Life Sciences Research for Lifelong Health

Publications michael-coleman

Title / Authors / Details Open Access Download

Non-nuclear Wld(S) determines its neuroprotective efficacy for axons and synapses in vivo.
B Beirowski, E Babetto, J Gilley, F Mazzola, L Conforti, L Janeckova, G Magni, RR Ribchester, MP Coleman

Axon degeneration contributes widely to neurodegenerative disease but its regulation is poorly understood. The Wallerian degeneration slow (Wld(S)) protein protects axons dose-dependently in many circumstances but is paradoxically abundant in nuclei. To test the hypothesis that Wld(S) acts within nuclei in vivo, we redistributed it from nucleus to cytoplasm in transgenic mice. Surprisingly, instead of weakening the phenotype as expected, extranuclear Wld(S) significantly enhanced structural and functional preservation of transected distal axons and their synapses. In contrast to native Wld(S) mutants, distal axon stumps remained continuous and ultrastructurally intact up to 7 weeks after injury and motor nerve terminals were robustly preserved even in older mice, remaining functional for 6 d. Moreover, we detect extranuclear Wld(S) for the first time in vivo, and higher axoplasmic levels in transgenic mice with Wld(S) redistribution. Cytoplasmic Wld(S) fractionated predominantly with mitochondria and microsomes. We conclude that Wld(S) can act in one or more non-nuclear compartments to protect axons and synapses, and that molecular changes can enhance its therapeutic potential.

+ View Abstract

The Journal of neuroscience : the official journal of the Society for Neuroscience, 29, 3, 653-68, 2009

PMID: 19158292
DOI: 10.1523/JNEUROSCI.3814-08.2009

Open Access

Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies.
R Adalbert, A Nogradi, E Babetto, L Janeckova, SA Walker, M Kerschensteiner, T Misgeld, MP Coleman

Synapse loss precedes cell death in Alzheimer's disease, but the timing of axon degeneration relative to these events, and the causal relationships remain unclear. Axons become so severely dystrophic near amyloid plaques that their interruption, causing permanent loss of function, extensive synapse loss, and potentially cell death appears imminent. However, it remains unclear whether axons are truly interrupted at plaques and whether cell bodies fail to support their axons and dendrites. We traced TgCRND8 mouse axons longitudinally through, distal to, and proximal from dystrophic regions. The corresponding neurons not only survived but remained morphologically unaltered, indicating absence of axonal damage signalling or a failure to respond to it. Axons, no matter how dystrophic, remained continuous and initially morphologically normal outside the plaque region, reflecting support by metabolically active cell bodies and continued axonal transport. Immunochemical and ultrastructural studies showed dystrophic axons were tightly associated with disruption of presynaptic transmission machinery, suggesting local functional impairment. Thus, we rule out long-range degeneration axons or dendrites as major contributors to early synapse loss in this model, raising the prospect of a therapeutic window for functional rescue of individual neurons lasting months or even years after their axons become highly dystrophic. We propose that multi-focal pathology has an important role in the human disease in bringing about the switch from local, and potentially recoverable, synapse loss into permanent loss of neuronal processes and eventually their cell bodies.

+ View Abstract

Brain : a journal of neurology, 132, Pt 2, 402-16, 2009

PMID: 19059977
DOI: 10.1093/brain/awn312

Open Access

The WldS gene delays axonal but not somatic degeneration in a rat glaucoma model.
B Beirowski, E Babetto, MP Coleman, KR Martin

Glaucoma is a leading cause of blindness caused by progressive degeneration of retinal ganglion cells (RGCs) and their axons. The pathogenesis of glaucoma remains incompletely understood, but optic nerve (ON) axonal injury appears to be an important trigger of RGC axonal and cell body degeneration. Rat models are widely used in glaucoma research to explore pathogenic mechanisms and to test novel neuroprotective approaches. Here we investigated the mechanism of axon loss in glaucoma, studying axon degeneration in slow Wallerian degeneration (Wld(S)) rats after increasing intraocular pressure. Wld(S) delays degeneration of experimentally transected axons for several weeks, so it can provide genetic evidence for Wallerian-like degeneration in disease. As apoptosis is unaffected, Wld(S) also provides information on whether cell death results from axon degeneration or arises independently, an important question yet to be resolved in glaucoma. Having confirmed expression of Wld(S) protein, we found that Wld(S) delayed ON axonal degeneration in experimental rat glaucoma for at least 2 weeks, especially in proximal ON where wild-type axons are most severely affected. The duration of axonal protection is similar to that after ON transection and crush, suggesting that axonal degeneration in glaucoma follows a Wallerian-like mechanism. Axonal degeneration must be prevented for RGCs to remain functional, so pharmacologically mimicking and enhancing the protective mechanism of Wld(S) could offer an important route towards therapy. However, Wld(S) did not protect RGC bodies in glaucoma or after ON lesion, suggesting that combination treatments protecting both axons and cell bodies offer the best therapeutic prospects.

