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Abstract

In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most
transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In
addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do
not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq) in parallel
with chromatin immunoprecipitation sequencing (ChIP-Seq) of active RNA polymerase II, we compared the nuclear
transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We
demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by
RNA FISH, but differ from steady-state mRNA levels measured by poly(A)-enriched RNA-seq. Highly expressed protein
coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we
observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to
intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group
of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an
opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary
transcripts and the identification of nuclear-retained long non-coding RNAs.
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Introduction

While the full complexity of mammalian transcriptomes has yet

to be characterized, it is clear that far more transcription occurs

than can be accounted for by protein-coding genes alone [1,2,3].

Transcription of both coding and non-coding RNA (ncRNA) by

the eukaryotic RNA polymerase II (RNAPII) complex requires the

co-operation of numerous factors to control polymerase recruit-

ment and promoter escape, transcriptional initiation, elongation

and termination (reviewed in [4]). Each of these distinct stages

represents a potential point at which gene expression can be

regulated. For example, several studies have revealed that RNAPII

is present in higher levels at the 59 end of many eukaryotic genes

compared to the downstream regions of the gene [5,6,7,8], leading

to the idea of promoter-proximal ‘pausing’ or ‘stalling’ of the

transcription complex. Using a global nuclear run-on-sequencing

assay (GRO-Seq) stalled RNAPII associated with the 59 end of

genes was found to be engaged in the production of sense

transcripts downstream of the promoter as well as antisense RNA

upstream of the promoter [9]. Such transcription may play an

important role in transcriptional interference and bystander effects

which have been reported for mammalian genomes

[10,11,12,13,14].

A study of global genome folding revealed that the active and

inactive portions of the genome are individually segregated [15]

consistent with compartmentalisation of transcription in mamma-

lian nuclei. On a smaller scale, the three-dimensional folding of

chromatin in the nucleus is an important factor in regulating gene

expression in a tissue-specific manner [16]. In the developmentally

regulated murine b-globin locus (Hbb), tissue-specific chromatin

loops form between expressed genes and the locus control region

(LCR) located approximately 50 kb upstream [17,18,19]. Similar

chromatin loops have now been identified and implicated in the

regulation of numerous other gene loci, including: the a-globin

locus (Hba), Th2, MHC, IgH, Igk, HoxB1, CFTR, and olfactory

receptor genes [20–27].

The multitude of processes that influence regulation of

transcription impose challenges on the analysis of the transcrip-

tome. In this study we analyse transcriptional output and RNAPII

association in adult mouse anemic spleen erythroid cells by

generating genome-wide nuclear RNA and RNAPII chromatin-
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association [28] profiles. We demonstrate that nucRNA-Seq

provides a representative description of nascent transcription at

erythroid-expressed genes. Through comparative analyses, we

show that high and low transcriptional output correlate with

particular patterns of polymerase occupancy. With integration of

publicly available data, we identify putative regulatory regions and

ncRNAs that are stably retained in the nucleus of erythroid cells.

Results

Nuclear transcriptome generation and validation
RNA-Seq libraries are usually generated from poly(A) positive

RNA isolated from intact cells and thus reflect the steady-state

levels of mRNA present in the cell population [29]. As we wanted

to investigate nascent transcriptional output, we isolated intact

nuclei, purified total nuclear RNA and used random primers for

reverse transcription (RT) to generate cDNA representative of

nuclear RNA (Figure 1). Initial quantitative real-time RT-PCR

(RT-qPCR) quality control performed on nuclear RNA confirmed

that Hba, Slc4a1 and Uros, known erythroid-expressed genes were

represented, while a non-transcribed region of the IgH locus

(VH16) was not detected (Figure 2A). To assess the level of

enrichment for nuclear RNA species, we performed RT-qPCR on

the nuclear and cytoplasmic RNA fractions using exonic and

intronic primer pairs. As expected, we found exonic sequences

were distributed between the two fractions while intronic

sequences were found almost exclusively in the nuclear fraction

(Figure 2B). Furthermore, we found the Air long non-coding RNA

almost exclusively in the nuclear fraction in agreement with the

finding that Air RNA is retained in the nucleus [30,31].

We generated a nuclear transcriptome for adult mouse anemic

spleen erythroid cells by sequencing our validated nuclear RNA

(nucRNA-Seq) using the Illumina paired-end sequencing protocol

(Figure 1). We obtained greater than ten million aligned sequence

pairs from three replicate nucRNA double-stranded cDNA

libraries. As expected, we observed high nucRNA-Seq coverage

(sequence representation) at strongly expressed erythroid-specific

genes, including the adult a-like globin (Hba-a1, Hba-a2) and b-like

globin genes (Hbb-b1 and Hbb-b2), the erythrocyte membrane

protein band 3 (Scl4a1) and hydroxymethylbilane synthase (Hmbs,

selected genes shown in Figure 2C). More moderately expressed

genes such as the heme pathway member Uros (uroporphyrinogen

III synthase) had lower coverage, while the silent, brain-specific

gene Nefm was not enriched above the surrounding intergenic

background coverage.

We calculated the number of reads per kilobase of gene length

per million mapped reads (RPKM) at mouse Ensembl genes for

our three replicate nucRNA-Seq libraries (Table S1) [32]. A

comparison of RPKM values in our three biological replicate

libraries indicated that relative transcript abundance was repro-

ducible between samples (Spearman’s rho .0.8, Figure S1). In

addition we compared the observed coverage and reproducibility

for 48 randomly selected nucRNA-Seq enriched regions to RNA

levels in two independent nuclear RNA preparations by RT-

qPCR. We observed a significant association between RT-qPCR

results and nucRNA-Seq coverage (Figure S2). Considering the

biological replicate nucRNA-Seq libraries individually, we ob-

served highly reproducible coverage for these regions, however as

the association with our RT-qPCR data was seen to be stronger

for the combined nucRNA-Seq data than any of the 3 individual

experiments, the nucRNA-Seq data was considered as one dataset

for the remaining analyses.

