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Humoral alloimmunity is now recognized as a major determinant of transplant outcome.

MHC glycoprotein is considered a typical T-dependent antigen, but the nature

of the T cell alloresponse that underpins alloantibody generation remains poorly

understood. Here, we examine how the relative frequencies of alloantigen-specific B

cells and helper CD4T cells influence the humoral alloimmune response and how

this relates to antibody-mediated rejection (AMR). An MHC-mismatched murine model

of cardiac AMR was developed, in which T cell help for alloantibody responses

in T cell deficient (Tcrbd−/−) C57BL/6 recipients against donor H-2Kd MHC class

I alloantigen was provided by adoptively transferred “TCR75” CD4T cells that

recognize processed H-2Kd allopeptide via the indirect-pathway. Transfer of large

numbers (5 × 105) of TCR75 CD4T cells was associated with rapid development

of robust class-switched anti-H-2Kd humoral alloimmunity and BALB/c heart grafts

were rejected promptly (MST 9 days). Grafts were not rejected in T and B cell

deficient Rag2−/− recipients that were reconstituted with TCR75 CD4T cells or

in control (non-reconstituted) Tcrbd−/− recipients, suggesting that the transferred

TCR75 CD4T cells were mediating graft rejection principally by providing help for

effector alloantibody responses. In support, acutely rejecting BALB/c heart grafts

exhibited hallmark features of acute AMR, with widespread complement C4d deposition,

whereas cellular rejection was not evident. In addition, passive transfer of immune

serum from rejecting mice to Rag2−/− recipients resulted in eventual BALB/c heart

allograft rejection (MST 20 days). Despite being long-lived, the alloantibody responses

observed at rejection of the BALB/c heart grafts were predominantly generated by

extrafollicular foci: splenic germinal center (GC) activity had not yet developed; IgG

secreting cells were confined to the splenic red pulp and bridging channels; and,
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most convincingly, rapid graft rejection still occurred when recipients were reconstituted

with similar numbers of Sh2d1a−/− TCR75 CD4T cells that are genetically incapable

of providing T follicular helper cell function for generating GC alloimmunity. Similarly,

alloantibody responses generated in Tcrbd−/− recipients reconstituted with smaller

number of wild-type TCR75 CD4T cells (103), although long-lasting, did not have a

discernible extrafollicular component, and grafts were rejected much more slowly (MST

50 days). By modeling antibody responses to Hen Egg Lysozyme protein, we confirm

that a high ratio of antigen-specific helper T cells to B cells favors development of

the extrafollicular response, whereas GC activity is favored by a relatively high ratio of

B cells. In summary, a relative abundance of helper CD4T cells favors development

of strong extrafollicular alloantibody responses that mediate acute humoral rejection,

without requirement for GC activity.

This work is composed of two parts, of which this is Part I. Please read also Part II:

Chhabra et al., 2019.

Keywords: allograft, humoral alloimmunity, germinal center (GC), extrafollicular B cell response, transplantation,

vasculopathy

INTRODUCTION

The de novo development of alloantibody against donor
MHC antigen following solid organ transplantation is now
recognized as a major determinant of transplant outcome (1–
5). For example, alloantibody formed within the first year
of transplantation is associated with significantly poorer heart
graft survival (6). In general, damaging alloantibody responses
are associated with two distinct clinico-pathological processes:
acute and chronic antibody mediated rejection (AMR). Acute
AMR is now characterized for all solid organ transplants
[reviewed in (7, 8)], whereas chronic AMR has been recognized
only relatively recently (9), and remains ill-defined for some
organs (10). Acute AMR affects 5–7% of non-sensitized kidney
transplant recipients, is generally associated with high levels
of Ig-switched alloantibody directed against mismatched MHC
class I and/or class II antigens, and usually occurs within
the first 6 months after transplantation. Treatment, typically
with plasmapheresis and intravenous immunoglobulin, is less
successful than following treatment for acute cellular rejection,
and acute AMR is associated with an∼5-fold greater risk of graft
loss at 5 years (11).

The link between different clinical manifestations of AMR and
the causative cellular events in the allospecific B cell population
is not clear. Alloantibody production is a typical T-dependent
response, with help for allospecific B cells provided by “indirect-
pathway” CD4T cells that recognize target MHC alloantigen as
self-restricted processed allopeptide (12, 13). Following B cell
receptor (BCR) ligation, allospecific B cells would be expected
to migrate in lymphoid tissue to the edges of the B cell follicle,
and, upon productive “cognate” interaction with the indirect-
pathway helper CD4T cell, further differentiate along one of
two, mutually exclusive pathways. In the extrafollicular response,
help provided by CD44hiICOShiPSGL-1loBcl-6+ve CD4T cells
(14–16), enables the B cell to migrate to short-lived foci

within the red pulp in the spleen and medullary cords of
lymph nodes for rapid production of low-affinity antibody
(17). In contrast, B cell migration back to the follicle triggers
a germinal center (GC) response, with development of the
classical secondary follicle composed of a light and dark zone.
The GC response is now known to be dependent upon a
specialized subset of CXCR5hi PD-1hi T follicular helper (TFH)
cells (18, 19).

