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Ageing affects DNA methylation drift and
transcriptional cell-to-cell variability in mouse
muscle stem cells
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Marc Jan Bonder5, Stephen Clark 1, Simon Andrews1, Shahragim Tajbakhsh 2,3 & Wolf Reik 1

Age-related tissue alterations have been associated with a decline in stem cell number and

function. Although increased cell-to-cell variability in transcription or epigenetic marks has

been proposed to be a major hallmark of ageing, little is known about the molecular diversity

of stem cells during ageing. Here we present a single cell multi-omics study of mouse muscle

stem cells, combining single-cell transcriptome and DNA methylome profiling. Aged cells

show a global increase of uncoordinated transcriptional heterogeneity biased towards genes

regulating cell-niche interactions. We find context-dependent alterations of DNA methylation

in aged stem cells. Importantly, promoters with increased methylation heterogeneity are

associated with increased transcriptional heterogeneity of the genes they drive. These results

indicate that epigenetic drift, by accumulation of stochastic DNA methylation changes in

promoters, is associated with the degradation of coherent transcriptional networks during

stem cell ageing. Furthermore, our observations also shed light on the mechanisms under-

lying the DNA methylation clock.
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Epigenetic alterations have been proposed to be a major cause
of age-related decline in tissue function1. Changes in DNA
methylation are well correlated with ageing, and methyla-

tion of specific loci has been used to predict age in a large number
of tissues1,2. Epigenetic-based age predictive models, also referred
to as epigenetic clocks, have been widely applied in the last few
years and are believed to reflect chronological aging3. Despite
their accuracy, the mechanisms underlying these models are
largely unknown2,3.

Notwithstanding the close associations with age, age-related
methylation changes are poorly correlated with transcriptional
variation, presumably because the changes are generally small and
may not occur homogeneously in all cells2, a phenomenon also
known as epigenetic drift. Although epigenetic drift has long been
hypothesised to be an important hallmark of ageing4, this pro-
posal has been challenging to test because of technical constraints.
However, powerful combined single cell methods5,6 are now
available, and epigenetic changes during ageing together with
their functional consequences can now be read out in single cells7.

Degenerative changes in tissue-specific stem cells have been
proposed to be a major cause of age-related decline in tissue
function8. While several reports indicate a loss of clonal diversity
during early life stages9–11, little is known about how cell-to-cell
variability at the molecular level is involved in stem cell ageing.
Here, we performed parallel single-cell DNA methylation and
transcriptome sequencing (scM&T-seq) on the same cell6 to
investigate how ageing affects transcriptional and epigenetic
heterogeneity of tissue-specific stem cells, using mouse muscle
stem cells as a model. Muscle stem cells express the transcription
factor Pax712 and are largely quiescent in adult muscles. They
activate upon injury to differentiate and fuse to form new fibres,
or self-renew to reconstitute the stem cell pool12. Age-associated
muscle defects have been attributed to a decrease in stem cell
number together with impaired regenerative potential13. In
addition, clonal lineage-tracing of mouse muscle stem cells
showed that population diversity is unaltered during homoeo-
static ageing14.

Here, by combined single-cell transcriptome and DNA
methylome profiling in muscle stem cells, we show a global
increase of uncoordinated transcriptional heterogeneity and
context-dependent alterations of DNA methylation with age.
Notably, old cells that change the most with age reveal alterations
in the transcription of genes regulating cell-niche interactions.
These findings show linked increases in heterogeneity between
the epigenome and the transcriptome, with consequent degra-
dation of coherent transcriptional networks and stem cell func-
tional decline during ageing.

Results
Transcriptomic profiling of young and old muscle stem cells.
Muscle stem cells with high expression of Pax7 were shown to be
in a deep quiescent, or dormant, state15,16. To investigate the
molecular effects of ageing in a defined population that is less
poised to enter the cell cycle, we isolated single muscle stem cells
by fluorescence-activated cell sorting (FACS) from young
(1.5 months) and old (26 months) Tg:Pax7-nGFP mice17 and
selected those with high levels of GFP, to which we applied
scM&T-seq (Fig. 1a). Importantly, this approach allows us to
study variability while minimising key confounder factors such as
differences in cell cycle or differentiation states between ages.