NucRNA-Seq coverage reflects primary transcription
levels

To confirm that nucRNA-Seq is indicative of raw transcrip-

tional output, we compared exonic and intronic coverage to

Figure 1. Outline of the experimental strategy. The nuclear
transcriptome as well as RNAPII-associated genomic sequences of
actively transcribing cells are analysed by nucRNA-Seq and RNAPII ChIP-
Seq, respectively, as indicated. Top: schematic representation of
transcription in the nucleus: four transcribing RNAPII complexes
depicted as green shapes are associated with two chromatin fibres,
DNA shown in red and blue, respectively; a third chromatin region,
which is not being transcribed, is shown with DNA in black; histone
complexes are yellow circles, nascent transcripts are shown as thin wavy
lines, colours corresponding to chromatin. The nucRNA-Seq procedure
is outlined on the left; purified nuclear RNA from the two transcribed
regions is shown as wavy or straight lines colour-coded as above, DNA
is depicted as thicker lines, random primers are black arrows, a putative
genomic region with aligned Illumina paired-end (PE) tags signifies
nucRNA-Seq data. The RNAPII ChIP-Seq procedure is outlined on the
right; immunoprecipitated RNAPII-associated nucleosomes are depicted
and colour-coded as above with cross-links as yellow crosses, anti-
RNAPII antibodies are shown as red Y shapes, purified DNA is
represented by thick lines, a putative genomic region with PE tags
signifies RNAPII ChIP-Seq data.
doi:10.1371/journal.pone.0049274.g001
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demonstrate that the sequence data was derived mainly from

unprocessed, immature transcripts. In a hypothetical, completely

unspliced transcript, we would expect the mean exonic and

intronic coverage depths to match, with removal of introns

resulting in an exonic bias (high coverage of exons relative to

introns). As a proof of concept for this hypothesis, we first

compared our nucRNA-Seq dataset to a poly(A) enriched RNA-

Seq dataset from a similar cell type. The G1E cells are committed

erythroid progenitor cells derived from Gata1-null mouse ES cells

[33]. These cells undergo terminal differentiation upon restoration

of Gata1 expression. This is achieved upon treatment with estradiol

(E2) in the G1E-ER4 subline which contains an estrogen-activated

Gata1-estrogen receptor transgene [34,35]. We initially compared

the exonic and intronic coverage in our nucRNA-Seq data with

the intronic and exonic coverage in G1E and G1E-ER4+E2 RNA-

Seq datasets [36]. As expected the G1E and G1E-ER4+E2 RNA-

Seq mapped mainly to exons (85% and 95% exonic respectively)

however our nucRNA-Seq library showed a strong bias toward

intronic reads as introns are generally much larger than exons

(36% exonic).

To provide further evidence that we were capturing primary

transcription, we next investigated the exonic and intronic

coverage in more detail in our nucRNA-Seq library. As true

sequence enrichment can be masked by bias introduced during

alignment against a reference genome [37,38], sequence coverage

was normalised relative to a sequenced genomic input DNA

library in order to assess true biological enrichment (Figure S3).

Unless otherwise stated, all subsequent data is given as fold

enrichment over input. Average nucRNA-Seq coverage at

annotated genes shows a significant correlation between exonic

and intronic regions (Figure 3A, rs = 0.850, 95% CI [0.844, 0.855],

p,0.01). Dividing each gene into 59, body, and 39 thirds, we

observed the association between exonic and intronic coverage

levels to increase in a 59 to 39 direction (59 rs = 0.712, 95% CI

Figure 2. Validation of nuclear RNA material and sequence coverage at selected genes. A) Quantitative PCR validation of transcript
representation for cDNA samples used for construction of nucRNA-Seq libraries (F1.2, F2.2 and F3.2, F4 is the RT- sample for F1.2) relative to the
housekeeping gene Gapdh was confirmed. Error bars depict one standard deviation calculated from three technical replicates. B) Quantitative PCR
validation of nuclear/cytoplasmic fractionation. Nuclear and cytoplasmic RNA was reverse transcribed using random primers to generate cDNA.
Absolute quantities of specific gene regions were determined in these samples by real-time PCR using genomic DNA standard curves. The relative
amount in each fraction per ng of RNA is depicted. We found exonic sequences were distributed between the nuclear and cytoplasmic fractions while
intronic sequences were found almost exclusively in the nuclear fraction. Furthermore, we found Air ncRNA almost exclusively in the nuclear fraction.
C) Shown are selected genes: erythroid-specific (Hba cluster, Hmbs, Uros), ubiquitous (H2afx) and a brain-specific gene, Nefm that is not expressed in
erythroid cells. Nuclear RNA sequence coverage is shown in blue. All genomic regions are depicted from centromere to telomere and the 59 end of
the gene is marked by the gene name.
doi:10.1371/journal.pone.0049274.g002
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[0.702, 0.721], p,0.01; body rs = 0.726, 95% CI [0.716, 0.734],

p,0.01; 39 rs = 0.788, 95% CI [0.781, 0.794], p,0.01), with 59

regions displaying a slight exonic bias (Figure 3A). Both of these

observations are consistent with current models of co-transcrip-

tional splicing [39] and with the conclusion that our nucRNA-Seq

coverage represents nascent transcription.

In addition, we compared the average nucRNA-Seq coverage

depth at 19 erythroid-expressed genes to the transcription

frequency determined by RNA fluorescence in-situ hybridisation

(FISH, Figure 3B, 3C) [40]. We used intronic probes to determine

the number of cells in the population with actively transcribing

alleles for any given gene. Transcription frequency was calculated

as the percentage of expressed alleles in the population, i.e. those

with detectable signals (Table S2). We found a significant log-

linear association between the transcription frequency determined

by RNA FISH and the maximum nucRNA coverage depth

(rs = 0.820, 95% CI [0.582, 0.928], p,0.01). This indicates that

nucRNA quantity is reflective of the frequency at which primary

transcription occurs in the cell population for erythroid-expressed

protein-coding genes (Figure 3B, 3C).

Taken together, our results indicate that nucRNA-Seq data

reflect in vivo primary transcript levels. We were interested to

investigate how different the relative levels of primary transcripts

were compared to total poly(A) positive mRNA. To do this we

compared RPKM coverage over the first exon in our nucRNA-

Seq data to RPKM coverage over the first exon in the G1E and

G1E-ER4+E2 RNA-Seq data (Figure S4). While the correlation

between the two RNA-Seq libraries was quite high (Spearman’s

rho = 0.88) correlation between nucRNA-Seq and RNA-Seq data

was low (Spearman’s rho = 0.25 and 0.30). Specifically we noted

that coverage at exon 1 was more often overrepresented in the

nucRNA-Seq data compared to the RNA-Seq data.