While the extrafollicular and GC components of the response
to model antigens have been extensively studied (20–22), they
have not been detailed for transplant antigen. This is an
important area for further study, because of the importance
of humoral immunity to transplant rejection, and because
transplantation provides a functional readout (graft rejection),
that by enabling assessment of the “effectiveness” of the various
components of the humoral response, may reveal aspects of
humoral immunity that are not otherwise evident from study
of model antigen systems. Equally, transplantation represents
a unique immune challenge, in that vascularized allografts
may continually shed alloantigen directly into the recipient’s
circulation and T cell recognition of this alloantigen can occur
by different pathways (23–25). The relationships between the
precursor populations of allospecific helper T cells to B cells may
therefore differ for different donor-recipient combinations, and
these differences may independently influence the subsequent
extrafollicular and GC alloantibody responses. This may be
particularly relevant for transplant recipients with acute AMR
related to de novo production of donor-specific alloantibody.
It seems likely that graft injury is mediated predominantly by
an extrafollicular response, particularly during the initial stages.
Certain patients may therefore be especially susceptible to early
humoral rejection. However, the factors that determine the
relative “strength” of the extrafollicular and GC alloantibody
responses remain unclear, as does the respective contribution of
the two phases to acute AMR.
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Here we use murine models of AMR to demonstrate that
a high ratio of antigen-specific helper CD4T cells favors
development of robust extrafollicular responses, and that these
responses can mediate acute AMR without requirement for a GC
component.

MATERIALS AND METHODS

Animals
C57BL/6 (BL/6; H-2b) and BALB/c mice (H-2d) were purchased
from Charles River Laboratories (Margate, UK) and maintained
according to the institutional guidelines of The University of
Cambridge. T cell receptor-deficient mice (H-2b, Tcrbd−/−)
BL/6.129P2-Tcrbtm1MomTcrdtm1Mom/J were purchased from the
Jackson Laboratory (Bar Harbor, ME). C57BL/6 Rag2−/− mice
(H-2b) were gifted by Prof T. Rabbitts (Laboratory of Molecular
Biology, Cambridge, UK). TCR-transgenic Rag1−/− TCR75
mice (H-2b), specific for I-Ab-restricted H-2Kd

54−68 peptide
(26) were gifted by Prof. P. Bucy (University of Alabama,
Birmingham, AL). BL/6 HEL-specific TCR7 transgenic mice
(27), specific for I-Ab-restricted HEL74−88 peptide, were gifted
by Dr M Linterman (Laboratory of Lymphocyte Signaling and
Development, Babraham Institute, Cambridge, UK). Sh2d1a−/−

mice (28) were gifted by Dr S. Crotty (University of California,
La Jolla, California). Mice were bred and maintained in specific
pathogen-free animal facilities and weremaintained in individual
ventilated cages in specific-pathogen free facilities and fed
standard rodent feeds. Mice weighed between 18–22g at the time
of their use for in vitro experiments and transplants. See also
Table S1.

Heterotopic Cardiac Transplantation
Vascularized cardiac allografts were transplanted intra-
abdominally as previously described (24, 29). Recipient
BL/6 Tcrbd−/− or Rag2−/− animals were reconstituted with
TCR75 CD4T cells, by intravenous injection of splenocytes
from Rag1−/− TCR75 mice in which numbers of CD4T cells
were first determined by flow cytometry. Hearts or cells from
male donors were not transplanted or transferred into female
animals in order to control for mismatch of the male H-Y
antigen. Heart graft survival was monitored by daily abdominal
palpation with rejection defined as cessation of a detectable beat,
and rejection was defined as cessation of palpable myocardial
contraction, confirmed at the time of explant. Grafts were excised
at predetermined time points after transplantation and stored at
−80◦C or fixed in 10% buffered formalin.

Immunizations and Adoptive Cell Transfers
BL/6 Tcrbd−/− were immunized subcutaneously with 50 µg
purified HEL protein (Sigma-Aldrich Inc., St. Louis, MO,
USA) emulsified in complete Freund’s adjuvant (Sigma-Aldrich).
Immunized mice were subsequently adoptively transferred with
prerequisite numbers of HEL-specific B cells and CD4T cells
that were first isolated from spleens of donor SWHEL and TCR7
mice, respectively, and then enumerated by flow cytometry and
TrucountTM (BD Biosciences, San Jose, CA) analysis by staining
with the following antibodies: CD3-FITC, CD19-PE (both BD

Biosciences), and HEL protein conjugated with biotin (developed
in-house) followed by Streptavidin-Alexa Fluor 555 (Thermo
Fisher Scientific, Waltham, MA, USA) for HEL+ B cells, and
CD4-APC with Vβ3-PE (both BD Biosciences) for HEL-specific
CD4T cells.

Passive Immune Serum Transfer
In certain experiments, Rag2−/− recipients of BALB/c heart
allografts were intra-peritoneally injected with heat-inactivated
pooled immune serum (500 µl 3 times weekly for 3 weeks or
for shorter duration if the heart allografts had rejected), obtained
at 50 days after transplantation from BL/6 Tcrbd−/− recipients
of a BALB/c heart allograft reconstituted with 5 × 105 Rag1−/−

TCR75 CD4T cells.

Assays of Anti-H-2Kd and Anti-HEL
Humoral Immunity
Serum samples were collected from experimental mice at
intervals and analyzed for the presence of anti–H-2Kd and anti-
HEL IgG antibody by ELISA as previously described (12, 13,
30) (Figure S1). For each sample, an absorbance vs. dilution
curve was plotted, and the area under the curve calculated (31)
and expressed as the percentage of positive control (pooled
hyperimmune anti-H-2Kd IgG) serum recovered from BL/6
recipients of BALB/c skin grafts (Figure S1) or HyHEL10 anti-
HEL IgG monoclonal antibody (Absolute Antibody, Oxford,
UK). Single anti-H-2Kd or anti-HEL IgG antibody-secreting
cells in the spleen and bone marrow of recipient mice were
detected by B cell ELISPOT assay as previously described (13,
32).