After quality control and filtering, a total of 377 transcriptomes
from four young and two old mice were analysed. Young (n =
253) and old (n = 124) cells from different individuals clustered
together, respectively, indicating no global differences with age
and absence of sequencing-related batch effects (Fig. 1b). We also

assigned a cell cycle stage18 to each cell and observed that, with
the exception of one cell from sample Young 2, cells were unlikely
to be cycling at the time of isolation, and showed no differences
between ages (Supplementary Fig. 1). Measures of cell cycle entry
through BrdU uptake in vivo are also in agreement with this
observation, supporting the deep quiescent state of these cells
(Supplementary Fig. 2). Furthermore, we did not observe
significant differences in the levels of Pax7, the myogenic factors
Myod and Myf5 and the cell cycle inhibitor Cdkn1b (p27), nor of
senescent markers such as Cdkn2a (p16INK4a/p14arf), suggesting
that some molecular signatures are conserved between the
analysed cell populations (Fig. 1c). Nevertheless, 940 genes were
differentially expressed between young and old individuals
(SCDE, FDR P < 0.05, Supplementary Data 1, Supplementary
Fig. 3), with small differences in some cases; Spry1, which is a key
factor for maintaining quiescence19, and the cell cycle regulators
Ccnd1 (Cyclin D1), Btg1 and Gas1 were down-regulated, while
ageing markers such as the chemokine genes Ccl11 and Ccl19
were upregulated16 (Fig. 1c). Furthermore, we identified sig-
nificant alterations in expression of genes not previously reported
to change in expression with age, such as the early activation
markers Fosb and Egr120 and the metalloproteinase Mmp2
(Fig. 1c).

Increased transcriptional variability with age. To investigate if
ageing affects transcriptional heterogeneity of the stem cell pool,
we calculated pairwise correlation coefficients between cells
within each individual (see “Methods”) and observed that old
individuals showed consistently lower correlation (1.3 mean-fold
decrease, Mann–Whitney–Wilcoxon test; P < 2.2e-16, Fig. 1d),
indicating a remarkably lower degree of similarity between cells
and no obvious population substructure. Similar results were
observed when performing the analysis on cohorts of 10 cells
from the same individual where the mean correlation in young
individuals was always higher than in old ones (P < 0.001)
(Supplementary Fig. 4).

We also computed an expression-level normalised measure of
gene expression heterogeneity (named distance to the median)21,
which proved to be higher in old individuals
(Mann–Whitney–Wilcoxon test; P < 2.2e-16, Fig. 1e), revealing
a striking global increase of uncoordinated transcriptional
variability with age. Notably, the proportion of cells expressing
a given gene (frequency of gene expression) was reduced with age
(Mann–Whitney–Wilcoxon test; P < 2.2e-16, Fig. 1f), even
for genes that did not significantly change mean expression
levels (SCDE, FDR P > 0.05, Fig. 1f). Importantly, we observed
that this was independent of gene expression levels and not
restricted to lowly expressed genes (Fig. 1g), suggesting that this
global feature is not due to technical effects.

Genes that displayed increased expression variability with age
(expression frequency difference > 15%) were enriched in extra-
cellular matrix processes and include several collagen genes
(Col4a2, Col5a3, Col4a1) and other extracellular matrix-related
genes such as Dag1, Sparc, Cdh15, Lamc3 or Itgb1 (Fig. 2a,
Supplementary Figs. 5 and 6). Interestingly, muscle stem cells
without Itgb1 (β1-integrin) cannot maintain quiescence, and its
experimental activation improves ageing-related decline in
muscle regeneration22. Similarly, reduction of N-cadherin and
M-cadherin (Cdh15) leads to a break of quiescence of muscle
stem cells23. Notably, none of the above-mentioned genes were
shown to change in expression level during the isolation
procedure of muscle stem cells24.

To further investigate the increased expression variability with
age, we sequenced by scRNA-seq the total population of Pax7
positive cells in four individuals (two young, two old) and
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observed similar results regarding transcriptional variability
(Supplementary Fig. 7). Furthermore, we measured the levels of
Cdh15 and Itgb1 proteins in quiescent muscle stem cells from
young and old Tg:Pax7-nGFP mice after isolation of single
myofibres and quantification of immunofluorescence intensity

following immunostaining (Supplementary Fig. 8). Young and
old muscle stem cells showed homogeneous nGFP expression,
consistent with the absence of difference in Pax7 expression level
between ages as measured by scM&T-seq (Fig. 1c). However,
while all the cells analysed expressed Cdh15 and Itgb1 protein in
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Fig. 1 Aged muscle stem cells have increased cell-to-cell transcriptional variability. a Experimental scheme. Single cells were isolated from Tg:Pax7-nGFP
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young individuals, a significant fraction (10–15%) showed low to
no expression in old individuals (Supplementary Fig. 8). Overall,
these observations confirm the scM&T-seq data and show
increased expression variability with age at the protein level.