RNAPII ChIP-Seq generation and validation
As our nucRNA-Seq data correlated with in vivo primary

transcript levels we next wanted to investigate the relationship

between nucRNA levels and RNAPII association throughout the

genome. We performed chromatin immunoprecipitation (ChIP) of

the large subunit of the polymerase complex (RPB1) phosphor-

ylated at serine 5 (S5) of the carboxy-terminal domain (CTD). The

RPB1 CTD consists of a heptapeptide repeat of the consensus

sequence YSPTSPS [41] which is unphosphorylated during initial

recruitment to promoters as part of a pre-initiation complex. In

promoter-proximal regions the CTD is phosphorylated on S5

(S5P) which leads to recruitment of the capping enzyme

[42,43,44,45]. The S5P modification of the CTD acquired at

the initiation phase of transcription persists throughout the

transcription cycle as this polymerase form has been found

associated throughout the body of transcribed and poised genes

[46,47,48,49]. In our ChIP experiments we therefore used an

antibody that detects the S5 phosphorylated form of RNAPII. As

part of our initial quality control we assayed fold enrichment in the

RNAPII ChIP sample compared to the input sample by qPCR at

a subset of expressed and non-expressed genes. As expected we

found high levels of enrichment at erythroid-expressed genes and

no enrichment at silent genes (Figure S5).

Sequencing of RNAPII ChIP (ChIP-Seq) using the Illumina

paired-end sequencing protocol produced more than six million

paired, aligned 36 bp sequences from each of the immuno-purified

and genomic input fractions. As expected, and similar to the

nucRNA-Seq coverage, RNAPII was associated with erythroid-

expressed genes (Figure S6). As for nucRNA-Seq, we normalised

the RNAPII ChIP-Seq to the sequenced input in order to assess

true biological enrichment (Figure S3) [37]. At highly expressed

genes (e.g. Slc4a1, Figure S6) we found sequence enrichment in the

RNAPII ChIP-Seq data throughout the entire transcription unit.

This enrichment was also identified throughout the Slc4a1

transcription unit by qPCR (Figure S5).

In order to further validate observed coverage, fold enrichment

over input was assessed by qPCR for 3 independent ChIP

experiments and compared to our sequencing data at the same 48

randomly selected regions used to validate the nucRNA-Seq

coverage. We observed a significant association between the fold

enrichment assessed by qPCR and the RNAPII ChIP-Seq data,

both for maximum coverage depth in the tested amplicon

(rs = 0.683, 95% CI [0.489, 0.812], p,0.01) and for average

coverage depth (rs = 0.668, 95% CI [0.477, 0.799], p,0.01)

(Figure S7).

Figure 3. Sequencing nuclear RNA reflects primary transcrip-
tion at erythroid-expressed genes. A) Exonic vs intronic coverage
for annotated genes in the 59 (red), body (orange) and 39 (yellow)
regions by splitting each gene into equal thirds. B) Examples of RNA
FISH signals for Ank1 and Gypa shown in green, Hbb-b1 is shown in red,
nuclear DAPI staining is shown in blue, scale bar = 1 mm. C)
Transcription frequency determined by RNA FISH compared to gene
coverage in nucRNA-Seq data. We found a significant log-linear
association between the transcription frequency determined by RNA
FISH and the maximum nucRNA coverage depth (rs = 0.820, 95% CI
[0.582, 0.928], p,0.01).
doi:10.1371/journal.pone.0049274.g003
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Comparative analysis of nucRNA-Seq and RNAPII ChIP-
Seq

We next investigated the relationship between RNAPII

association examined by RNAPII ChIP-Seq and transcriptional

output assayed by nucRNA-Seq. Using a 10 kb window, we

compared RNAPII ChIP-Seq and nucRNA-Seq coverage depth

throughout the genome. We identified the highly enriched outliers

in each dataset using the boxplot method (thresholds set as

Q3+(1.56IQR), where Q3 is the upper quartile limit and IQR the

interquartile range). Using these thresholds we defined four classes

of genomic sequences in our data; regions that were highly

RNAPII-bound and transcribed (BT), bound by RNAPII but not

highly transcribed (B), transcribed but not highly RNAPII-

associated (T), and regions that were not highly RNAPII-

associated or transcribed (loBT, Figure 4A). Regions of the

genome falling into the BT and T categories frequently overlapped

Ensembl genes (75 and 94% respectively). In contrast, genomic

regions in the B class were less frequently associated with genic

regions, with only 26.6% of the regions in this class overlapping

with an Ensembl gene. In further data analysis we investigated

RNAPII association and transcriptional output at the genic and

intergenic regions of the genome separately.

RNAPII association and nascent transcription at
annotated genes

To explore the relationship between polymerase association and

nascent transcription for genic regions, we re-defined the BT, B,

T, and loBT classes in our data based on coverage of all Ensembl

genes (NCBIM37, Figure 4B) rather than 10 kb windows. We

identified 369 genes in the B category, 372 in the T and 191 genes

in the BT categories, with the remainder (30480, genes #300 bp

removed) showing lower levels of both polymerase association and

transcription (loBT). These observations are consistent with

current models which show very highly expressed genes to be in

the minority [6,7,9].

Next we calculated the ratio of nucRNA-Seq: RNAPII ChIP-

Seq maximum coverage depth as a measure of polymerase

transcription efficiency. BT genes display a more efficient ratio of

0.936 compared to 0.394 for loBT genes (5% trimmed mean for

each category) suggesting that the observed differences in

transcriptional output are not simply explained by different levels

of RNAPII association. Instead, it appears that polymerase

associated with BT genes is producing RNA more efficiently.

The T group displays the most efficient average nucRNA-Seq:

RNAPII ChIP-Seq ratio of 12.7.

To probe whether there were any functional relationships

behind the differences we observed in transcriptional behaviour,

we compared the Gene Ontology (GO) term enrichments between

the BT, T and B groups using the DAVID (Database for

Annotation, Visualization and Integrated Discovery, Table S3)

[50,51]. As expected, BT was enriched in highly expressed genes

and significantly enriched in erythroid functional categories as well

as DNA replication and DNA packaging GO terms. Anemic

spleen cells are rapidly dividing and would therefore require the

expression of genes associated with DNA replication. The T

category was significantly enriched in translation-related terms

including; ribonucleoprotein complex and ribosomal proteins. The

ribosomal protein genes in the T group may represent those with

increased RNA stability as ribosomal proteins are tightly regulated

both transcriptionally and post-transcriptionally to balance the

production of ribosomal components [52,53]. We also identified

nucRNA coverage at the genes encoding Terc (vertebrate

telomerase RNA), small nucleolar RNAs, signal recognition

particle RNAs, micro RNAs, and small Cajal body-specific RNAs

in the T group of genes suggesting this group is enriched for stable

functional and structural RNAs. We later use this signature to

identify intergenic regions encoding stable nuclear-retained

transcripts (described below). Also included in this group were

rRNAs and 7SK RNAs, which are transcribed by RNAPI and

RNAPIII respectively and are therefore not expected to associate

with RNAPII. B genes seem to be involved in stress responses

(though the enrichments were not significant following multiple

testing correction) and housekeeping functions (cell cycle, trans-

lation), which may point to ‘‘poising’’ of certain genes in readiness

for anticipated functions.