+ View Abstract

The European journal of neuroscience, 28, 6, 1166-79, 2008

PMID: 18783366
DOI: 10.1111/j.1460-9568.2008.06426.x

VCP binding influences intracellular distribution of the slow Wallerian degeneration protein, Wld(S).
AL Wilbrey, JE Haley, TM Wishart, L Conforti, G Morreale, B Beirowski, E Babetto, R Adalbert, TH Gillingwater, T Smith, DJ Wyllie, RR Ribchester, MP Coleman

Wallerian degeneration slow (Wld(S)) mice express a chimeric protein that delays axonal degeneration. The N-terminal domain (N70), which is essential for axonal protection in vivo, binds valosin-containing protein (VCP) and targets both Wld(S) and VCP to discrete nuclear foci. We characterized the formation, composition and localization of these potentially important foci. Missense mutations show that the N-terminal sixteen residues (N16) of Wld(S) are essential for both VCP binding and targeting Wld(S) to nuclear foci. Removing N16 abolishes foci, and VCP binding sequences from ataxin-3 or HrdI restore them. In vitro, these puncta co-localize with proteasome subunits. In vivo, Wld(S) assumes a range of nuclear distribution patterns, including puncta, and its neuronal expression and intranuclear distribution is region-specific and varies between spontaneous and transgenic Wld(S) models. We conclude that VCP influences Wld(S) intracellular distribution, and thus potentially its function, by binding within the N70 domain required for axon protection.

+ View Abstract

Molecular and cellular neurosciences, 38, 3, 325-40, 2008

PMID: 18468455
DOI: 10.1016/j.mcn.2008.03.004

Design of a novel quantitative PCR (QPCR)-based protocol for genotyping mice carrying the neuroprotective Wallerian degeneration slow (Wlds) gene.
TM Wishart, SH Macdonald, PE Chen, MJ Shipston, MP Coleman, TH Gillingwater, RR Ribchester

Mice carrying the spontaneous genetic mutation known as Wallerian degeneration slow (Wlds) have a unique neuroprotective phenotype, where axonal and synaptic compartments of neurons are protected from degeneration following a wide variety of physical, toxic and inherited disease-inducing stimuli. This remarkable phenotype has been shown to delay onset and progression in several mouse models of neurodegenerative disease, suggesting that Wlds-mediated neuroprotection may assist in the identification of novel therapeutic targets. As a result, cross-breeding of Wlds mice with mouse models of neurodegenerative diseases is used increasingly to understand the roles of axon and synapse degeneration in disease. However, the phenotype shows strong gene-dose dependence so it is important to distinguish offspring that are homozygous or heterozygous for the mutation. Since the Wlds mutation comprises a triplication of a region already present in the mouse genome, the most stringent way to quantify the number of mutant Wlds alleles is using copy number. Current approaches to genotype Wlds mice are based on either Southern blots or pulsed field gel electrophoresis, neither of which are as rapid or efficient as quantitative PCR (QPCR).

+ View Abstract

Molecular neurodegeneration, 2, , 21, 2007

PMID: 17971231
DOI: 10.1186/1750-1326-2-21

Open Access

Late onset distal axonal swelling in YFP-H transgenic mice.
KE Bridge, N Berg, R Adalbert, E Babetto, T Dias, MG Spillantini, RR Ribchester, MP Coleman