The observed increase in transcriptional variability with age
could reflect the presence of cell subpopulations, or be a purely
stochastic process. Despite not observing clear substructure
(Fig. 1b, d right), we further investigated the origin of this
variability by ranking old cells based on their transcriptome-wide
similarity to young cells, and performed correlation analyses to
identify the genes driving this ranking. Gene ontology analysis
indicated that old cells that differed the most from young cells
were enriched in processes such as translation and peptide
biosynthesis (Fig. 2b top), while old cells that were most similar to
young ones had higher levels of extracellular matrix-related

functions compared to the old cells that differed with the young
(Fig. 2b bottom). For example, Fos and Mmp2 were preferentially
expressed in the most different old cells, while extracellular
markers such as Dag1, Itgb1, Cdh15 or Bgn were expressed in the
most similar ones (Fig. 2c). These results indicate that cells that
have accumulated more differences with age are likely to have
impaired cell-niche interactions and are more prone to exit
quiescence (Fig. 2d).

DNA methylation-based age prediction. Epigenetic age has so
far not been assayed in adult stem cells, presumably because of
the difficulties in obtaining sufficient material and isolating spe-
cific cell types. Taking advantage of our specific cell population,
we next studied how DNA methylation-based age predictors25
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behave in adult stem cells. Due to the sparse coverage of single
cell data (average CpG sites covered per cell = 1.6 million), we
aggregated cells by individual (two young and two old samples, 35
cells per individual) and built a model using 140 training samples
using the same methods as previously described25 (see “Meth-
ods”). The median absolute error in the training set was
0.3 weeks, and 3.2 weeks in the test set. These prediction
accuracies are in line with the original report25. The model is
based on 474 CpG sites that are covered in all training samples
and the aggregated single cells at a 5X depth. The median abso-
lute error of four bulk muscle samples that were left out com-
pletely from the modelling was 2.2 weeks, demonstrating that our
model is able to predict accurately the age of the relevant tissue.
Surprisingly, the predicted age for muscle stem cells was similar
for all our samples: 9.2 and 9.3 weeks in the young samples and
10.2 and 11.6 weeks in the old ones (Fig. 3a). In order to inves-
tigate the potential variability masked in our aggregated samples
and to get more insight into the prediction error, we estimated the
epigenetic age using different combinations of single cells for each
sample. We performed 100 permutations by randomly removing
5% of the cells and calculated the epigenetic age in each sub-
sample. Given the coverage of the single cells, we used only the
permutations with at least 4X coverage of each of the clock sites,
resulting in between 36 and 84 permutations per sample. This
analysis showed a significant increase in the epigenetic age of old
samples; however, the predicted ages were still notably different
from the actual chronological ages (Fig. 3a).

DNA methylation changes and epigenetic drift. We then
investigated age-associated DNA methylation changes at the
single cell level in greater detail. We discarded cells with <1
million paired-end alignments or <500,000 CpG and limited
potential biases due to uneven sequencing depth between cells or
different number of cells per individual by randomly subsampling
1 million reads from each cell and 35 cells per individual. We
then selected two young and two old samples for the downstream
analysis (2 million CpG sites on average per cell, “Methods”,
Supplementary Table 1). Global mean DNA methylation levels
were around 50%, as previously reported for human primary
cultured myoblasts26 (Supplementary Fig. 9C). As with the
transcriptomes, we did not observe clear subpopulations in any of
the methylome samples (Supplementary Fig. 10). Overall, CpG
islands, promoters and enhancers were hypomethylated (average
0.03%, 0.9%, 0.6% respectively); exons, myoblast enhancers
(marked by H3K27ac) and shores (flanking regions of the CpG
islands) were around 30% methylated, while repeats and bodies of
active genes (marked by H3K36me3) were highly methylated
(~70%) (Fig. 3b). We found that DNA methylation levels
increased slightly with age, as reported for human primary
myoblast19, mostly in repeat elements and H3K36me3 regions
(Fig. 3c–e).

Identical average methylation levels for a given genomic region
may reflect different scenarios, from uniform populations to
completely random heterogeneous patterns (Fig. 3f). Since we did
not observe substructure in our data (Supplementary Fig. 10), and
as stochastic epigenetic drift has been suggested to be a major
hallmark of ageing4, we computed a score to measure levels of
stochastic intrapopulation heterogeneity (Supplementary Fig. 11,
“Methods”). As expected, our initial measure of heterogeneity
depended on average methylation levels (Fig. 3g). Hence, we
developed an independent measure of heterogeneity by calculat-
ing the distance between the observed heterogeneity for each
genomic region and a rolling median (Fig. 3g, “Methods”).
Interestingly, this analysis showed that different genomic contexts
displayed different levels of methylation heterogeneity between

cells; for example, CpG islands were more heterogeneous than
enhancers (Fig. 3h).

Global levels of methylation heterogeneity were similar
between ages (Supplementary Fig. 12); we next computed
localised Z-score comparisons between young and old to examine
changes in specific genomic elements. Notably, methylation of
LINE-1 elements became more homogeneous with age whereas
regions marked by H3K27me3 became more heterogeneous
(Fig. 4a). Specifically, LINE-1 elements also experienced the
highest increase in absolute DNA methylation levels, both of
which may reflect a coordinated mechanism to prevent
deleterious somatic retrotranspositions during ageing. Most of
the H3K27me3 regions were associated with genes that are
repressed, but poised for rapid activation27. We hypothesise that
this increase in methylation heterogeneity may contribute to an
impaired transcriptional response upon activation.