Figure 4. Comparison between RNAPII ChIP-Seq and nucle-
arRNA-Seq coverage. A) RNAPII vs nucRNA scores were calculated as
the maximum coverage depth within non-overlapping 10 kb windows,
normalised to the genomic input score. Threshold values for identifying
highly enriched regions were calculated using the boxplot method
(thresholds set as Q3+(1.56IQR), where Q3 is the upper quartile limit
and IQR the interquartile range) and are represented as black bars.
Windows containing an annotated gene are depicted as black circles,
windows lacking an annotated gene are depicted as red circles. Regions
were classed as either being highly RNAPII-bound and transcribed (BT);
highly transcribed, but with low RNAPII binding (T); or highly bound,
but not highly transcribed (B); low levels of both RNAPII association and
transcription (loBT). B) Scores were calculated for annotated genes only,
as described above.
doi:10.1371/journal.pone.0049274.g004
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As the GO analysis of the B category highlighted stress-response

genes, including heat shock genes which are known to be poised

for activation with polymerase stalled in the promoter-proximal

region [54,55], we calculated ‘‘stalling indices’’ for all annotated

genes by identifying peaks of RNAPII in the promoter-proximal

region [6,8,9,56]. Similar to the work of Zeitlinger et al [8], we

calculated the stalling index as the ratio of the maximum

promoter-proximal (transcription start site, TSS 6300 bp) signal

and the mean body signal, with a high ratio indicating ‘‘stalling’’.

Similar to previous findings [6,8] we found a trend for genes with

high promoter-proximal RNAPII peaks to have significantly lower

levels of nucRNA coverage (p,0.001, Jonckheere-Terpstra test,

Figure 5A). In fact, our data revealed an inverse correlation

between total RNAPII coverage and promoter-proximal RNAPII

peaks with the most highly RNAPII-associated genes having low

stalling indices. This fits with our observation that the most highly

expressed erythroid-specific genes (for example Hba and Slc4a1

Figures S5 and S6) generally contained RNAPII associated

throughout the entire transcription unit.

We also observed similar RNAPII peaks at the 39 end of selected

genes. We applied the same formula to calculate a ‘‘39 end stalling

index’’ for all annotated genes. Similar to the results for promoter-

proximal RNAPII peaks, we found a significant trend for genes

with high 39 end stalling indices to have lower levels of nucRNA

and RNAPII coverage in the gene body (p,0.001, Jonckheere-

Terpstra test, Figure 5B). To further dissect patterns of occupancy,

we compared promoter-proximal and 39 end RNAPII peaks,

identifying 300 genes with promoter, 300 genes with 39 end, and

60 genes with both promoter and 39 end RNAPII peaks

(thresholds set at the 95th percentile, Figures S8 and S9, Table

S4). We observed that the ‘‘double RNAPII peak’’ genes have less

polymerase in the body than other categories, but show equal if

not higher levels of RNA compared to other categories.

Examining the relationship between RNA and polymerase (only

considering the body of the gene to avoid the identified RNAPII

peaks at the 59 and 39 ends) we found that the double RNAPII

peak group produces more RNA per polymerase than the other

categories, with the ratio of RNA to polymerase being significantly

higher (p,0.0001, Kruskal-Wallace ANOVA, Figure 5C). We

conclude that transcription of a gene is clearly not a simple case of

RNA production following polymerase binding, as patterns of

RNAPII occupancy can correlate with transcription negatively (in

the case of ‘‘stalling’’ at either end), or positively (in the case of the

double RNAPII peak genes).

Intergenic RNAPII is associated with regulatory regions
As previously mentioned, we found that intergenic regions of

the genome tended to be associated with RNAPII in the absence of

nuclear RNA (B group, Figure 4A). Previous studies have found

that RNAPII in intergenic regions is associated with enhancer

features [57,58]. One of the most highly RNAPII-bound

intergenic regions is located upstream of the Hbb genes and

overlaps DNase I hypersensitive sites (HS) of the locus control

region (LCR, Figure 6A). The Hbb LCR is a well characterized

enhancer, required for high-level b-globin gene expression and has

been shown to be in close physical proximity with the active Hbb

genes, forming a chromatin loop [17,19,59]. In erythroid cells the

HS of the Hbb LCR are bound by several transcription factors as

well as RNAPII [35,60,61,62,63]. We observed very little

nucRNA in the LCR region suggesting the associated polymerase

is transcribing only at very low levels compared to transcription at

expressed genes [64].

Taking the Hbb LCR as a prototypical example, we investigated

other enhancer features at the regions associated with RNAPII but

Figure 5. RNAPII peaks are associated with both the promoter
and the 39 end of genes. A) Promoter-proximal (6300 bp) stalling
index plotted against RNAPII and nucRNA coverage at annotated genes.
B) 39 end (6300 bp) stalling index plotted against RNAPII and nucRNA
coverage at annotated genes. C) nucRNA to RNAPII coverage ratio for
the promoter (pr), 39 end (39) and double RNAPII peak (pr/39) categories
as well as at genes with low stalling indices at both ends (no).
doi:10.1371/journal.pone.0049274.g005

