcification suggested roles for cellular calcium signaling in several of the processes involved in the regulation of bone calcification. Similarly, calcium signaling has recently been highlighted as an important component in the mechanisms regulating pathological calcification. The emerging hypothesis is that ectopic/pathological calcification occurs in tissues in which there is an imbalance in the regulatory mechanisms that actively prevent calcification. This review highlights the various ways that calcium signaling regulates tissue calcification, with a particular focus on pathological vascular calcification.

+ View Abstract

Cold Spring Harbor perspectives in biology, 11, 1943-0264, , 2019

PMID: 31138543


Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence.
Lukacs M, Gilley J, Zhu Y, Orsomando G, Angeletti C, Liu J, Yang X, Park J, Hopkin RJ, Coleman MP, Zhai RG, Stottmann RW

The three nicotinamide mononucleotide adenylyltransferase (NMNAT) family members synthesize the electron carrier nicotinamide adenine dinucleotide (NAD) and are essential for cellular metabolism. In mammalian axons, NMNAT activity appears to be required for axon survival and is predominantly provided by NMNAT2. NMNAT2 has recently been shown to also function as a chaperone to aid in the refolding of misfolded proteins. Nmnat2 deficiency in mice, or in its ortholog dNmnat in Drosophila, results in axon outgrowth and survival defects. Peripheral nerve axons in NMNAT2-deficient mice fail to extend and innervate targets, and skeletal muscle is severely underdeveloped. In addition, removing NMNAT2 from established axons initiates axon death by Wallerian degeneration. We report here on two stillborn siblings with fetal akinesia deformation sequence (FADS), severely reduced skeletal muscle mass and hydrops fetalis. Clinical exome sequencing identified compound heterozygous NMNAT2 variant alleles in both cases. Both protein variants are incapable of supporting axon survival in mouse primary neuron cultures when overexpressed. In vitro assays demonstrate altered protein stability and/or defects in NAD synthesis and chaperone functions. Thus, both patient NMNAT2 alleles are null or severely hypo-morphic. These data indicate a previously unknown role for NMNAT2 in human neurological development and provide the first direct molecular evidence to support the involvement of Wallerian degeneration in a human axonal disorder. SIGNIFICANCE: Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2) both synthesizes the electron carrier Nicotinamide Adenine Dinucleotide (NAD) and acts a protein chaperone. NMNAT2 has emerged as a major neuron survival factor. Overexpression of NMNAT2 protects neurons from Wallerian degeneration after injury and declining levels of NMNAT2 have been implicated in neurodegeneration. While the role of NMNAT2 in neurodegeneration has been extensively studied, the role of NMNAT2 in human development remains unclear. In this work, we present the first human variants in NMNAT2 identified in two fetuses with severe skeletal muscle hypoplasia and fetal akinesia. Functional studies in vitro showed that the mutations impair both NMNAT2 NAD synthase and chaperone functions. This work identifies the critical role of NMNAT2 in human development.

+ View Abstract

Experimental neurology, 320, 1090-2430, 112961, 2019

PMID: 31136762


Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia.
Huppke P, Wegener E, Gilley J, Angeletti C, Kurth I, Drenth JPH, Stadelmann C, Barrantes-Freer A, Brück W, Thiele H, Nürnberg P, Gärtner J, Orsomando G, Coleman MP

We identified a homozygous missense mutation in the gene encoding NAD synthesizing enzyme NMNAT2 in two siblings with childhood onset polyneuropathy with erythromelalgia. No additional homozygotes for this rare allele, which leads to amino acid substitution T94M, were present among the unaffected relatives tested or in the 60,000 exomes of the ExAC database. For axons to survive, axonal NMNAT2 activity has to be maintained above a threshold level but the T94M mutation confers a partial loss of function both in the ability of NMNAT2 to support axon survival and in its enzymatic properties. Electrophysiological tests and histological analysis of sural nerve biopsies in the patients were consistent with loss of distal sensory and motor axons. Thus, it is likely that NMNAT2 mutation causes this pain and axon loss phenotype making this the first disorder associated with mutation of a key regulator of Wallerian-like axon degeneration in humans. This supports indications from numerous animal studies that the Wallerian degeneration pathway is important in human disease and raises important questions about which other human phenotypes could be linked to this gene.