Interestingly, we observed a negative correlation between
changes in methylation levels and changes in methylation
heterogeneity (Promoters: Pearson’s coefficient=−0.35, P <
2.2e-16, Fig. 4b). Regions becoming more homogeneous showed
an increase in methylation, suggesting that de novo methylation
enzymes (Dnmt3a,b) are recruited to specific sites and add
methylation in a coordinated manner between cells. In contrast,
regions becoming more heterogeneous showed a decrease in their
methylation levels. The key DNA methylation enzymes (DNMTs
and TETs) are either expressed at very low levels, or they show no
clear differences in expression between ages (Supplementary
Fig. 13). This suggests that age-associated epigenetic changes are
not likely to be driven by alterations of epigenetic modifiers at the
transcriptional level (Supplementary Fig. 13), although we cannot
exclude the possibility that they are driven by changes in protein
levels or enzymatic activities. In addition, DNA methylation
turnover has been shown to occur during the exit of pluripotency
when DNMT3s and TETs are co-expressed28. We hypothesise
that DNA methylation turnover could also take place in the
quiescent state (e.g. through DNMT3s and TETs) and that age-
associated epigenetic alterations could result from errors during
this turnover. Alternatively, despite the low-proliferative history
of these cells, we cannot exclude the possibility that Pax7Hi cells
accumulate DNA methylation changes during occasional cell
cycle entry.

Epigenetic changes may contribute to the age-associated
pattern of transcriptional heterogeneity. Although our approach
does not directly support causality, it provides a starting point to
investigate the molecular links between epigenetic heterogeneity
and transcriptional changes. We explored this possibility by
analysing the association between promoter DNA methylation
and gene expression. We calculated a correlation coefficient for
each cell and confirmed the expected negative correlation for
methylation and transcription (Fig. 4c). Interestingly, old cells
that were most transcriptionally different from young cells
showed lower levels of correlation (Mann–Whitney–Wilcoxon
test; P < 0.05, Fig. 4c). Furthermore, we calculated changes in
transcriptional variability between young and old cells (see
“Methods”) and observed that promoters with increased
methylation heterogeneity tended to have increased transcrip-
tional heterogeneity (Mann–Whitney–Wilcoxon test; P < 0.001)
(Fig. 4d). It appears therefore that deterioration of transcriptional
coherence during ageing is associated with increased promoter
methylation heterogeneity and with decreased connectivity
between the epigenome and the transcriptome.

Discussion
In summary, we report transcriptional and epigenetic signatures
associated with ageing in a deeply quiescent population of muscle
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stem cells. While old stem cells show a slight increase in their
DNA methylation age, this lags far behind their chronological
age. DNA methylation-based age predictors are built with data
from bulk tissues that represent a mix of different cell types. It is
plausible that small changes in cell composition during ageing
could affect the epigenetic age of a tissue2. Stem cells, which
generally decrease in number during ageing might be one of these

cell populations. Consequently, the epigenetic clock might be a
measure of the different proportions of stem and differentiated
cells in a tissue. In accordance with this notion, several studies
have shown that the CpG sites used in epigenetic clock models
are enriched in polycomb target sites and are associated with
developmental and cell differentiation genes3,25,29. Nonetheless,
the slight increase in epigenetic age we observed in old stem cells
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also suggests that cell-intrinsic changes are also likely to play
a role. These changes could be related to cell metabolism or
cell division. In this scenario, extrinsic and intrinsic factors would
contribute to the epigenetic clock. Technical factors, such as
the datasets used to train the model, could also contribute
to these predictions. Future single cell studies including
samples from different ages will be crucial to determine the
specific role of cellular composition and cell-intrinsic changes in
the epigenetic clock.

Previous studies have investigated transcriptional heterogeneity
changes with age in mixed cell populations30, which are affected
by differences in cellular composition, such as an increase in
senescent cells30. In contrast, our study is focused on a specific
population of cells in which known stemness, activation and
senescent markers were not affected by ageing. Even in this
restricted population, we observed a global increase of uncoor-
dinated transcriptional variability with age, indicating an intrinsic
mechanism of cellular ageing. Interestingly, mouse muscle stem
cells were shown to maintain clonal diversity during homoeo-
static ageing by lineage-tracing14, however, our study uncovers a
dramatic underlying molecular heterogeneity in these stem cells
that extends beyond maintenance of clonal homogeneity. We also
observe that cells that have acquired more differences with age
showed alterations in multiple extracellular matrix-related genes
potentially affecting stem cell-niche interactions.