Axonal swellings, or spheroids, are a feature of central nervous system (CNS) axon degeneration during normal aging and in many disorders. The direct cause and mechanism are unknown. The use of transgenic mouse line YFP-H, which expresses yellow-fluorescent protein (YFP) in a subset of neurons, greatly facilitates longitudinal imaging and live imaging of axonal swellings, but it has not been established whether long-term expression of YFP itself contributes to axonal swelling. Using conventional methods to compare YFP-H mice with their YFP negative littermates, we found an age-related increase in swellings in discrete CNS regions in both genotypes, but the presence of YFP caused significantly more swellings in mice aged 8 months or over. Increased swelling was found in gracile tract, gracile nucleus and dorsal roots but not in lateral columns, olfactory bulb, motor cortex, ventral roots or peripheral nerve. Thus, long-term expression of YFP accelerates age-related axonal swelling in some axons and data reliant on the presence of YFP in these CNS regions in older animals needs to be interpreted carefully. The ability of a foreign protein to exacerbate age-related axon pathology is an important clue to the mechanisms by which such pathology can arise.

+ View Abstract

Neurobiology of aging, 30, 2, 309-21, 2009

PMID: 17658198
DOI: 10.1016/j.neurobiolaging.2007.06.002

Abeta, tau and ApoE4 in Alzheimer's disease: the axonal connection.
R Adalbert, J Gilley, MP Coleman

Mutations in amyloid precursor protein (APP), tau and apolipoprotein E4 (ApoE4) lead to Alzheimer's disease (AD) or related pathologies. Pathogenesis and interactions between these pathways have been studied in mouse models. Here, we highlight the fact that axons are important sites of cellular pathology in each pathway and propose that pathway convergence at the molecular level might occur in axons. Recent developments suggest that axonal transport of APP influences beta-amyloid deposition and that tau regulates axonal transport. ApoE4 influences both axonal tau phosphorylation and amyloid-induced neurite pathology. Thus, a better understanding of axonal events in AD might help connect the pathogenic mechanisms of beta-amyloid, ApoE4 and tau, indicating the most important steps for therapeutic targeting.

+ View Abstract

Trends in molecular medicine, 13, 4, 135-42, 2007

PMID: 17344096
DOI: 10.1016/j.molmed.2007.02.004

Neuronal death: where does the end begin?
L Conforti, R Adalbert, MP Coleman

Neurodegenerative disorders involve death of cell bodies, axons, dendrites and synapses, but it is surprisingly difficult to determine the spatiotemporal sequence of events and the causal relationships among these events. Neuronal compartments often crucially depend upon one another for survival, and molecular defects in one compartment can trigger cellular degeneration in distant parts of the neuron. Here, we consider the novel approaches used to understand these biologically complex and technically challenging questions in amyotrophic lateral sclerosis, spinal muscular atrophy, glaucoma, Alzheimer's disease, Parkinson's disease and polyglutamine disorders. We conclude that there is partial understanding of what degenerates first and why, but that controversy remains the rule not the exception. Finally, we highlight strategies for resolving these fundamental issues.

+ View Abstract

Trends in neurosciences, 30, 4, 159-66, 2007

PMID: 17339056
DOI: 10.1016/j.tins.2007.02.004

The slow Wallerian degeneration gene in vivo protects motor axons but not their cell bodies after avulsion and neonatal axotomy.
R Adalbert, A Nógrádi, A Szabó, MP Coleman

The slow Wallerian degeneration gene (Wld(S)) delays Wallerian degeneration and axon pathology for several weeks in mice and rats. Interestingly, neuronal cell death is also delayed in some in vivo models, most strikingly in the progressive motoneuronopathy mouse. Here, we tested the hypothesis that Wld(S) has a direct protective effect on motoneurone cell bodies in vivo. Cell death was induced in rat L4 motoneurones by intravertebral avulsion of the corresponding ventral roots. This simultaneously removed most of the motor axon, minimizing the possibility that the protective effect toward axons could rescue cell bodies secondarily. There was no significant difference between the survival of motoneurones in control and Wld(S) rats, suggesting that the Wld(S) gene has no direct protective effect on cell bodies. We also tested for any delay in apoptotic motoneurone death following neonatal nerve injury in Wld(S) rats and found that, unlike Wld(S) mice, Wld(S) rats show no delay in cell death. However, the corresponding distal axons were preserved, confirming that motoneurone cell bodies and motor axons die by different mechanisms. Thus, Wld(S) does not directly prevent death of motoneurone cell bodies. It follows that the protection of neuronal cell bodies observed in several disease and injury models where axons or significant axonal stumps remain is most probably secondary to axonal protection.