+ View Abstract

Experimental neurology, 320, 1090-2430, 112958, 2019

PMID: 31132363


Lipopolysaccharide-induced neuroinflammation induces presynaptic disruption through a direct action on brain tissue involving microglia-derived interleukin 1 beta.
Sheppard O, Coleman MP, Durrant CS

Systemic inflammation has been linked to synapse loss and cognitive decline in human patients and animal models. A role for microglial release of pro-inflammatory cytokines has been proposed based on in vivo and primary culture studies. However, mechanisms are hard to study in vivo as specific microglial ablation is challenging and the extracellular fluid cannot be sampled without invasive methods. Primary cultures have different limitations as the intricate multicellular architecture in the brain is not fully reproduced. It is essential to confirm proposed brain-specific mechanisms of inflammatory synapse loss directly in brain tissue. Organotypic hippocampal slice cultures (OHSCs) retain much of the in vivo neuronal architecture, synaptic connections and diversity of cell types whilst providing convenient access to manipulate and sample the culture medium and observe cellular reactions.

+ View Abstract

Journal of neuroinflammation, 16, 1742-2094, 106, 2019

PMID: 31103036


Open Access

MicroRNA-155 is essential for the optimal proliferation and survival of plasmablast B cells.
Arbore G, Henley T, Biggins L, Andrews S, Vigorito E, Turner M, Leyland R

A fast antibody response can be critical to contain rapidly dividing pathogens. This can be achieved by the expansion of antigen-specific B cells in response to T-cell help followed by differentiation into plasmablasts. MicroRNA-155 (miR-155) is required for optimal T-cell-dependent extrafollicular responses via regulation of PU.1, although the cellular processes underlying this defect are largely unknown. Here, we show that miR-155 regulates the early expansion of B-blasts and later on the survival and proliferation of plasmablasts in a B-cell-intrinsic manner, by tracking antigen-specific B cells in vivo since the onset of antigen stimulation. In agreement, comparative analysis of the transcriptome of miR-155-sufficient and miR-155-deficient plasmablasts at the peak of the response showed that the main processes regulated by miR-155 were DNA metabolic process, DNA replication, and cell cycle. Thus, miR-155 controls the extent of the extrafollicular response by regulating the survival and proliferation of B-blasts, plasmablasts and, consequently, antibody production.

+ View Abstract

Life science alliance, 2, 2575-1077, , 2019

PMID: 31097471


Open Access

Long-range enhancer-promoter contacts in gene expression control.
Schoenfelder S, Fraser P

Spatiotemporal gene expression programmes are orchestrated by transcriptional enhancers, which are key regulatory DNA elements that engage in physical contacts with their target-gene promoters, often bridging considerable genomic distances. Recent progress in genomics, genome editing and microscopy methodologies have enabled the genome-wide mapping of enhancer-promoter contacts and their functional dissection. In this Review, we discuss novel concepts on how enhancer-promoter interactions are established and maintained, how the 3D architecture of mammalian genomes both facilitates and constrains enhancer-promoter contacts, and the role they play in gene expression control during normal development and disease.

+ View Abstract

Nature reviews. Genetics, , 1471-0064, , 2019

PMID: 31086298


Who plays the ferryman: ATG2 channels lipids into the forming autophagosome.
Ktistakis NT

Expansion of the autophagosomal membrane requires a mechanism to supply lipids while excluding most membrane proteins. In this issue, Valverde et al. (2019. https://doi.org/10.1083/jcb.201811139) identify ATG2, a member of the autophagy-related protein family, as a lipid transfer protein and provide important novel insights on how autophagosomes grow.

+ View Abstract

The Journal of cell biology, , 1540-8140, , 2019

PMID: 31076453


Immunodeficiency, autoimmune thrombocytopenia and enterocolitis caused by autosomal recessive deficiency of PIK3CD-encoded phosphoinositide 3-kinase δ.
Swan DJ, Aschenbrenner D, Lamb CA, Chakraborty K, Clark J, Pandey S, Engelhardt KR, Chen R, Cavounidis A, Ding Y, Krasnogor N, Carey CD, Acres M, Needham S, Cant AJ, Arkwright PD, Chandra A, Okkenhaug K, Uhlig HH, Hambleton S

Haematologica, , 1592-8721, , 2019

PMID: 31073077


Open Access

MEK1/2 inhibitor withdrawal reverses acquired resistance driven by BRAF amplification whereas KRAS amplification promotes EMT-chemoresistance.
Sale MJ, Balmanno K, Saxena J, Ozono E, Wojdyla K, McIntyre RE, Gilley R, Woroniuk A, Howarth KD, Hughes G, Dry JR, Arends MJ, Caro P, Oxley D, Ashton S, Adams DJ, Saez-Rodriguez J, Smith PD, Cook SJ