Elevated transcriptional variability with age has been reported
in several studies30–32, however the underlying causes remain
largely unknown. The accumulation of somatic mutations only
partially accounts for the increased cell-to-cell transcriptional
variability30, suggesting that epigenetic mechanisms might be a
contributing factor33. In this study, by applying a combined single
cell method for DNA methylation and the transcriptome, we
show that epigenetic drift, or the uncoordinated accumulation of
methylation changes in promoters, is associated with the
increased transcriptional variability with age (Fig. 4e). Due to the
deep quiescent state of the homoeostatic cells chosen for this
study, our data highlight the possibility that the observed epige-
netic patterns could be independent of extensive cell proliferation.
We propose that this variability is detrimental due to uncoordi-
nated transcription, thereby affecting the ability of stem cells to
maintain quiescence, or activate coherently upon injury.

Understanding how molecular variability of stem cells affects
their proliferation and differentiation capacities during aging will
be of critical importance. In the present study, we restricted most
of our analysis to cells expressing high levels of Pax7 to limit
confounding factors, nonetheless, this might potentially co-select
for other features. We interpreted the increase of variability in the

absence of clear substructure as a stochastic process, although we
cannot formally exclude the possibility of the presence of as yet
unidentified rare cell types or hidden population substructure. In
future studies, the analysis of large numbers of cells from different
stem cell populations and the integration of multiple molecular
layers, will be highly informative for a more complete under-
standing of the underlying molecular mechanisms of stem cell
ageing.

Methods
Mice. Animals were handled according to national and European Community
guidelines and an ethics committee of the Institut Pasteur (CETEA) in France
approved protocols. Young (1.5–2.1 months) and old (23.3–27 months-old) Tg:
Pax7-nGFP17 mice, on a C57BL/6;DBA2 F1/JRj genetic background, were used in
this study. Male littermates were euthanised around 9 am. Males were chosen
preferentially to avoid interindividual variations due to asynchrony in the female
oestrus cycle (Supplementary Table 1).

Isolation of muscle stem cells. Mice were sacrificed by cervical dislocation.
Tibialis anterior muscles were dissected and placed into cold DMEM (Thermo-
Fisher, 31966). Muscles were then chopped and put into a 15 ml Falcon tube
containing 10 ml of DMEM, 0.08% collagenase D (Sigma, 11 088 882 001), 0.1%
trypsin (ThermoFisher, 15090), 10 µg/ml DNaseI (Sigma, 11284932) at 37 °C under
gentle agitation for 25 min. Digests were allowed to stand for 5 min at room
temperature and the supernatants were collected in 5 ml of foetal bovine serum
(FBS; Gibco) on ice. The digestion was repeated three times until complete
digestion of the muscle. The supernatants were filtered through a 70-µm cell
strainer (Miltenyi, 130–098–462). Cells were spun for 15 min at 515 × g at 4 °C and
the pellets were resuspended in 1 ml freezing medium (10% DMSO (Sigma, D2438)
in foetal calf serum (FCS, Invitrogen)) for long term storage in liquid nitrogen.

Before isolation by FACS, samples were thawed in 50 ml of cold DMEM, spun
for 15 min at 515 × g at 4 °C. Pellets were resuspended in 300 µl of DMEM 2% FCS
1 µg/mL propidium iodide (Calbiochem, 537060) and filtered through a 40-µm cell
strainer (BD Falcon, 352235). Viable cells were isolated based on size, granulosity
and GFP expression level (total nGFP+ cells or top 10% nGFPHi cells,
Supplementary Fig. 14) using a MoFlo Astrios cell sorter (Beckmann Coulter).

Single cells from the same sample were collected in 2.5 µL cold RLT Plus buffer
(Qiagen, 1053393) containing 1U/µL RNAse inhibitor (Ambion, AM2694) and
sorted in a 96 well-plate (LoBind Eppendorf, 0030129504), flash-frozen on dry ice
and stored at −80 °C.

BrdU administration and immunostaining. Six days prior to harvesting, mice
were given the thymidine analogue 5-Bromo-2′-deoxyuridine (BrdU, 1 mg/ml,
Sigma, B5002) in the drinking water supplemented with sucrose (25 mg/ml).
Muscle stem cells were isolated by FACS, plated on µ-Slide 8 Well (Ibidi, 80826) in
medium (40% DMEM, 40% MCDB (Sigma), 20% FBS, 2% Ultroser (Pall), 1%
Penicillin-Streptomycin (ThermoFisher)) at 37 °C 5% CO2 3% O2 to allow
adherence, fixed in 4% paraformaldehyde (PFA, Electron Microscopy Sciences) for
5 min at RT, washed twice 5 min with PBS, permeabilised in 0.5% Triton X-100
(Sigma) for 5 min at RT, washed three times with PBS, incubated with DNAse I
(Roche, 04536282001) at 1 unit/µL in PBS at 37 °C for 30 min, washed three times
with PBS, blocked in 10% goat serum (GS, Gibco) for 30 min at RT, incubated with
mouse anti-BrdU antibody (1/100, BD, 347580) in 2% GS for 2 h at RT, washed
three times 5 min in PBS, incubated with anti-mouse Cy3 secondary antibody