Nuclear RNA Sequencing of Mouse Erythroid Cells
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not nucRNA in erythroid cells. To delineate these regions we

identified peaks in RNAPII binding using the SISSRs (Site

Identification from Short Sequence Reads) algorithm which was

originally designed to identify transcription factor binding sites

[65]. From the resulting 3118 RNAPII+ peaks we removed those

found to overlap with regions of nucRNA coverage (maximum gap

width 100 bp; minimum size 1000 bp, identified in SeqMonk,

[66]), thereby excluding those peaks in RNAPII binding that were

associated with moderate to abundant transcription. This

narrowed our original candidate list to 1598 RNAPII+/nucRNA-

regions (Table S5). 25.9% of these overlap a TSS (+/2500 bp),

24.9% are found within a gene body, a further 5.3% and 11.4%

are positioned within 10 kb upstream and downstream of a gene,

respectively. The remaining 32.5% are located in intergenic

Figure 6. RNAPII is associated with enhancer regions. A) The Hbb (b-globin) LCR, located upstream of the Hbb genes, contains six characterized
erythroid-specific DNase I hypersensitive sites (HS1-6). Peaks of RNAPII (green) identified using SISSRs overlapped HS1-4. Erythroid-expressed
transcription factors have also been found associated with the LCR, overlapping the HS and RNAPII peaks. RNAPII ChIP sequences are shown in green,
genomic DNA input sequences are shown in black and nucRNA sequences (only three in this region) are shown in blue. B) Distribution of RNAPII+/
nucRNA- peaks relative to annotated genes. Roughly half of the RNAPII peaks identified by SISSRs are located in intergenic regions with 32.5% located
more than 10 kb from an annotated gene (intergenic). C) Overlap of RNAPII+/nucRNA- peaks with erythroid-expressed transcription factors and
conserved regions. D) An RNAPII+/nucRNA- peak 77 kb upstream of the Lmo2 gene overlaps TF binding sites and is homologous to a validated
enhancer identified in the human genome. Enhancer homology regions are indicated by black boxes joined by a line to delineate the human
enhancer construct used in the generation of transgenic mice. NucRNA and RNAPII peaks surrounding the Lmo2 gene are shown in blue and green
respectively.
doi:10.1371/journal.pone.0049274.g006

Nuclear RNA Sequencing of Mouse Erythroid Cells

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e49274



regions, more than 10 kb away from the nearest annotated gene

(at a mean distance of 0.4 Mbp from the nearest transcribed gene,

defined by overlap with a nucRNA enriched region, Figure 6B).

We next investigated these RNAPII+/nucRNA- regions for

additional features associated with regulatory regions. To this end,

we examined the evolutionary sequence conservation around our

candidates, which has been shown to improve identification of

regulatory modules [67,68]. In several studies, intergenic sequenc-

es with high evolutionary sequence conservation have been found

to have enhancer activity in the developing embryo [69], to

demarcate the regulatory elements of the human HBB locus [70],

and to identify regulatory motifs on a genome-wide scale [71,72],

supporting the idea that these regions have regulatory potential.

We calculated the proportion of PhastCons [73] conservation

scores greater than 0.8 in the 1 kb sequence surrounding RNAPII

peak midpoints and found significantly higher conservation at

RNAPII+/nucRNA- regions compared to random regions (Log

Odds ratio = 0.19, p,0.01).

Regulatory potential has been shown to be best predicted when

sequence conservation information is integrated with transcription

factor binding information [68,74,75]. As further validation that

the RNAPII+/nucRNA- regions represented regulatory elements,

we retrieved transcription factor (TF) ChIP-Seq datasets for mouse

erythroid cells and compared RNAPII+/nucRNA- peaks to

regions associated with the transcription factors GATA1, KLF1,

LDB1, TAL1, ETO2 and MTGR1 (summarised in Table S6;

[35,62,63]). After alignment, we identified TF binding peaks using

the SISSRs algorithm [65], and found RNAPII+/nucRNA- peaks

significantly overlapped transcription factor binding sites (for all

TFs combined, Log Odds ratio = 3.04, p,0.0001, Table S7,

Figure 6C). In addition to finding enrichment in individual TF

binding sites within our putative regulatory elements, we also

found that several RNAPII+/nucRNA- regions were bound by

multiple TFs. Restricting our candidate list to an ‘erythroid subset’

(138 regions) which overlapped erythroid-expressed TFs improved

the observed sequence conservation in those regions (Log Odds

ratio = 1.48, p,1.8E-08) which likely indicates regulatory func-

tion. Some notable examples include the TF-bound HS of the Hbb

LCR, a TF-bound validated enhancer upstream of the Lmo2 gene

[76] as well as TF-bound regions upstream of the Pim1 and Klf3

genes (Figure 6D and Figure S10). We also found significant

overlap with p300 (Log Odds ratio = 1.6006, p,0.0001) EN-

CODE ChIP-Seq peaks identified in MEL cells (Tables S6 and S7)

[2]. Peaks of the histone acetyl transferase p300 have been shown

to predict regions with enhancer function in other tissues

[77,78,79].

A large proportion of our RNAPII+/nucRNA- peaks do not

overlap with TF binding sites identified through the transcription

factor ChIP-Seq data for mouse erythroid cells, suggesting that the

current suite of data may not represent all the TFs important in

regulating gene expression in erythroid cells. We sought to

investigate the possibility that the remaining candidates may still

identify TF-bound regulatory regions by conducting a supervised

motif search within these regions using JASPAR [80] TF binding

profiles and the Clover algorithm [81]. To validate our approach,

we first confirmed that the expected motifs were identified in silico

in the ‘erythroid subset’ of RNAPII+/nucRNA- peaks known to

bind erythroid-expressed TFs based on the ChIP-Seq data

available (Table S7). We did identify enrichment in the motifs

for TAL1/GATA1 (raw Clover score 31.9, p,0.001), both of

which are TFs in the ‘erythroid subset’ (Table S8). We also

identified motifs for KLF4 (Clover 40.8, p,0.001) and NFYA

(Clover 7.69, p = 0.001), both known to regulate gene expression

in erythroid cells [82,83]. As the binding matrix for KLF1 (not

contained in the Jaspar database) is highly similar to the binding

matrix for KLF4 [63] and KLF4 expression is lower (nucRNA 1.0

fold enriched over input) than that of KLF1 (nucRNA 4.5 fold

enriched over input) it is likely that enrichment of KLF4 motifs

represents sequences predominantly bound by KLF1 in erythroid

cells. The remaining RNAPII+/nucRNA- peaks contained profiles

for a number of erythroid-expressed TFs including SPI1 [84]

(Clover 133.0, p,0.001) and ETS1 [85] (Clover 26.8, p,0.001)

(Table S9). This inferred TF binding potential further demon-

strates the efficacy of using RNAPII binding to identify potential

regulatory regions [57].

This approach allowed us to infer the involvement of TFs for

which ChIP-Seq data is not available, and showed that RNAPII+/

nucRNA- peaks identify regions under selective pressure contain-

ing binding sites for multiple cell type-specific and basal TFs.