Acquired resistance to MEK1/2 inhibitors (MEKi) arises through amplification of BRAF or KRAS to reinstate ERK1/2 signalling. Here we show that BRAF amplification and MEKi resistance are reversible following drug withdrawal. Cells with BRAF amplification are addicted to MEKi to maintain a precise level of ERK1/2 signalling that is optimal for cell proliferation and survival, and tumour growth in vivo. Robust ERK1/2 activation following MEKi withdrawal drives a p57-dependent G1 cell cycle arrest and senescence or expression of NOXA and cell death, selecting against those cells with amplified BRAF. p57 expression is required for loss of BRAF amplification and reversal of MEKi resistance. Thus, BRAF amplification confers a selective disadvantage during drug withdrawal, validating intermittent dosing to forestall resistance. In contrast, resistance driven by KRAS amplification is not reversible; rather ERK1/2 hyperactivation drives ZEB1-dependent epithelial-to-mesenchymal transition and chemoresistance, arguing strongly against the use of drug holidays in cases of KRAS amplification.

+ View Abstract

Nature communications, 10, 2041-1723, 2030, 2019

PMID: 31048689


FcγRIIb differentially regulates pre-immune and germinal center B cell tolerance in mouse and human.
Espéli M, Bashford-Rogers R, Sowerby JM, Alouche N, Wong L, Denton AE, Linterman MA, Smith KGC

Several tolerance checkpoints exist throughout B cell development to control autoreactive B cells and prevent the generation of pathogenic autoantibodies. FcγRIIb is an Fc receptor that inhibits B cell activation and, if defective, is associated with autoimmune disease, yet its impact on specific B cell tolerance checkpoints is unknown. Here we show that reduced expression of FcγRIIb enhances the deletion and anergy of autoreactive immature B cells, but in contrast promotes autoreactive B cell expansion in the germinal center and serum autoantibody production, even in response to exogenous, non-self antigens. Our data thus show that FcγRIIb has opposing effects on pre-immune and post-immune tolerance checkpoints, and suggest that B cell tolerance requires the control of bystander germinal center B cells with low or no affinity for the immunizing antigen.

+ View Abstract

Nature communications, 10, 2041-1723, 1970, 2019

PMID: 31036800


Regulation of regulatory T cells in cancer.
Stockis J, Roychoudhuri R, Halim TYF

The inflammatory response to transformed cells forms the cornerstone of natural or therapeutically-induced protective immunity to cancer. Regulatory T (Treg) cells are known for their critical role in suppressing inflammation, and therefore can antagonize effective anti-cancer immune responses. As such, Treg cells can play detrimental roles in tumour progression and in the response to both conventional and immune-based cancer therapy. Recent advances in our understanding of Treg cells reveal complex niche-specific regulatory programs and functions, which are likely to extrapolate to cancer. The regulation of Treg cells is reliant on upstream cues from haematopoietic and non-immune cells, which dictates their genetic, epigenetic, and downstream functional programmes. In this Review we will discuss how Treg cells are themselves regulated in normal and transformed tissues, and the implications of this crosstalk on tumour growth. This article is protected by copyright. All rights reserved.

+ View Abstract

Immunology, , 1365-2567, , 2019

PMID: 31032905


Open Access

A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice.
Sendžikaitė G, Hanna CW, Stewart-Morgan KR, Ivanova E, Kelsey G

DNA methyltransferases (DNMTs) deposit DNA methylation, which regulates gene expression and is essential for mammalian development. Histone post-translational modifications modulate the recruitment and activity of DNMTs. The PWWP domains of DNMT3A and DNMT3B are posited to interact with histone 3 lysine 36 trimethylation (H3K36me3); however, the functionality of this interaction for DNMT3A remains untested in vivo. Here we present a mouse model carrying a D329A point mutation in the DNMT3A PWWP domain. The mutation causes dominant postnatal growth retardation. At the molecular level, it results in progressive DNA hypermethylation across domains marked by H3K27me3 and bivalent chromatin, and de-repression of developmental regulatory genes in adult hypothalamus. Evaluation of non-CpG methylation, a marker of de novo methylation, further demonstrates the altered recruitment and activity of DNMT3A at bivalent domains. This work provides key molecular insights into the function of the DNMT3A-PWWP domain and role of DNMT3A in regulating postnatal growth.