Fig. 3 Changes in methylation levels and methylation heterogeneity. a Prediction of chronological age from a DNA methylation clock25. Left: x-axis shows
the chronological age and y-axis shows the predicted epigenetic age. Grey circles indicate the training data sets. Test samples are represented in different
colours: Muscle samples from Reizel et al.42 are represented in purple (3 weeks-old) and brown (20 weeks-old). Pseudo bulk muscle stem cells from
young animals (6–7 weeks-old) in red and from old animals (115 weeks-old) in blue. Right: Predicted epigenetic age of different combinations of single cells,
permutations= 100. For all boxplots, the box represents the interquartile range and the horizontal line in the box represents the median (n= 100). b Levels
of DNA methylation per cell across different genomic regions (Chip-seq data from 2-months-old mice20,27, Ac: activated muscle stem cells). Circles inside
the violin plots represent the median of the data and the boxes indicate the interquartile range. c Genome-wide mean methylation values in old and young
cells. Each dot represents a genomic region. d Increase of DNA methylation with age across LINE-1 elements (P < 0.05). DNA methylation values
computed per cell and individual. e Mean methylation difference between old and young cells across different genomic elements. For all boxplots, the box
represents the interquartile range and the horizontal line in the box represents the median. f Examples of different distributions of DNA methylation
heterogeneity at loci with similar average methylation. Empty circles represent unmethylated CpG sites and filled circles methylated CpG sites. g DNA
methylation levels and DNA methylation heterogeneity. Each dot represents a genomic region from young or old cells. Colour scale represents the
methylation-level normalised measure of DNA methylation heterogeneity. h Boxplot showing the normalised DNA methylation heterogeneity across
different genomic elements in young cells (top). Normalised methylation heterogeneity and methylation levels across all the different genomic elements
(grey) and across CpG Islands (purple) or enhancer regions (purple) in young cells (bottom). For all boxplots, the box represents the interquartile range
and the horizontal line in the box represents the median
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(1/500, Jackson ImmunoResearch, 115-165-205) and Hoechst (1 µg/ml) in 2% GS
for 45 min at RT, and washed four times with PBS. Images were taken with a Zeiss
LSM800 confocal (×40 objective).

Single myofibre isolation and immunostaining. Single myofibres were isolated
from Extensor digitorum longus (EDL) muscles as previously described34. EDL
muscles were dissected and incubated in 0.1% w/v collagenase (Sigma, C0130) in
DMEM for 1 h in a 37 °C shaking water bath at 40 rpm. Following enzymatic
digestion, mechanical dissociation was performed to release individual myofibres
that were then fixed in 4% paraformaldehyde (PFA, Electron Microscopy

Sciences) for 5 min at RT, washed three times 10 min with PBS, permeabilised in
0.5% Triton X-100 (Sigma) for 5 min at RT, washed three times 10 min with
PBS, blocked in 10% normal donkey serum (DS, Abcam, ab7475) for 1 h at RT,
incubated with chicken anti-GFP antibody (1/1000, Abcam, ab13970) and
mouse anti-M-Cadherin antibody (1/50, Nanotools, clone 12G4) or goat anti-
ItgB1 antibody (1/100, SantaCruz, sc-9936) in 2% DS overnight at 4 °C, washed
four times 10 min in PBS at RT, incubated with anti-chicken AlexaFluor 488 (1/
500, ThermoFisher, A-11039) and anti-mouse Cy3 antibody (1/500, Jackson
ImmunoResearch, 115-165-205) or anti-goat DyLight 550 (1/500, Diagomics,
DKXGT-003) and Hoechst (1 µg/ml) in 2% DS for 45 min at RT, washed four
times 10 min with PBS and mounted in PBS/Glycerol 75%. Images were taken
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with a Zeiss LSM800 confocal (×40 objective) and processed with Imaris
7.2.1 software (Bitplane).