+ View Abstract

The European journal of neuroscience, 24, 8, 2163-8, 2006

PMID: 17074042
DOI: 10.1111/j.1460-9568.2006.05103.x

Geminin is essential to prevent endoreduplication and to form pluripotent cells during mammalian development.
Gonzalez MA, Tachibana KE, Adams DJ, van der Weyden L, Hemberger M, Coleman N, Bradley A, Laskey RA

In multicellular eukaryotes, geminin prevents overreplication of DNA in proliferating cells. Here, we show that genetic ablation of geminin in the mouse prevents formation of inner cell mass (ICM) and causes premature endoreduplication at eight cells, rather than 32 cells. All cells in geminin-deficient embryos commit to the trophoblast cell lineage and consist of trophoblast giant cells (TGCs) only. Geminin is also down-regulated in TGCs of wild-type blastocysts during S and gap-like phases by proteasome-mediated degradation, suggesting that loss of geminin is part of the mechanism regulating endoreduplication.

+ View Abstract

Genes & development, 20, 0890-9369, 1880-4, 2006

PMID: 16847348

Open Access

NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration.
L Conforti, G Fang, B Beirowski, MS Wang, L Sorci, S Asress, R Adalbert, A Silva, K Bridge, XP Huang, G Magni, JD Glass, MP Coleman

The slow Wallerian degeneration protein (Wld(S)), a fusion protein incorporating full-length nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1), delays axon degeneration caused by injury, toxins and genetic mutation. Nmnat1 overexpression is reported to protect axons in vitro, but its effect in vivo and its potency remain unclear. We generated Nmnat1-overexpressing transgenic mice whose Nmnat activities closely match that of Wld(S) mice. Nmnat1 overexpression in five lines of transgenic mice failed to delay Wallerian degeneration in transected sciatic nerves in contrast to Wld(S) mice where nearly all axons were protected. Transected neurites in Nmnat1 transgenic dorsal root ganglion explant cultures also degenerated rapidly. The delay in vincristine-induced neurite degeneration following lentiviral overexpression of Nmnat1 was significantly less potent than for Wld(S), and lentiviral overexpressed enzyme-dead Wld(S) still displayed residual neurite protection. Thus, Nmnat1 is significantly weaker than Wld(S) at protecting axons against traumatic or toxic injury in vitro, and has no detectable effect in vivo. The full protective effect of Wld(S) requires more N-terminal sequences of the protein.

+ View Abstract

Cell death and differentiation, 14, 1, 116-27, 2007

PMID: 16645633
DOI: 10.1038/sj.cdd.4401944

Open Access

The neuroprotective WldS gene regulates expression of PTTG1 and erythroid differentiation regulator 1-like gene in mice and human cells.
Gillingwater TH, Wishart TM, Chen PE, Haley JE, Robertson K, MacDonald SH, Middleton S, Wawrowski K, Shipston MJ, Melmed S, Wyllie DJ, Skehel PA, Coleman MP, Ribchester RR

Wallerian degeneration of injured neuronal axons and synapses is blocked in Wld(S) mutant mice by expression of an nicotinamide mononucleotide adenylyl transferase 1 (Nmnat-1)/truncated-Ube4b chimeric gene. The protein product of the Wld(S) gene localizes to neuronal nuclei. Here we show that Wld(S) protein expression selectively alters mRNA levels of other genes in Wld(S) mouse cerebellum in vivo and following transfection of human embryonic kidney (HEK293) cells in vitro. The largest changes, identified by microarray analysis and quantitative real-time polymerase chain reaction of cerebellar mRNA, were an approximate 10-fold down-regulation of pituitary tumour-transforming gene-1 (pttg1) and an approximate 5-fold up-regulation of a structural homologue of erythroid differentiation regulator-1 (edr1l-EST). Transfection of HEK293 cells with a Wld(S)-eGFP construct produced similar changes in mRNA levels for these and seven other genes, suggesting that regulation of gene expression by Wld(S) is conserved across different species, including humans. Similar modifications in mRNA levels were mimicked for some of the genes (including pttg1) by 1 mm nicotinamide adenine dinucleotide (NAD). However, expression levels of most other genes (including edr1l-EST) were insensitive to NAD. Pttg1(-/-) mutant mice showed no neuroprotective phenotype. Transfection of HEK293 cells with constructs comprising either full-length Nmnat-1 or the truncated Ube4b fragment (N70-Ube4b) demonstrated selective effects of Nmnat-1 (down-regulated pttg1) and N70-Ube4b (up-regulated edr1l-EST) on mRNA levels. Similar changes in pttg1 and edr1l-EST were observed in the mouse NSC34 motor neuron-like cell line following stable transfection with Wld(S). Together, the data suggest that the Wld(S) protein co-regulates expression of a consistent subset of genes in both mouse neurons and human cells. Targeting Wld(S)-induced gene expression may lead to novel therapies for neurodegeneration induced by trauma or by disease in humans.