+ View Abstract

Nature communications, 10, 2041-1723, 1884, 2019

PMID: 31015495


Open Access

Butyrate Protects Mice from Clostridium difficile-Induced Colitis through an HIF-1-Dependent Mechanism.
Fachi JL, Felipe JS, Pral LP, da Silva BK, Corrêa RO, de Andrade MCP, da Fonseca DM, Basso PJ, Câmara NOS, de Sales E Souza ÉL, Dos Santos Martins F, Guima SES, Thomas AM, Setubal JC, Magalhães YT, Forti FL, Candreva T, Rodrigues HG, de Jesus MB, Consonni SR, Farias ADS, Varga-Weisz P, Vinolo MAR

Antibiotic-induced dysbiosis is a key factor predisposing intestinal infection by Clostridium difficile. Here, we show that interventions that restore butyrate intestinal levels mitigate clinical and pathological features of C. difficile-induced colitis. Butyrate has no effect on C. difficile colonization or toxin production. However, it attenuates intestinal inflammation and improves intestinal barrier function in infected mice, as shown by reduced intestinal epithelial permeability and bacterial translocation, effects associated with the increased expression of components of intestinal epithelial cell tight junctions. Activation of the transcription factor HIF-1 in intestinal epithelial cells exerts a protective effect in C. difficile-induced colitis, and it is required for butyrate effects. We conclude that butyrate protects intestinal epithelial cells from damage caused by C. difficile toxins via the stabilization of HIF-1, mitigating local inflammatory response and systemic consequences of the infection.

+ View Abstract

Cell reports, 27, 2211-1247, 750-761.e7, 2019

PMID: 30995474


Open Access

TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn.
Montalbán-Loro R, Lozano-Ureña A, Ito M, Krueger C, Reik W, Ferguson-Smith AC, Ferrón SR

Ten-eleven-translocation (TET) proteins catalyze DNA hydroxylation, playing an important role in demethylation of DNA in mammals. Remarkably, although hydroxymethylation levels are high in the mouse brain, the potential role of TET proteins in adult neurogenesis is unknown. We show here that a non-catalytic action of TET3 is essentially required for the maintenance of the neural stem cell (NSC) pool in the adult subventricular zone (SVZ) niche by preventing premature differentiation of NSCs into non-neurogenic astrocytes. This occurs through direct binding of TET3 to the paternal transcribed allele of the imprinted gene Small nuclear ribonucleoprotein-associated polypeptide N (Snrpn), contributing to transcriptional repression of the gene. The study also identifies BMP2 as an effector of the astrocytic terminal differentiation mediated by SNRPN. Our work describes a novel mechanism of control of an imprinted gene in the regulation of adult neurogenesis through an unconventional role of TET3.

+ View Abstract

Nature communications, 10, 2041-1723, 1726, 2019

PMID: 30979904


Open Access

RNA binding proteins in hematopoiesis and hematological malignancy.
Hodson DJ, Screen M, Turner M

RNA binding proteins (RBPs) regulate fundamental processes such as differentiation and self-renewal by enabling the dynamic control of protein abundance or isoforms, or through the regulation of non-coding RNA. RBPs are increasingly appreciated as being essential for normal hematopoiesis and they are understood to play fundamental roles in hematological malignancies by acting as oncogenes or tumor suppressors. Alternative splicing has been shown to play roles in the development of specific hematopoietic lineages and sequence specific mutations in RBPs lead to dysregulated splicing in myeloid and lymphoid leukemias. RBPs that regulate translation contribute to the development and function of hematological lineages, act as nodes for the action of multiple signaling pathways and contribute to hematological malignancies. These insights broaden our mechanistic understanding of the molecular regulation of hematopoiesis and offer opportunities to develop disease biomarkers and new therapeutic modalities.

+ View Abstract

Blood, , 1528-0020, , 2019

PMID: 30967369


Open Access

Macropinocytosis and autophagy crosstalk in nutrient scavenging.
Florey O, Overholtzer M

Adaptive strategies used by cells to scavenge and recycle essential nutrients are important for survival in nutrient-depleted environments such as cancer tissues. Autophagy and macropinocytosis are two major mechanisms that promote nutrient recycling and scavenging, which share considerable, yet poorly understood, cross-regulation. Here we review recent findings that connect these starvation response mechanisms and discuss the implications of their crosstalk. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.

+ View Abstract

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374, 1471-2970, 20180154, 2019

PMID: 30967004


Open Access

A scoping review of ontologies related to human behaviour change.
Norris E, Finnerty AN, Hastings J, Stokes G, Michie S

Ontologies are classification systems specifying entities, definitions and inter-relationships for a given domain, with the potential to advance knowledge about human behaviour change. A scoping review was conducted to: (1) identify what ontologies exist related to human behaviour change, (2) describe the methods used to develop these ontologies and (3) assess the quality of identified ontologies. Using a systematic search, 2,303 papers were identified. Fifteen ontologies met the eligibility criteria for inclusion, developed in areas such as cognition, mental disease and emotions. Methods used for developing the ontologies were expert consultation, data-driven techniques and reuse of terms from existing taxonomies, terminologies and ontologies. Best practices used in ontology development and maintenance were documented. The review did not identify any ontologies representing the breadth and detail of human behaviour change. This suggests that advancing behavioural science would benefit from the development of a behaviour change intervention ontology.