Library preparation and data alignment. We prepared scM&T-seq libraries6 by
isolating mRNA on magnetic beads and separating it from the single-cell lysate as
described35. Subsequent, reverse transcription and amplification were performed
on the beads using Smartseq236 but with 25 PCR cycles. Lysates containing
genomic DNA were then processed according to a published single-cell bisulfite
sequencing protocol37. Briefly, single cell gDNA was purified using AMPure XP
beads (Beckman) prior to bisulfite conversion and purification (Zymo EZ-Direct).
First strand DNA was synthesised using Klenow exo- (Enzymatics) and a primer
containing Illumina read 1 sequence followed by a random hexamer at the 3′ end.
This step was repeated four additional times for pre-amplification. Following
purification, second strands were synthesised similarly but using a primer con-
taining Illumina read 2 sequence after which the final library was amplified and
indeces introduced. Single-cell RNA-seq libraries were aligned using HiSat2 with
options–sp 1000,1000–no-mixed–no-discordant38. Single-cell bisulfite libraries
were processed using Bismark39 as described6. Mapped RNA-seq data were
quantitated using the RNA-seq quantitation pipeline in Seqmonk software (www.
bioinformatics.babraham.ac.uk/projects/seqmonk/).

Quality control RNA-seq. Cells expressing fewer than 1000 genes or <105 mapped
reads allocated to nuclear genes were removed in quality control (Supplementary
Figs. 15, 16). These cells were also verified to have less than 10% of mapped on
mitochondrial genes (Supplementary Figs. 17A, B, 18A). Out of the 768 cells that
were captured across the experiment from four young and two old mice,
377 passed our quality and filtering criteria (Supplementary Table 1). All samples
showed similar distribution of reads and numbers of detected genes
(Supplementary Figs. 17C, D, 18C).

Data analysis RNA-seq. Gene expression levels were estimated in terms of reads
per million of mapped reads to the transcriptome. A score of variability per gene
(named distance to the median) was calculated by fitting the squared coefficient of
variation as a function of the mean normalised counts and then calculating the
distance to a rolling average (window size= 100, Supplementary Fig. 19)21. We
included only genes with an average normalised read count of at least 10. The top
1000 most variable genes of the entire data set were used to perform principal
component analyses (as log2-transformed and median-cantered values) (Fig. 1b,
Supplementary Data 2). Single cell differential expression (SCDE) was used to
calculate differential expression analysis between young and old cells (Supple-
mentary Data 1)40. Cell cycle prediction was performed using the Cyclone function
within the scran R package18.

Cell-to-cell correlation analyses were performed using the top 500 most variable
genes within each individual and using Spearman’s correlation as the measure of
similarity between cells (Fig. 1d). Correlation analyses were also performed using
cohorts of 10 cells from the same individual (1000 iterations, Supplementary
Fig. 4). Distance to the median of the top 500 most variable genes within each
individual was computed for Fig. 1e, similar results are observed when restricting
the analysis to genes that are expressed in all the individuals (average normalised
read count of at least 10) and different numbers of genes (Supplementary Fig. 20).

An average young reference transcriptome was computed by calculating the
mean of log transformed expression values for each gene across cells from young
individuals. We then performed Spearman’s correlation analyses to assess the
similarity between each cell from old samples and the young transcriptome.
Spearman’s correlation analyses were then also used to find gene expression
patterns associated with this genome-wide similarity score. Genes expressed in
fewer than five cells were excluded from the analysis. The top 200 correlated and

anticorrelated genes (Supplementary Data 3) were used for GO enrichment
analysis41.

Modelling the epigenetic clock. Epigenetic ages of four samples (two young and
two old, Supplementary Table 1) were calculated using a method based on the
clock published in Stubbs et al.25. To predict the ages on the four single cell samples
we first aggregated all the reads per cell by summing the methylation calls. We then
took the two largest datasets used in the original publication, the Stubbs et al.
data25 and the Reizel et al. data42, intersected them with the requirement that sites
are found in at least 70% of the samples of these joint sets. Subsequently sites that
were not covered 5× in all the merged single cell samples were removed. Lastly, all
training samples that did not have 100% coverage of the sites obtained by these
intersections were removed. This left 70,060 sites in 144 samples of the combined
Reizel et al. and Stubbs et al. datasets. We used the same modelling approach to
build the clock as described in the Stubbs et al. paper, with one exception; the
methylation was binned in values of 20%, based on rounding off the methylation
calls to assure there is no read-depth information encoded in the methylation calls.

DNA methylation heterogeneity. Cells that had less than 1 million paired-end
alignments or less than 500,000 CpG sites covered were discarded (Supplementary
Fig. 9). To avoid biases that might occur due to different sequencing depths or
number of cells between individuals, the data was down-sampled to 1 million reads
for each cell and randomly selected 35 cells from each individual (two young and
two old, Supplementary Table 1). ChIP-seq datasets for H3K4me3, H3K27me3,
H3K36me3 in muscle stem cells and H3K27ac in myoblast were obtained from
existing studies20,27. Bowtie2 and MACS2 were used for mapping and peak calling
respectively.