NucRNA-Seq identifies stable, nuclear-retained long non-
coding RNAs

In addition to the RNAPII-associated intergenic regions we also

noticed that a number of intergenic regions are transcribed above

background levels. Many of these transcribed intergenic regions

appeared to be several kilobases in size, potentially representing

long non-coding RNAs (lncRNAs). lncRNAs are emerging as

mediators in the regulation of genome function, alongside and in

combination with epigenetic and transcription factor-based

mechanisms [86,87,88,89]. Many lncRNAs appear to regulate

gene expression, primarily at the level of transcription (e.g. Air or

Xist) [31,87,88,90,91]. We hypothesised that a class of stable

nuclear-retained RNAs could be identified from the nucRNA-Seq

data as intergenic transcription units with promoters bound by

relevant transcription factors.

To obtain as large an initial candidate cohort as possible, we

used the ‘Contig Probe Generator’ feature of SeqMonk [66], to

identify clusters of nucRNA-Seq reads in an unbiased manner. By

inspection, highly expressed genes were best identified allowing for

a maximum 2 kb gap size between nucRNA-Seq reads and

excluding candidates below 4.5 kb. Applying these conditions to

our data, we identified 6,429 semi-contiguous regions of RNA

coverage which did not overlap annotated genes (from an initial

list of 24,396). We observed that low expressed genes were better

identified with a different parameter set (1 kb gap size, 2.5 kb

minimum candidate size, and merging candidates separated by

less than 5 kb), which when applied to our data identified a further

1,154 candidates, yielding a final list of 7,583 candidate regions.

This initial list excluded regions which overlapped annotated

coding regions, pseudogenes, ribosomal RNAs and micro RNAs.

We hypothesised that at least a subset of the candidates could

represent stable, nuclear retained RNA species. We therefore

refined the candidate list to focus on stable lncRNAs by identifying

candidates with relatively high levels of nucRNA-Seq coverage

compared to RNAPII ChIP-Seq coverage. These candidates

would therefore be part of the intergenic ‘‘T’’ subset discussed

earlier. Candidate coverage was quantified as the average

coverage depth, normalized for candidate length and total number

of reads; 305 candidates with a higher nucRNA-Seq to RNAPII

ChIP-Seq coverage ratio were selected (Table S10). From these

305 candidates, 72 (23.6%) overlapped RefSeq annotated ncRNA

features including Malat1, 5830416P10Rik, A130040M12Rik,

Gm1995 and Neat1, 17 (5.5%) overlapped lncRNAs identified by

Guttman et al. 2009 and 36 (12%) overlapped erythroid expressed

lncRNA identified by Hu et al. 2011 [92,93]. Interestingly, our

candidates often consolidated a cluster of previously identified

lncRNAs into a larger transcript, for example the Neat1 transcript

(lncRNA2, Figure S11) [92].
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We selected 12 candidates showing a variety of expression levels

for further validation (Table S11). We first characterized these 12

candidate lncRNAs in terms of their nuclear confinement using

RT-qPCR on nuclear and cytoplasmic RNA fractions. All 12

candidate tested were found to have a preferred nuclear

localisation (Figure 7A). We then assessed the RNA stability of

the 12 RNAs by qRT-PCR following Actinomycin D treatment to

inhibit nascent transcription. All 12 proved to be more stable than

the Myc primary transcript (Figure 7B) and several of the

candidates showed transcript stability similar to Air. Lastly, strand

prediction was done by comparing patterns of H3K4Me3 and

H3K36Me3 histone modifications which are thought to identify

promoter and gene body regions of transcription units, respec-

tively. Data derived from ES cells was used [56] so not all

candidates could be annotated (Table S11). Strand prediction

based on histone modifications was confirmed by RNA FISH in all

candidates. Furthermore, RNA FISH revealed a distribution into

distinct nuclear foci (selected images shown in Figure 7C–F).

Candidate 1, which is by far the most highly expressed of all the

candidates, corresponds to Malat1 and was found distributed in

multiple nuclear foci. Malat1 (Metastasis associated lung adenocarcinoma

transcript 1) is a lncRNA shown to be a post-transcriptional

regulator of transcription in synaptogenesis [89,94], though the

high level of expression in erythroid cells suggests a wider role for

this stable nuclear-retained lncRNA.

Discussion

The recent explosion in the number of genome-wide datasets

has greatly increased our appreciation of transcriptome complexity

and regulation, particularly the role of polymerase distribution,

intergenic regulatory elements and non-coding RNAs. Here we

study transcriptional output in erythroid cells by sequencing

nuclear RNA and chromatin bound by active RNA polymerase II.

We show that nucRNA-Seq identifies mainly unspliced primary

transcripts and is significantly different than poly(A)-enriched

RNA-Seq. Then, we investigated the relationship between

RNAPII occupancy and nucRNA output, identified intergenic

regions of the genome associated with RNAPII which have

characteristics of regulatory regions and identified novel, stable,

nuclear-retained lncRNAs expressed in adult erythroid cells.

Our observations show that a generalized level of RNAPII

occupancy is a poor predictor of expression levels for most

transcription units, with only very highly expressed RNAPII-

transcribed genes showing a correlation between RNAPII

association and transcriptional output. These results suggest that

polymerase occupancy is just one of potentially many factors

influencing the level of transcription of chromatin templates. Peaks

of RNAPII found in promoter-proximal regions have been

suggested to represent paused polymerase and correlate with

lower expression [6,8]. Our analysis confirmed these observations

in that RNAPII peaks at the 59 end of genes generally correlated

with lower expression of the genes. Furthermore, our results show

that genes displaying RNAPII peaks at their 39 ends are also

poorly expressed. We also observed genes with RNAPII peaks

within the gene body suggesting that other pause sites exist which

may impede transcription. It remains to be determined whether or

not these 39 and internal RNAPII peaks actually represent

engaged, paused polymerase. In accordance with these sites as

polymerase pausing locations a study in S. cerevisiae, identifying the

39 ends of nascent transcripts, using the NET-Seq (native

elongating transcript sequencing) technique, identified numerous

pause sites within genes [95].

We also found that accumulation of polymerase at the 59 end of

genes is not always associated with lower expression. In particular,

genes featuring both 59 and 39 RNAPII peaks are more efficiently

transcribed than genes with either peak alone. These peaks of

RNAPII located within both the 59 and 39 regions of the ‘‘double

RNAPII peak’’ genes may reflect a point of chromatin-chromatin

interaction between these two regions allowing both locations to

be captured in the RNAPII pull-down. Gene loop interactions

between the promoter and 39 end of inducible genes in S. cerevisiae

have been associated with more rapid induction of transcription

[96]. Our results indicating that genes displaying both 59 and 39

peaks of RNAPII are more efficiently transcribed suggest that

similar gene loop interactions could occur at selected genes in

higher eukaryotes and that these interactions contribute to

increased gene expression.