+ View Abstract

Human molecular genetics, 15, 0964-6906, 625-35, 2006

PMID: 16403805

Open Access

The slow Wallerian degeneration protein, WldS, binds directly to VCP/p97 and partially redistributes it within the nucleus.
H Laser, L Conforti, G Morreale, TG Mack, M Heyer, JE Haley, TM Wishart, B Beirowski, SA Walker, G Haase, A Celik, R Adalbert, D Wagner, D Grumme, RR Ribchester, M Plomann, MP Coleman

Slow Wallerian degeneration (Wld(S)) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD(+) synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination factor Ube4b, has not been excluded. In wild-type Ube4b, N70 is part of a sequence essential for ubiquitination activity but its role is not understood. We report direct binding of N70 to valosin-containing protein (VCP; p97/Cdc48), a protein with diverse cellular roles including a pivotal role in the ubiquitin proteasome system. Interaction with Wld(S) targets VCP to discrete intranuclear foci where ubiquitin epitopes can also accumulate. Wld(S) lacking its N-terminal 16 amino acids (N16) neither binds nor redistributes VCP, but continues to accumulate in intranuclear foci, targeting its intrinsic NAD(+) synthesis activity to these same foci. Wild-type Ube4b also requires N16 to bind VCP, despite a more C-terminal binding site in invertebrate orthologues. We conclude that N-terminal sequences of Wld(S) protein influence the intranuclear location of both ubiquitin proteasome and NAD(+) synthesis machinery and that an evolutionary recent sequence mediates binding of mammalian Ube4b to VCP.

+ View Abstract

Molecular biology of the cell, 17, 3, 1075-84, 2006

PMID: 16371511
DOI: 10.1091/mbc.E05-04-0375

Open Access

Axon degeneration mechanisms: commonality amid diversity.
M Coleman

A wide range of insults can trigger axon degeneration, and axons respond with diverse morphology, topology and speed. However, recent genetic, immunochemical, morphological and pharmacological investigations point to convergent degeneration mechanisms. The principal convergence points - poor axonal transport, mitochondrial dysfunction and an increase in intra-axonal calcium - have been identified by rescuing axons with the slow Wallerian degeneration gene (Wld(S)) and studies with blockers of sodium or calcium influx. By understanding how the pathways fit together, we can combine our knowledge of mechanisms, and potentially also treatment strategies, from different axonal disorders.

+ View Abstract

Nature reviews. Neuroscience, 6, 11, 889-98, 2005

PMID: 16224497
DOI: 10.1038/nrn1788

The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves.
Beirowski B, Adalbert R, Wagner D, Grumme DS, Addicks K, Ribchester RR, Coleman MP

The progressive nature of Wallerian degeneration has long been controversial. Conflicting reports that distal stumps of injured axons degenerate anterogradely, retrogradely, or simultaneously are based on statistical observations at discontinuous locations within the nerve, without observing any single axon at two distant points. As axon degeneration is asynchronous, there are clear advantages to longitudinal studies of individual degenerating axons. We recently validated the study of Wallerian degeneration using yellow fluorescent protein (YFP) in a small, representative population of axons, which greatly improves longitudinal imaging. Here, we apply this method to study the progressive nature of Wallerian degeneration in both wild-type and slow Wallerian degeneration (WldS) mutant mice.