We developed a heterogeneity score based on Hamming distances and Shannon
entropy between cell pairs from the same sample. This value captures the
properties we desire: (i) ability to detect cell-to-cell stochastic heterogeneity; (ii) not
affected by population substructure; (iii) not biased by missing values. Specifically,
let r be a matrix with methylation values of cells for a particular gene, each row
corresponding to a cell and each column corresponding to a CpG site, and w be the
weight corresponding to the number of covered CpGs within each pairs of cells.
For each pair of cells (c), we then computed the Hamming distance (D) and the
Shannon entropy score of the pairs (S) considering sites with coverage in both cells.
Then weighted heterogeneity score of the regions is:

HðrÞ ¼
Pn

c¼1 wc ´DcPn
c¼1 wc

´
Pn

c¼1 wc ´ ScPn
c¼1 wc

Here Dc is the normalised Hamming distance of a given a pair of cells, which
measures the number of bits that are different in two binary sets:

Dc ¼
Xk

i¼1

jxi � xjj

Sc is the joint Shannon Entropy between a pair of cells which measures the
complexity of the pattern:

Sc ¼ �
Xk

i¼1

pi ´ log2ðpiÞ

Here p is the frequency of pairs of methylation values.
We validated our approach by applying the method in simulated data with

increasing levels of methylation heterogeneity (Supplementary Fig. 11). We also
observed that our algorithm is highly robust to missing data (Supplementary
Fig. 11).

Fig. 4 Changes in cell-to-cell methylation heterogeneity during ageing. a Normalised methylation heterogeneity changes with age (Δ methylation
heterogeneity: old–young) across different genomic features (Chip-seq data from 2-months-old mice20,27, Ac: activated muscle stem cells). For all
boxplots, the box represents the interquartile range and the horizontal line in the box represents the median. b Genome-wide normalised methylation
heterogeneity difference with ages (Δ methylation heterogeneity: old–young) binned by 0.1 methylation level differences (left). Changes in promoter
methylation heterogeneity (y-axis) and methylation levels (x-axis) with age (right). For all boxplots, the box represents the interquartile range and the
horizontal line in the box represents the median. Source data are provided in Supplementary Data 4 (n= 2,355). c Distribution of Pearson’s correlation
coefficients between promoter DNA methylation and gene expression (one association test per cell, number of cells: young= 64, old more similar to
young= 30, old less similar to young= 20, *P < 0.05). For all boxplots, the box represents the interquartile range and the horizontal line in the box
represents the median. d Increase of transcriptional heterogeneity with age across all promoters (n= 394) and promoters with increased DNA methylation
heterogeneity (Δ methylation heterogeneity > 0.3, n= 113) (P < 0.001). Source data are provided in Supplementary Data 4. e Global increase of
transcriptional cell-to-cell variability with age with enhanced heterogeneity in the multiple extracellular matrix-related genes (top). Relationship between
transcriptional and DNA methylation heterogeneity in aged muscle stem cells (bottom). Empty circles represent unmethylated CpG sites and filled circles
methylated CpG sites. Repeat elements become more homogeneous with age by increasing their methylation levels in a coordinated manner. In contrast,
promoter regions become more heterogeneous by randomly losing DNA methylation, and this is coupled with an increase in transcriptional variability of
the genes they drive
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We applied this method across multiple genomic regions for each individual
independently and then computed the average of young and old samples. Pairwise
comparisons with fewer than four CpG sites were not considered in the analysis.
Furthermore, to avoid misinterpretations because of poor coverage depth we
excluded regions with: (i) <20 CpG sites, (ii) less than an average of two CpG sites
covered per cell, (iii) less than 100 cell-to-cell pairwise comparisons. We also
excluded regions with high coverage differences between ages (more than an
average of 10 CpG sites or more than 200 cell-to-cell pairwise comparisons). A
total of 63,823 genomic regions were used in the analysis (average window size=
2267 bp).

Coverage-weighted cell methylation values were used to calculate the mean
methylation levels of each region. A normalised measure of DNA methylation
heterogeneity was calculated for each region (from young or old samples) by fitting
the score of heterogeneity as a function of the mean methylation levels and then
calculating the distance to a rolling median of 1000 observations (Fig. 3g). Regions
with less than 0.05 or more than 0.9 mean methylation levels were excluded from
the analysis.

Differences between young and old DNA methylation heterogeneity values were
Z-score normalised using a sliding window of 100 observations ordered by the
mean value of young and old (Supplementary Fig. 21 and Supplementary Data 4).
Same approach was used to calculate differences between young and old
transcriptional heterogeneity (mean distance to the median) (Supplementary
Fig. 19 and Supplementary Data 4).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data have been deposited in GEO with the accession GSE121364. All other
relevant data supporting the key findings of this study are available within the article and
its Supplementary Information files or from the corresponding author upon reasonable
request. The source data underlying Supplementary Fig. 2 are provided as a Source Data
file. A reporting summary for this Article is available as a Supplementary
Information file.

Code availability
Custom software is available upon request.
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