Recipient Anti-HLA-specific Antibody
Screening
Non-sensitized recipients who received a primary deceased
donor kidney transplant at Cambridge University Hospital were
monitored for the development of HLA antibodies using the
Luminex-based LABScreen Single Antigen beads (One Lambda,
Canoga Park, CA) as described previously (33). As in our
previous studies, IgG MFI values more than or equal to 1,500
were considered positive (34).

CFSE Cell Proliferation and Flow
Cytometry
Suspensions of CD4T cells obtained from TCR75 mice were
stained with 5mM CFSE (Thermo Fisher Scientific) in the
dark for 5min and then quenched with PBS plus 5% FCS.
CFSE-stained CD4T cells were injected intravenously into
recipient mice, spleens harvested 3 days later, and flow
cytometry performed using allophycocyanin-conjugated anti-
CD4 plus PE-conjugated anti-CD90.1/Thy1.1 (clone OX-7,
BioLegend, San Diego, CA, USA) to identify live (7-AAD−,
BD Biosciences) TCR75T cells. PE-conjugated anti-mouse
CD279/PD1 (BioLegend) and allophycocyanin-conjugated anti-
mouse CXCR5 (BD Biosciences) antibodies were used to
identify TFH cells on a FACSCanto II flow cytometer (BD
Biosciences).
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Immunohistology and Confocal Imaging
Seven µm spleen and heart cryostat sections were air-dried
and fixed in acetone. Primary mAbs specific for the following
mouse epitopes were used for immunohistochemical/fluorescent
staining: C4d (clone 16-D2 Abcam, Cambridge, UK) and IgG-
FITC (BD Biosciences, San Diego, CA, USA). Splenic GCs
were identified by double-labeling sections with rat anti-mouse
B220-APC (clone RA3-6B2) and rat anti mouse GL7-FITC
(both BD Biosciences). Numbers of GL7+ GCs were expressed
as a percentage of total B220+ lymphoid follicles (13). HEL-
specific GCs were detected using rat anti-mouse GL7-FITC
and biotinylated-HEL protein (developed in-house) combined
with Streptavidin-Alexa Fluor 555 (Thermo Fisher Scientific)
after initially blocking endogenous avidin/biotin activity using
an avidin/biotin blocking kit (Vector Laboratories, Burlingame,
CA, USA). CD4T cells within GCs were located with rat anti-
mouse CD4-biotin (BD Biosciences) & Streptavidin-Alexa Fluor
555 (Thermo Fisher Scientific). Confocal images were captured
with a Leica SP5 confocal microscope using LAS AF software,
version 2.7.2.9586 (Leica Microsystems, Wetzlar, Germany). See
also Table S1.

Flow Cytometric Detection of Alloantigen
and HEL-Specific B Cells
Alloantigen-specific B cells were identified by labeling with
synthetic MHC class I tetramer as described previously (35–
37). Single cell suspensions were obtained from recipient spleens
and incubated with APC- and FITC-conjugated MHC class I
Kd tetramers, kindly gifted by the NIH Core Tetramer facility,
Atlanta, GA, USA. B cells binding to fluorescently labeled
tetramers can comprise of two distinct populations of B cells—
those recognizing the MHC class I molecule directly or those
recognizing the fluorochrome; dual labeling allows for reliable
identification of very low frequency antigen-specific B cells. After
1 h incubation at 4◦C, cells were washed and tetramer-bound
cells were enriched using anti-APC and anti-FITC microbeads
(Miltenyi Biotec) on an AutomacsTM separator. The enriched
fraction was collected and cells were incubated with anti-mouse
CD16/CD32 (clone 2.4G2) before labeling for the following
antigens: CD19-PerCp (Miltenyi Biotec), GL7-PE (BioLegend),
FAS-PE-CY7 (Jo2, BD Biosciences), and fixable viability dye
(eFluor R© 780, eBiosciences). Labeled cells were identified on a
FACSCanto II flow cytometer and data analyzed using FLowJo
software (Tree Star Inc., Ashland, OR). B cell populations of
interest were enumerated by TrucountTM analysis according to
manufacturer’s instructions (BD Biosciences). HEL-specific GC B
cells were identified in similar fashion, by labeling splenic single
cell suspensions with B220-FITC (BD Biosciences), biotinylated-
HEL protein and Streptavidin-APC (Thermo Fisher Scientific).

Statistical Analysis
Data were presented as mean ± S.E.M where appropriate,
with each animal constituting one biological replicate where
indicated. Unpaired t-tests and Mann-Whitney U-tests were
used for analysis of parametric data and non-parametric data,
respectively. Two-way ANOVA was employed for comparison
of anti-H-2Kd IgG alloantibody responses. Graft survival was

FIGURE 1 | Pattern of de novo alloantibody development after kidney

transplantation. The development of donor specific alloantibodies (DSA)

against donor HLA antigen in eight human kidney transplant recipients

(representative of a general cohort that were known to have DSA and whose

alloantibody profile was serially assessed) was characterized by single-antigen

HLA bead analysis of recipient sera. Recipient sera were analyzed for DSA until

day 500 post-transplant; data is presented for the first 300 days, with cases 1

and 4 showing a mean fluorescence intensity of 733 at day 503 and 640 at

day 386, respectively. Two general patterns of DSA formation were identified:

very high levels of DSA which were relatively short-lived; and DSA levels which

plateaued and remained at appreciable levels for a much longer period.

depicted using Kaplan-Meier analysis and groups compared by
log-rank (Mantel-Cox) testing. Analysis was conducted using
GraphPad 4 (Graph-Pad Software, San Diego, CA, USA). Values
of P < 0.05 were considered significant.

Study Approval
This research has been regulated under the Animals (Scientific
Procedures) Act 1986 Amendment Regulations 2012 following
ethical review by the University of Cambridge Animal Welfare
and Ethical Review Body (AWERB). All surgery was performed
under inhalational anesthesia and every effort was made to
minimize suffering.