Long range chromatin interactions are known to occur between

regulatory regions and active genes [17,19–27]. Our RNAPII

ChIP-seq data identified intergenic regions bound by RNAPII,

erythroid cell-expressed TFs and p300. This approach not only

reveals regulatory regions by virtue of their TF binding properties,

but potentially identifies the subset of regulatory regions physically

associated with transcribing genes and as a result immunoprecip-

Figure 7. Transcribed intergenic regions correspond to long
non-coding RNAs. A) Nuclear vs cytoplasmic distribution for lncRNA
candidates determined by RT-qPCR. B) Stability of nuclear retained
lncRNA candidates was assessed by treatment with ActD for 1 and
4 hrs. Transcript levels were determined by RT-qPCR. Intranuclear
distribution of lncRNA candidates was determined by RNA FISH for: C)
lncRNA1 (Malat1), D) lncRNA2 (Neat1), E) lncRNA9, and F) lncRNA11,
scale bar = 2 mm.
doi:10.1371/journal.pone.0049274.g007
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itated with the anti-RNAPII antibody. In agreement with this

possibility, a subset of neuronal enhancers are bound by RNAPII

[58]. However, in contrast to the neuronal study, we failed to

detect enhancer-associated RNAs [58] in our dataset. We presume

that these RNAs may not have been captured in our library

preparation due to their size, stability or abundance. It has been

shown that HS2 of the human HBB LCR has promoter activity

and the entire LCR region is transcribed [97,98,99,100,101]. It is

likely that the mouse LCR has similar properties and yet we did

not identify significant levels of nucRNA in this region by

nucRNA-Seq suggesting these transcripts are of relatively low

abundance compared with the rest of the nuclear transcriptome. It

should be noted that we cannot distinguish whether RNAPII is

present at these regulatory regions as a result of their close

association with the highly active Hbb gene, synthesis of short-lived

LCR ncRNA, or both. A previous study has identified LCR

transcripts and shown that RNAPII is present at the LCR in

mouse embryonic stem cells which do not express any of the Hbb

genes suggesting the LCR recruits RNAPII independently of and

prior to Hbb gene transcription [102].

In sequencing the nuclear RNA pool we were able to identify

stable, nuclear-retained lncRNAs. These RNA species were found

to be enriched in the nuclear fraction and many are present at low

levels. They are likely to be missed in approaches that isolate total

RNA as the cytoplasmic RNA pool is larger than the nuclear RNA

pool. In comparing to existing sets of lncRNAs identified from

total RNA we found only limited overlap with our set indicating

that by isolating the nuclear pool of RNA we were able to identify

novel nuclear retained transcripts that are masked by the

cytoplasmic pool in other RNA-Seq studies. In support of this

we found that for the 12 candidates we investigated further these

RNAs were found almost exclusively in the nuclear fraction. One

point of note is that in this approach, purely because we exclude

candidates which overlap annotated genes, we overlook antisense

and gene-overlapping lncRNAs. By inspection, such RNAs are still

immediately obvious, the Kcnq1ot1 transcript being one example

(Figure S12). Future experiments using strand-specific methodol-

ogies will help further annotate this part of the nuclear

transcriptome [103,104]. The nuclear-retained non-coding tran-

scripts we identified are relatively stable and show lower

association with RNAPII compared to other protein-coding genes

expressed at similar levels (they are in the T sub-group). This

suggests that they would be less easily identified using genome-

wide techniques that identify nascent transcripts such as the GRO-

Seq, NET-Seq and genome-wide nuclear run-on assays

[9,95,105].

The accurate and thorough characterization of transcriptional

output represents an important step in the understanding of the

regulatory environment in which gene expression occurs for a

particular cell type or induced state [106]. Sequencing the nuclear

transcriptome reveals the relative levels of primary transcripts and

in addition identifies novel nuclear retained lncRNAs not

identified from total RNA-Seq studies. In this study we have

presented a detailed description of the nuclear transcriptome in

erythroid cells, though the methods described here could be

applied to any given cell type or state including disease,

experimentally perturbed states and cell fate changes.

Methods

Tissue collection
We collected spleens of anemic mice (C57BL/6) 5 days after

treating them with phenylhydrazine [107]. The 5 day anemic

spleen was found to be composed of .85% globin-expressing

erythroid cells [40]. We disrupted fresh spleen tissue into a single-

cell suspension in ice-cold phosphate-buffered saline and processed

cells immediately as detailed below. All animal experimental

procedures were carried out under a project license granted from

the Home Office, UK.

RNAPII ChIP-Seq
RNAPII ChIP was carried out as described in Mitchell and

Fraser 2008 [59]. Genome-wide RNAPII association was deter-

mined by sequencing libraries constructed from the RNAPII-S5P

chromatin immunopurified (using Ab5131, Abcam) and genomic

input material.

nucRNA-Seq
Genome-wide transcriptional output was characterized by

sequencing a double-stranded cDNA library constructed from

nuclear RNA (nucRNA). Following a hyper-osmotic swell in

10 mM Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1 M

sucrose, 0.1% Triton X-100 and 0.5 mM DTT, a single cell

suspension was homogenised with a B-type Dounce. Intact nuclei

were then separated from cytoplasmic debris through a 5 mM

MgCl2, 10 mM Tris pH 8.0, 0.5 mM DTT, 0.33 M sucrose

cushion at 300 g and re-suspended in 10 mM Tris-HCl pH 7.5,

10 mM NaCl, 3 mM MgCl2. RNA was purified from nuclear and

cytoplasmic fractions using Trizol LS (Invitrogen) according to the

supplier’s instructions. Purified RNA was treated with 10 U of

DNaseI (Roche) for 20 min at 28uC. RNA quality was verified on

a Bioanalyzer (Agilent). Reverse transcription was performed using

Superscript II (Invitrogen) and 10 mg random hexamer primers

(Roche) per 500 ng RNA. Second strand synthesis was performed

using E. coli RNase H (Ambion) and E. coli DNA Polymerase I

(NEB) as described in Sambrook and Russell 2001 [108].

Sequencing and Data Analysis
Library preparation was performed according to Illumina PE

genomic protocol, incorporating improvements suggested in Quail

et al 2008, with all reactions scaled according to starting DNA

quantity [109,110]. Using the Illumina GA-IIx platform, we

sequenced paired-end 36 bp reads from the generated libraries.