+ View Abstract

Nature human behaviour, 3, 2397-3374, 164-172, 2019

PMID: 30944444


Inborn errors of immunity: single mutations unravel mechanisms of immune disease.
Liston A, Humblet-Baron S

Immunology and cell biology, , 1440-1711, , 2019

PMID: 30942931


Translation of inhaled drug optimization strategies into clinical pharmacokinetics and pharmacodynamics using GSK2292767A, a novel inhaled PI3Kδ inhibitor.
Begg M, Edwards CD, Hamblin JN, Pifani E, Wilson R, Gilbert J, Vitulli G, Mallett D, Morrell J, Hingle MI, Uddin S, Ehtesham F, Marotti M, Harell A, Newman C, Fernando D, Clark J, Cahn A, Hessel EM

This study describes the pharmacokinetic (PK) and pharmacodynamic (PD) profile of GSK2292767A, a novel low solubility inhaled PI3Kδ inhibitor developed as an alternative to nemiralisib, which is a highly soluble inhaled inhibitor of PI3Kδ with a lung profile consistent with once-daily dosing. GSK2292767A has a similar in vitro cellular profile to nemiralisib and reduces eosinophilia in a murine PD model by 63% (n=5, p

+ View Abstract

The Journal of pharmacology and experimental therapeutics, , 1521-0103, , 2019

PMID: 30940692


Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage Reprogramming and Tumor Progression.
Goossens P, Rodriguez-Vita J, Etzerodt A, Masse M, Rastoin O, Gouirand V, Ulas T, Papantonopoulou O, Van Eck M, Auphan-Anezin N, Bebien M, Verthuy C, Vu Manh TP, Turner M, Dalod M, Schultze JL, Lawrence T

Macrophages possess intrinsic tumoricidal activity, yet tumor-associated macrophages (TAMs) rapidly adopt an alternative phenotype within the tumor microenvironment that is marked by tumor-promoting immunosuppressive and trophic functions. The mechanisms that promote such TAM polarization remain poorly understood, but once identified, they may represent important therapeutic targets to block the tumor-promoting functions of TAMs and restore their anti-tumor potential. Here, we have characterized TAMs in a mouse model of metastatic ovarian cancer. We show that ovarian cancer cells promote membrane-cholesterol efflux and depletion of lipid rafts from macrophages. Increased cholesterol efflux promoted IL-4-mediated reprogramming, including inhibition of IFNγ-induced gene expression. Genetic deletion of ABC transporters, which mediate cholesterol efflux, reverts the tumor-promoting functions of TAMs and reduces tumor progression. These studies reveal an unexpected role for membrane-cholesterol efflux in driving TAM-mediated tumor progression while pointing to a potentially novel anti-tumor therapeutic strategy.

+ View Abstract

Cell metabolism, , 1932-7420, , 2019

PMID: 30930171


The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion.
Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang WC, Martinez-Martin N, Lin W, Deane JE, Sharpe HJ

Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.

+ View Abstract

eLife, 8, 2050-084X, , 2019

PMID: 30924770


Open Access

T cell stemness and dysfunction in tumors are triggered by a common mechanism.
Vodnala SK, Eil R, Kishton RJ, Sukumar M, Yamamoto TN, Ha NH, Lee PH, Shin M, Patel SJ, Yu Z, Palmer DC, Kruhlak MJ, Liu X, Locasale JW, Huang J, Roychoudhuri R, Finkel T, Klebanoff CA, Restifo NP

A paradox of tumor immunology is that tumor-infiltrating lymphocytes are dysfunctional in situ, yet are capable of stem cell-like behavior including self-renewal, expansion, and multipotency, resulting in the eradication of large metastatic tumors. We find that the overabundance of potassium in the tumor microenvironment underlies this dichotomy, triggering suppression of T cell effector function while preserving stemness. High levels of extracellular potassium constrain T cell effector programs by limiting nutrient uptake, thereby inducing autophagy and reduction of histone acetylation at effector and exhaustion loci, which in turn produces CD8 T cells with improved in vivo persistence, multipotency, and tumor clearance. This mechanistic knowledge advances our understanding of T cell dysfunction and may lead to novel approaches that enable the development of enhanced T cell strategies for cancer immunotherapy.

+ View Abstract

Science (New York, N.Y.), 363, 1095-9203, , 2019

PMID: 30923193