RESULTS

Post-transplant HLA Antibodies in Human
Renal Transplant Recipients
Analysis of the development of de novo donor specific
alloantibody (DSA) post-transplantation in non-sensitized
recipients of first time kidney allografts revealed two different
patterns (Figure 1). Some recipients generated high levels of
DSA, but that waned within the first thirty days, whereas in
others, levels of DSA were sustained over many months. Because
these patterns are compatible with short-lived extrafollicular
foci vs. LLPC output from a GC reaction, we sought to establish
an animal model to study how cellular events occurring within

Frontiers in Immunology | www.frontiersin.org 4 January 2019 | Volume 9 | Article 3039

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alsughayyir et al. Alloantigen-Specific Lymphocytes in Antibody-Mediated Rejection

FIGURE 2 | Development and characterization of murine model of antibody-mediated heart allograft rejection. (A) BL/6 Tcrbd−/− recipients of BALB/c heart

allografts were either unmodified (no cells group) or reconstituted the day after with 102, 103 (help-limited) or 5 × 105 (help-unlimited) CD4T cells from TCR

transgenic Rag1−/− TCR75 animals, which recognize I-Ab -restricted H-2Kd 54−68 peptide. (B) Development of anti-H-2Kd IgG antibody in reconstituted recipients

(mean and S.E.M of n = 5 mice/group, *P < 0.001 for 5 × 105 vs. 103; p = 0.08 for 103 vs. 102 T cells, two-way ANOVA). (C) Reconstitution with limiting numbers

of TCR75 CD4T cells resulted in gradual allograft failure (MST = 50 days; n = 10), whereas grafts rejected acutely in help-unlimited recipients (MST = 9 days,

P < 0.001, log-rank test; n = 10). Unmodified BL/6 Tcrbd−/− recipients that were not reconstituted (no cells, n = 6) did not reject the heart allograft.

the allospecific B cell population relate to the pattern of DSA
detected in human recipients.

Precursor Frequency of the Helper T Cell
Subset Is Rate Limiting for Early
Alloantibody Production
We have previously reported that T cell receptor (TCR)-
transgenic Rag1−/− TCR75 CD4T cells [that recognize I-
Ab-restricted H-2Kd

54−68 allopeptide via the indirect pathway
(26, 38)] can provide T helper cell function for humoral
responses against the H-2Kd alloantigen of a BALB/c heart
allograft (12, 13). We anticipated that because T cell help is a
limiting determinant for early alloantibody production (39), the
magnitude of the alloantibody response would be influenced by
T helper cell availability. Thus, T cell-deficient Tcrbd−/− mice
were reconstituted with varying numbers of TCR75 CD4T cells
(102, 103, or 5 × 105) the day after challenge with a BALB/c
heart allograft (Figure 2A). As shown previously for other TCR
transgenic CD4T cell lines (12, 40), TCR75 CD4T cells do not
undergo discernible homeostatic proliferation when transferred
into unchallenged Tcrbd−/− mice (Figure S2). We therefore
reasoned that expansion of the transferred TCR75 CD4T cells

would occur only in response to recognition of target antigen,
and that the differences in numbers of transferred cells would be
preserved, at least initially, in the recipients. We further reasoned
that the different profiles of alloantibody generated according to
the number of transferred TCR75 CD4T cells would manifest
as differences in the kinetics of allograft rejection, because
there would be no opportunity for classical CD8T cell-mediated
cytotoxicity (41, 42). Similarly, whereas “direct-pathway” CD4T
cells can provoke rapid allograft rejection through cytotoxic
destruction of allograft cells expressing MHC class II alloantigen
(43), the relatively small numbers of indirect-pathway CD4T
cells that were transferred would be incapable of independently
effecting acute heart graft rejection, because the allograft does not
express target I-Ab-restricted allopeptide epitope immediately
after transplantation (44, 45). We have recently briefly described
this model in relation to NK cell allorecognition of passenger
lymphocytes (46).

Reconstitution of BL/6 Tcrbd−/− mice with as few as
102 TCR75 CD4T cells provoked long-lasting, IgG humoral
alloimmunity against H-2Kd alloantigen of the BALB/c heart
graft (Figure 2B). A broadly similar response was observed
following transfer of 103 TCR75 CD4T cells (henceforth
termed the “help-limited” group). In comparison, the anti-Kd
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FIGURE 3 | Histopathological confirmation of humoral rejection in help-unlimited recipients. (A) Day 6 BALB/c hearts explanted from BL/6 Tcrbd−/− recipients

reconstituted with 5 × 105 TCR75 CD4T cells demonstrated (left) widespread myocyte death (loss of striation), endothelial plumping and peri-vascular edema, and

(right, arrows) strong endothelial complement C4d deposition. (B) Representative photomicrographs of immunofluorescence staining showing interstitial capillary

staining for C4d (red, left); scale bar−50µm and IgG deposition (green, right; scale bar−50µm).

alloantibody response in recipient mice reconstituted with 5
× 105 TCR75 CD4T cells (henceforth the “help-unlimited”
group) was markedly stronger at all time-points and developed
more rapidly, such that appreciable levels of alloantibody
were detectable 1 week after transplant (Figure 2B). The
transferred TCR75 CD4T cells mediated heart allograft rejection,
because whereas BALB/c heart allografts survived indefinitely
in unmodified BL/6 Tcrbd−/− recipients, transfer of even small
numbers (103) of TCR75 CD4T cells resulted in gradual graft
failure (Figure 2C, median survival time (MST) = 50 days).
Kinetics of heart graft rejection were, however, markedly different
in the help-unlimited group, in that all grafts were rejected
acutely with a MST of 9 days (Figure 2C).