+ View Abstract

BMC neuroscience, 6, 1471-2202, 6, 2005

PMID: 15686598

Open Access

A rat model of slow Wallerian degeneration (WldS) with improved preservation of neuromuscular synapses.
R Adalbert, TH Gillingwater, JE Haley, K Bridge, B Beirowski, L Berek, D Wagner, D Grumme, D Thomson, A Celik, K Addicks, RR Ribchester, MP Coleman

The slow Wallerian degeneration phenotype, Wld(S), which delays Wallerian degeneration and axon pathology for several weeks, has so far been studied only in mice. A rat model would have several advantages. First, rats model some human disorders better than mice. Second, the larger body size of rats facilitates more complex surgical manipulations. Third, rats provide a greater yield of tissue for primary culture and biochemical investigations. We generated transgenic Wld(S) rats expressing the Ube4b/Nmnat1 chimeric gene in the central and peripheral nervous system. As in Wld(S) mice, their axons survive up to 3 weeks after transection and remain functional for at least 1 week. Protection of axotomized nerve terminals is stronger than in mice, particularly in one line, where 95-100% of neuromuscular junctions remained intact and functional after 5 days. Furthermore, the loss of synaptic phenotype with age was much less in rats than in mice. Thus, the slow Wallerian degeneration phenotype can be transferred to another mammalian species and synapses may be more effectively preserved after axotomy in species with longer axons.

+ View Abstract

The European journal of neuroscience, 21, 1, 271-7, 2005

PMID: 15654865
DOI: 10.1111/j.1460-9568.2004.03833.x

The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice.
W Mi, B Beirowski, TH Gillingwater, R Adalbert, D Wagner, D Grumme, H Osaka, L Conforti, S Arnhold, K Addicks, K Wada, RR Ribchester, MP Coleman

Axonal dystrophy is the hallmark of axon pathology in many neurodegenerative disorders of the CNS, including Alzheimer's disease, Parkinson's disease and stroke. Axons can also form larger swellings, or spheroids, as in multiple sclerosis and traumatic brain injury. Some spheroids are terminal endbulbs of axon stumps, but swellings may also occur on unbroken axons and their role in axon loss remains uncertain. Similarly, it is not known whether spheroids and axonal dystrophy in so many different CNS disorders arise by a common mechanism. These surprising gaps in current knowledge result largely from the lack of experimental methods to manipulate axon pathology. The slow Wallerian degeneration gene, Wld(S), delays Wallerian degeneration after injury, and also delays 'dying-back' in peripheral nervous system disorders, revealing a mechanistic link between two forms of axon degeneration traditionally considered distinct. We now report that Wld(S) also inhibits axonal spheroid pathology in gracile axonal dystrophy (gad) mice. Both gracile nucleus (P < 0.001) and cervical gracile fascicle (P = 0.001) contained significantly fewer spheroids in gad/Wld(S) mice, and secondary signs of axon pathology such as myelin loss were also reduced. Motor nerve terminals at neuromuscular junctions continued to degenerate in gad/Wld(S) mice, consistent with previous observations that Wld(S) has a weaker effect on synapses than on axons, and probably contributing to the fact that Wld(S) did not alleviate gad symptoms. Wld(S) acts downstream of the initial pathogenic events to block gad pathology, suggesting that its effect on axonal swelling need not be specific to this disease. We conclude that axon degeneration mechanisms are more closely related than previously thought and that a link exists in gad between spheroid pathology and Wallerian degeneration that could hold for other disorders.

+ View Abstract

Brain : a journal of neurology, 128, Pt 2, 405-16, 2005

PMID: 15644421
DOI: 10.1093/brain/awh368

Open Access

Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene.
TG Mack, M Reiner, B Beirowski, W Mi, M Emanuelli, D Wagner, D Thomson, T Gillingwater, F Court, L Conforti, FS Fernando, A Tarlton, C Andressen, K Addicks, G Magni, RR Ribchester, VH Perry, MP Coleman

Axons and their synapses distal to an injury undergo rapid Wallerian degeneration, but axons in the C57BL/WldS mouse are protected. The degenerative and protective mechanisms are unknown. We identified the protective gene, which encodes an N-terminal fragment of ubiquitination factor E4B (Ube4b) fused to nicotinamide mononucleotide adenylyltransferase (Nmnat), and showed that it confers a dose-dependent block of Wallerian degeneration. Transected distal axons survived for two weeks, and neuromuscular junctions were also protected. Surprisingly, the Wld protein was located predominantly in the nucleus, indicating an indirect protective mechanism. Nmnat enzyme activity, but not NAD+ content, was increased fourfold in WldS tissues. Thus, axon protection is likely to be mediated by altered ubiquitination or pyridine nucleotide metabolism.

+ View Abstract

Nature neuroscience, 4, 12, 1199-206, 2001

PMID: 11770485
DOI: 10.1038/nn770