Histopathological Confirmation of Acute
Humoral Rejection
Histopathological examination of acutely rejecting BALB/c heart
allografts explanted at day six from help-unlimited recipients
revealed a striking absence of cellular rejection (Figure 3A).
Instead there was widespread myocyte death, hemorrhage,
edema, associated with “plumping” of the endothelium
(Figure 3A, left). Immuno-histochemical labeling with anti-C4d
antibody showed diffuse parenchymal staining (Figure 3A,
right), possibly reflecting acute myocyte death, but in addition,
there was strong and distinct endothelial complement deposition,
associated with intragraft IgG deposition (Figure 3B). These
features are thus consistent with severe (Grade 3) acute

antibody-mediated rejection (47) as the principal cause of graft
failure.

Acute AMR Is Mediated by Extrafollicular
Alloantibody Responses
Although we have previously shown that transferred TCR75
CD4T cells can provide TFH cell function for generating GC
responses against H-2Kd alloantigen (13), we thought it likely
that the rapid rejection observed in the help unlimited group
preceded development of the GC reaction. In support, splenic
GC activity was barely above background by day 9 (the median
time to graft rejection), but by day 50, approximately half
the B cell follicles exhibited a GL7+ve activated phenotype
(Figure 4A). In addition, splenic confocal imaging confirmed
that at day 10 in the help unlimited group, class-switched,
IgGpos (antibody-producing) cells were confined outside of the
B220pos B cell follicles, in extrafollicular foci close to the marginal
sinus (Figure 4B). However, seven weeks after transplant, IgGpos

cells in the help-unlimited group were confined within B cell
follicles (Figure 4B). Thus, these results suggest that the early
alloantibody response observed in the help-unlimited group is
predominantly a consequence of an extrafollicular response.

To confirm that acute humoral rejection could be mediated
exclusively by an extrafollicular response, Tcrbd−/− recipients
of a BALB/c heart allograft were instead reconstituted with
Sh2d1a−/− TCR75 CD4T cells. Sh2d1a−/− T cells lack
expression of SLAM-associated protein (SAP), which is essential
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FIGURE 4 | Extrafollicular and germinal center humoral responses during

acute AMR. (A) Histogram of secondary (GL7+ve) splenic follicles expressed

as percentage of total follicles within spleens of BL/6 Tcrbd−/− recipients

reconstituted with 5 × 105 of WT or Sh2d1a−/− (SAP−/−) TCR75 CD4T

cells. *P = 0.03, two-tailed Student’s t-test. (B) Representative confocal

imaging of splenic sections of help-unlimited BL/6 Tcrbd−/− recipients; at day

10 (top panel; scale bar−500 and 250µm, respectively), IgG-switched B cells

(green) are located predominantly in the extrafollicular space, close to the

marginal sinus (MadCAM-1; red), whereas at day 50 (bottom panel; scale

bar–250µm), IgG switched cells and GL7+ GCs (green) are located within the

follicle (B220; blue). Data represents mean ± S.E.M of a minimum of 5

animals/group, with each dot representing the biological replicate in a distinct

group.

for the prolonged physical interactions between B and T cells
that leads to generation of the TFH cell subset (19, 48–51).
GC activity does not therefore occur, but Sh2d1a−/− T cells
can still provide help for extrafollicular responses. Recipients
reconstituted with 5× 105 Sh2d1a−/− TCR75 CD4T cells (help-
unlimited SAP−/−) generated robust early anti-Kd alloantibody
responses, of a magnitude similar to that initially observed
in the help-unlimited wild-type group (Figure 5A), but which
waned thereafter, in keeping with the inability to form GCs
responses (Figure 5B). The lack of the GC response was also

evident in the absence of deposition of H-2Kd specific long-
lived plasma cells (LLPCs) in the bone marrow (Figure 5C).
Similarly, identification of H-2Kd allospecific B cells by labeling
with synthetic H-2Kd tetramer revealed that, although the
population expanded following challenge with a BALB/c heart
allograft in the help-unlimited SAP−/− recipients, acquisition of
GL7hiFAShi GC surface phenotype did not occur (Figure 5D).
Despite the absence of a GC response, the strong extrafollicular
alloantibody response generated in the help-unlimited SAP−/−

recipients resulted in rapid rejection of BALB/c heart allografts
(Figure 5E, MST 13.5 days), similar in tempo to that observed in
the help-unlimited WT recipients (MST 9 days). The explanted
heart allografts similarly exhibited characteristic features of acute
humoral rejection, and an absence of lymphocytic infiltrates
(Figure 5F).

Alloantibody as an Effector Mechanism for
Acute AMR
Although the histological features of heart allografts in
the acutely-rejecting, help-unlimited WT group are strongly
suggestive of humoral rejection, we sought to confirm that
alloantibody could independently effect graft damage. In this
regard, BALB/c heart grafts survived indefinitely, without
evidence of IgG or endothelial complement C4d deposition
(Figure 6A), when transplanted into T and B cell deficient
Rag2−/− recipients, even when their T cell compartment was
restored by adoptive transfer of 5× 105 WT TCR75 CD4T cells.
A direct effector role for alloantibody was then examined by
passive transfer of immune serum (pooled from BL/6 Tcrbd−/−

recipients reconstituted with 5 × 105 TCR75 CD4T cells) into
Rag2−/− recipients of a BALB/c heart allograft. Passive transfer
of immune serum achieved antibody titres in the Rag2−/−

recipients similar to those observed in the help-unlimited BL/6
Tcrbd−/− recipients for the first 3 weeks (Figure 6B) and resulted
in early graft rejection (Figure 6C). Rejecting grafts showed
acute myocyte loss, oedema, endothelial swelling and invading
neutrophils, along with extensive endothelial C4d deposition
(Figure 6D, left panel). Injection of equivalent amounts of
control serum from unmodified Rag2−/− recipients of a BALB/c
heart allograft did not prompt graft rejection (Figure 6C),
and no graft damage was evident on histological examination
(Figure 6D, right panel).

The Relative Strength of the
Extra-Follicular and GC Response Is
Influenced by Precursor Proportions of
Helper T Cells and Antigen Specific B Cells
Despite the initially stronger alloantibody response observed in
the help-unlimited recipient group, it was notable that germinal
center activity at late time points in the help unlimited and
help-limited groups was similar [see Figure 4A and companion
paper (52) -Figure 3B], suggesting that whereas the availability
of T cell help influences the ‘strength’ of the extrafollicular
response, other factors determine GC development. Given that
competition for limiting availability of TFH cells is critical for
selection of high-affinity variants generated by SHM within the
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FIGURE 5 | AMR is mediated by extrafollicular alloantibody responses in help-unlimited recipients. BL/6 Tcrbd−/− recipients were reconstituted with 5 × 105

wild-type (help-unlimited WT) TCR75 CD4T cells (n = 7) or 5 × 105 Sh2d1a−/− (help unlimited SAP−/−) TCR75 CD4T cells (n = 4) at challenge with a BALB/c heart

allograft. (A) Compared with the WT group (copied from Figure 2B for ease of comparison), anti-H-2Kd IgG alloantibody responses in the help-unlimited SAP−/−

(Continued)
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FIGURE 5 | group were not sustained. *P < 0.0001 two-way ANOVA. (B) Representative immunofluorescent staining of day 50 splenic sections from help-unlimited

SAP−/− and WT recipients, confirming an absence of GL7+ve (green) GC activity in the SAP−/− group: scale bar−250µm. (C) ELISPOT assay of splenic and

bone-marrow (BM) anti-Kd IgG antibody secreting cells (ASCs) 50 days after transplantation. Numbers of BM ASCs in recipients reconstituted with SAP−/− TCR75

CD4T cells were not above background; *P = 0.03, **P = 0.004, Mann-Whitney test. (D) Splenic H-2Kd -specific B cells were identified by flow cytometric detection

of binding of CD19+ve B cells to FITC-conjugated and APC-conjugated synthetic H-2Kd tetramers in naïve unchallenged BL/6 Tcrbd−/−, help-unlimited WT and

help-unlimited SAP−/− recipients, 6–7 weeks after challenge with a BALB/c graft. Gated cells in middle and right column of representative dot plots show percentage

of enriched CD19+ve B cells binding H-2Kd tetramer, and percentage of GC-specific (FAShiGL7pos) tetramer bound CD19+ve B cells, respectively. Whereas,

transplantation provoked expansion of the H-2Kd specific B cell population in the help unlimited SAP−/− recipients, GC B cells were not detectable. (E) BALB/c heart

allografts were rejected acutely in the help-unlimited WT (n = 7, MST-9 days) and help unlimited SAP−/− (n = 4, MST-13.5 days) recipient groups. (F) Day 10 BALB/c

hearts explanted from help unlimited SAP−/− recipients showing widespread myocyte death (loss of striation pattern), but an absence of cellular lymphocytic

infiltration.

GC (21), we hypothesized that GC activity would instead be
governed by precursor frequency of the responding, antigen-
specific B cell population. To test this, varying numbers (103 or
105) of CD4T cells purified from TCR7 mice (that recognize
I-Ab-restricted HEL peptide) plus B cells purified from SWHEL

mice (104 or 106) were adoptively transferred into BL/6 Tcrbd−/−

mice that were immunized with HEL protein. The HEL-specific
extrafollicular and GC responses were analyzed at 1 and 3
weeks after immunization, as described previously (53). At
week 1, strong anti-HEL IgG responses were only observed in
mice adoptively transferred with large (105) numbers of TCR7
CD4T cells, despite transfer of relatively few (104) HEL-specific
SWHEL B cells in this group (Figure 7A). Simultaneous ELISPOT
analysis revealed that appreciable numbers of splenic HEL-
specific antibody-secreting-cells were recovered only from this
group and not, notably, in the group that had received greater
numbers (106) of SWHEL B cells but fewer T cells (Figure 7B).
Immunofluorescent analysis confirmed that at this time, IgGpos

secreting cells were located exclusively within extrafollicular foci,
but in keeping with the anti-HEL titres, only in the group that had
been reconstituted with greater numbers of TCR7 CD4T cells
(Figure 7C, left). In contrast, by week three, similar anti-HEL
antibody responses were observed in all groups, irrespective of
the number of TCR7 helper CD4T cells transferred (Figure 7A,
right histogram). By this stage, the extrafollicular foci had
dissipated (Figure 7C, middle) and instead HEL-specific GC
activity was detectable (Figure 7D), but most obviously in the
group that received greater numbers of HEL-specific B cells [and
relatively low numbers of HEL-specific T cells (Figures 7D,E)].
Flow cytometric analysis confirmed the presence of splenic HEL
specific B cells that expressed a GC phenotype (Figures 7F, S3),
and although this proportion appeared higher in the group
that had received the larger number of HEL-specific B cells
and relatively few HEL-specific CD4T cells, numbers were too
small to permit statistical comparison. In comparison, HEL-
specific GC activity was lower in those mice that received
greater numbers of HEL-specific CD4T cells (Figure 7E), despite
the robust early anti-HEL response observed in this group
(Figure 7A). In the expectation that TFH differentiation would
be governed by the number of HEL-specific B cells, rather than
precursor frequency of HEL-specific CD4T cells, transferred
TCR7CD4T cells that expressed CXCR5hiPD-1hi TFH phenotype
were enumerated 3 weeks after challenge, but numbers recovered
were too small to permit comparison. Nevertheless, these results
support the hypothesis that the precursor frequency of the

antigen-specific helper CD4T cell population is a major factor in
determining extrafollicular output, whereas GC activity is more
strongly influenced by the starting population of antigen-specific
B cells.

DISCUSSION

It has long been recognized that humoral immunity
comprises several discrete phases, each providing distinctly
different function. How these phases relate to the different
clinicopathological manifestations of AMR is not known, and
the increasing emphasis of the contribution of alloantibody
to clinical transplantation suggests it is an important area for
further study. Our findings that strong extrafollicular responses
may mediate acute AMR, and that, conversely, GC responses
are required for chronic AMR [see companion paper (52) and
(54, 55)], therefore begin to provide some correlation between
clinical events and the evolving dynamics of the allospecific B
cell response.

Our conclusion that strong extrafollicular alloantibody
responses can mediate rapid, acute rejection was confirmed
experimentally by limiting T cell help to a population of
allospecific helper CD4T cells that lacked SAP expression.
The histological features observed in acutely-rejecting allografts
(endothelial plumping, neutrophil infiltration, complement
deposition, and widespread myocyte death) resembled those
that define acute AMR in human cardiac transplantation.
Given the absence of direct-pathway cytotoxic T cell responses
in our model (heart graft rejection was not observed in
Rag2−/−recipients reconstituted with large numbers of WT
CD4T cells), our experiments therefore provide confirmation
that such histological features are a direct consequence of
alloantibody binding. Presumably, high titres of alloantibody
produced by strong extrafollicular responses, despite being
of relatively low affinity, can bind in sufficient concentration
to allograft endothelium to trigger widespread complement
activation and generation of the membrane attack complex.
It should be noted, however, that in the recipient group
reconstituted with wild-type TCR75 CD4T cells (help-unlimited
group), GC responses also developed, and it is possible that these
also normally contribute to acute AMR.

Interestingly, transfer of large numbers of allospecific CD4T
cells was not associated, at least at late time points, with a more
robust GC response than observed following transfer of lower
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FIGURE 6 | Alloantibody mediates endothelial activation and complement deposition. (A) Representative photomicrographs of immunofluorescence staining with no

evidence of interstitial capillary staining for C4d (red, left) and IgG deposition (green, right; scale bars−50µm) in BALB/c cardiac allografts explanted (at day 50) from

Rag2−/− recipients reconstituted with 5 × 105 TCR75 CD4T cells. (B) Anti-H-2Kd IgG antibody (mean ± S.D.) in Rag2−/− recipients of BALB/c allografts injected

with day 50 serum pooled from either help-unlimited BL/6 Tcrbd−/− (immune serum, n = 5) or help-unlimited Rag2−/− recipients (control serum, n = 5). (C) Transfer

of immune serum led to acute graft loss, whereas transfer of control serum resulted in indefinite heart allograft survival (P < 0.001, log-rank test). (D) Histology of

explanted hearts (day 7) demonstrated widespread myocyte damage and endothelial C4d deposition following transfer of immune serum (left), in comparison with

normal histology and negative staining at day 30 following control serum transfer (right). Images are representative of 3 animals; scale bars−100µm (H&E) and

150µm (C4d).

numbers of CD4T cells. Our experiments with the HEL system,
in which it was possible to titer numbers of responding B cells
and helper T cells, confirmed that the extrafollicular response
was influenced profoundly by the availability of T cell help. At 1
week, the number of splenic IgG-secreting cells was determined

by numbers of helper T cells (rather than antigen-specific B cells)
that had been transferred, suggesting that increased availability
of T cell help results in greater division of those B cells that
are directed to the extrafollicular foci. This emphasis on an
extrafollicular response is not due to lack of an established B
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FIGURE 7 | Numbers of antigen-specific B cells and helper T cells determine the size of the germinal center vs. extrafollicular response. Humoral responses in BL/6

Tcrbd−/− mice immunized with Hen Egg Lysosyme (HEL) protein and adoptively transferred with different numbers of HEL-specific SWHEL B cells and TCR7 CD4T

cells. (A) Anti-HEL IgG (mean ± S.E.M, with each dot representing the biological replicate in a distinct animal) measured 1 and 3 weeks after immunization;

(Continued)
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FIGURE 7 | *1P = 0.01, *2P = 0.04 Mann-Whitney test. (B) ELISPOT assay of splenic and bone marrow anti-HEL IgG antibody-secreting cells revealed abundant

numbers after 1 week in mice adoptively transferred with large (105) numbers of TCR7 CD4T cells; #P = 0.06, Mann-Whitney test. (C) Representative confocal

photomicrographs (scale bars-−500µm) of immunofluorescence staining of splenic sections at 1 and 3 weeks after immunization, depicting B220 B cells (blue) and

IgG positive (green) antibody secreting cells: numbers of adoptively transferred TCR7T cells and SWHEL B cells as indicated. IgG secreting cells are readily identified

within extrafollicular foci at week 1 in mice transferred with large numbers (105) of TCR7 CD4T cells. (D) Representative confocal photomicrographs depicting

HEL-specific germinal center activity (B220 B cell—Blue; GL7—green; HEL binding—red) at 3 weeks following HEL challenge in mice adoptively transferred with

HEL-specific CD4T and B cells, as indicated (left; scale bar−100µm; right; scale bar-−20µm). (E) Frequency of HEL-specific GL7+ GCs detected by

immunofluorescence (expressed as percentage of total follicles within spleens of recipient BL/6 Tcrbd−/− mice). Very few HEL-specific GCs were present at 1 week,

but were clearly present by 3 weeks in the group that received proportionally greater numbers of HEL-specific B cells (and low numbers of HEL-specific CD4T cells);
*1P = 0.04, *2P = 0.03 Mann-Whitney test. (F) Flow cytometric enumeration (see Figure S3) of splenic HEL-specific B cells (left histogram) and percentage with GC

(FAShi GL7+ve) phenotype (right histogram), 3 weeks after HEL-challenge in mice reconstituted with HEL-specific SWHEL B cells and TCR7 CD4T cells, as indicated.

Left histogram, *P = 0.05 and **P = 0.41; right histogram, *P = 0.09 and **P = 0.003; two-tailed Student’s t-test.

cell follicular architecture in the T cell-deficient recipients at the
time of challenge, because reconstitution with small numbers
of antigen-specific T helper cells nevertheless polarized the
subsequent B cell response strongly toward a germinal center
reaction. A similar finding, but in relation to B cell receptor
affinity, has been previously described (56). In contrast, GC
activity was only minimally influenced by precursor frequency
of the antigen-specific CD4T cell population. Competition
for limiting help from TFH cells is critical for GC selection,
and given that TFH cell differentiation requires cognate B-T
cell interaction (50), our experiments suggest that GC activity
is mainly determined by the numbers, and response, of the
antigen-specific B cell population; the antigen-specific helper T
cell population simply plays a facultative role.

One potential concern is that our experimental findings are
confounded by the homeostatic proliferation that potentially
occurs upon transfer of the allospecific helper T cell population
into T cell deficient mice. Against this, and in keeping with our
previous studies (12, 13), transfer of a monoclonal population
of TCR-transgenic TCR75 CD4T cells into T cell deficient
recipients did not result in substantial homeostatic proliferation.
This has also been reported for non-transplant models (40).
Nevertheless, we have previously shown that profound antigen-
specific proliferation occurs in response to challenge with a
Kd-expressing heart allograft (13), and furthermore, that, in
comparison to acute rejection, chronic rejection of BALB/c heart
allografts is associated with a markedly expanded population
(∼5-fold) of chronically-dividing Kd-peptide specific CD4T cells
(25). Thus, we anticipate that the chronic rejection observed in
the help-limited group is associated with ongoing proliferation
of the responding TCR75 CD4T cell population, such that
the relatively small number of T cells originally transferred
has, by late time points, massively expanded and far exceeds
the numbers administered in the help-unlimited group (that
provoked acute allograft rejection). The critical difference in
the humoral alloimmune response between the help-limited and
unlimited groups is that in the first days after transplant, when
initial T and B cell activation occurs, the much greater number
of CD4T cells in the help-unlimited group drives a strong
extrafollicular response. In the help-limited group, by the time
the transferred T cells have undergone an equivalent antigen-
driven expansion, the B cell response is already geared toward
a germinal center reaction.

Our finding that strong extrafollicular alloantibody responses
are capable of independently mediating acute humoral rejection
is likely to be clinically relevant. The transfer of large numbers
of SAP-defective CD4T cells resulted in an initially strong
alloantibody response that effected acute heart graft rejection, but
that thereafter waned, in the absence of a secondary GC response,
according to the natural half-life of immunoglobulin. This may
parallel the decay in alloantibody described in a cohort of patients
whose acute AMR is successfully treated (57). Longer-term
transplant outcomes for this cohort are acceptable, suggesting
that modulation of the humoral alloimmune response to prevent
progression from the extrafollicular to the GC stage may be
critical in preventing development of chronic AMR. Finally,
our description that extrafollicular and GC output is strongly
influenced by the relative proportions of antigen-specific B and
T lymphocytes suggests that particularly strong extrafollicular
responses that mediate acute AMR may develop even when very
few allospecific B cells are initially present, because an abundance
of allospecific helper CD4T cells would drive marked expansion
and plasmablast transformation within the extrafollicular foci.
This could conceivably occur when allospecific CD4T cell
memory responses have been established prior to the transplant
(58, 59), possibly against additional alloantigens expressed on
the graft other than those that are targeted by the allospecific
B cell response (12). In adult human transplant recipients, the
alloresponse is thought to consist principally of recall memory
responses, often because of cross-reactive heterologous immunity
(60, 61). Our ongoing murine experiments are examining
whether stronger extrafollicular alloantibody responses against
one alloantigen develop when help from recall memory
CD4T cells against additional “accessory” alloantigens is also
available.
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Figure S1 | Calculation of relative antibody serum titres. Typical absorbance

versus dilution curves obtained from anti-H-2Kd IgG ELISA assay of serum

samples (left) were subjected to area under the curve analysis and antibody levels

compared to value obtained for control hyperimmune serum (positive control)

(right histogram).

Figure S2 | Absence of homeostatic proliferation of adoptively transferred

TCR75T cells in T cell deficient mice. Representative flow cytometry histogram (of

three independent experiments), gating on CD4+, Thy1.1+, live (7-AAD−),

CFSE-labeled 5 × 105 TCR75 CD4T cells, three days after adoptive transfer into

BL/6 Tcrbd−/− mice.

Figure S3 | Flow cytometric analysis of HEL-specific B and CD4T cells. Flow

cytometric analysis of week 3 spleens for phenotypic characterization of B and T

cells in BL/6 Tcrbd−/− mice immunized with HEL protein and adoptively

transferred with different numbers of HEL-specific SWHEL B cells and TCR7

CD4T cells. Lymphocytes were plotted against B cell (B220) and T cell (CD4)

markers. A HEL-binding gate was applied on the B cell population prior to

quantifying GC B cells (based on GL7 and FAS expression).

Table S1 | Key resources table.
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