Sequencing data was submitted to the Sequence Read Archive

(SRA, http://www.ebi.ac.uk/ena/data/view/ERP000702). Se-

quences were aligned using Bowtie [111], by suppressing

alignments to only 1 best reportable alignment with a maximum

number of 2 mismatches within 28 nucleotides of seed length in

the high quality end. A gap width of 2500 bp was allowed between

paired end reads. When comparing to G1E and G1E-ER4+E2

RNA-Seq data all reads were mapped as single end reads using the

indicated Bowtie settings. Sequences were visualised using

SeqMonk [66] and the UCSC genome browser. We used the

mouse Ensembl gene annotations throughout (genome version

NCBIM37). Genes smaller than 300 bp were excluded from the

list of genes investigated in the RNAPII stalling section. Peaks were

identified using SISSRs (p,0.001) [65] and SeqMonk [66]. Perl,

Java and R were used for further data processing. SPSS (version

18) was used for statistical analysis as detailed in the text.

Transcript stability assay
Tissue was obtained and disrupted as described above, cultured

for 1 or 4 hours in Dulbecco’s Modified Eagle Medium (Gibco)

supplemented with 10% fetal bovine serum and 10 mg/ml

Actinomycin D (Sigma) with gentle mixing. Nuclear RNA and

cDNA were prepared as detailed above. This cDNA was then used
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to assess the transcript stability in the absence of active

transcription (primer sequences listed in Table S12).

Real-time PCR
All RT-qPCR was carried out using SYBR Green on an ABI

7000 detection system (both Applied Biosystems). Primer sequenc-

es listed in Table S12.

RNA FISH
RNA FISH was carried out as detailed in [112]. Probes were

designed against intronic regions to detect primary transcripts.

Expression was calculated as the percentage of alleles with a

detectable signal in a cell population taken from randomly selected

fields of view. Multiple probes were designed against candidate

lncRNAs and were detected as for intronic probes.

Supporting Information

Figure S1 Reproducibility of nucRNA-Seq coverage.
RPKM values of nucRNA-Seq coverage in three biological

replicate nucRNA-Seq libraries (F1.2, F2.2 and F3.2) are highly

correlated (Spearman’s rho .0.8, p,0.0001). Scales represent

log2 RPKM values taken for Ensembl genes (genome version

NCBIM37), *** indicates p,0.0001, correlation coefficients

represent Spearman’s rho.

(PDF)

Figure S2 RT-qPCR Validation of nucRNA-Seq coverage
for 48 amplicons. Observed coverage in our sequence data for

48 randomly selected nucRNA-enriched regions was validated.

For these regions, we assayed RNA levels by RT-qPCR in two

independent nuclear RNA preparations. We observed a significant

association between both the maximum nucRNA-Seq coverage

depth (Spearman’s rho (rs) = 0.761, 95% CI [0.608, 0.859],

p,0.01) and average coverage depth (rs = 0.781, 95% CI [0.638,

0.871], p,0.01).

(PDF)

Figure S3 Normalising data coverage to input genomic
DNA coverage. A) A SeqMonk screenshot of a 0.5 Mb region

around the Hjurp locus is depicted. Each track contains individual

reads (small blue and red marks) and bars representing quantitated

average coverage depth, non-normalised to input levels, for a 5 kb

sliding window (1 kb step size). False positive enrichment of both

nucRNA-Seq and RNAPII ChIP-Seq coverage can be observed

around the Hjurp locus, in the area where input coverage is

abnormally high. The need for normalisation is demonstrated by

the fact that while clearly the Hjurp gene (centre, blue) is RNAPII

bound and transcribed, it is not bound or transcribed at the levels

indicated by non-normalised measures of coverage. (B and C)

Shows a comparison of non-normalised RNAPII ChIP-Seq (B)

and nucRNA-Seq (C) average coverage depth against the average

input gDNA coverage depth for all annotated genes (NCBIM37),

the middle panel shows a histogram of average coverage depth for

annotated genes. The right histogram shows the same coverage

normalised to the corresponding input value (fold enrichment over

input).

(PDF)

Figure S4 Nuclear RNA-Seq data compared to RNA-Seq
data. RPKM values for exon 1 were compared between erythroid

nucRNA-Seq and two erythroid RNA-Seq (G1E and

G1e_ER4_E2). The two RNA-Seq libraries are highly correlated

(Spearman’s rho 0.88) while the nucRNA-Seq library is less well

correlated (Spearman’s rho 0.25 and 0.30). Scales represent log2

RPKM values taken for Ensembl genes (genome version

NCBIM37), *** indicates p,0.0001.

(PDF)

Figure S5 Real-time PCR validation of RNAPII ChIP
material. Fold enrichment relative to input was determined for

specific gene regions by real-time PCR. We detected reproducibly

high levels of enrichment at erythroid-expressed genes (Hba, Hbb,

Slc4a1, and Hmbs) while non-expressed genes (Nefm and VH16) were

not enriched above background binding relative to the IgG control

material or in relation to the input material. Error bars represent

SEM calculated for 3 technical replicates.

(PDF)

Figure S6 Nuclear RNA and RNAPII ChIP sequencing
tag density at erythroid-expressed genes. Sequence

coverage at the A) Hba and B) Slc4a1 genes.

(PDF)

Figure S7 Validation of RNAPII ChIP-Seq coverage for
48 amplicons. Observed coverage in our sequence data was

validated for the same 48 randomly selected nucRNA-enriched

regions used in Figure S3. For these regions, we assayed fold ChIP

enrichment over input by qPCR in three independent RNAPII

ChIP experiments. We observed a significant association between

the fold enrichment assessed by qPCR and the RNAPII ChIP-Seq

data, both for maximum coverage depth in the tested amplicon

(rs = 0.683, 95% CI [0.489, 0.812], p,0.01) and for average

coverage depth (rs = 0.668, 95% CI [0.477, 0.799], p,0.01).

(PDF)

Figure S8 Stalling categories. We compared promoter

proximal and terminator proximal stalling, identifying 300 genes

with promoter stalling, 300 genes with terminator (39 end) stalling

and 60 genes with both promoter and terminator (39 end) stalling

(thresholds set at the 95th percentile for each category).

(PDF)

Figure S9 RNAPII ChIP-Seq coverage at genes in the
promoter-proximal, 39 end and double RNAPII peak
categories. A) Calm1 displays a promoter-proximal RNAPII

peak, B) Sec14l2 displays a 39 end RNAPII peak, C) Pttg1ip displays

an RNAPII peak in both the promoter-proximal and 39end region.

Sequenced tags are depicted in black, fold enrichment over input

in the promoter-proximal region (+/2300 bp), 39 end (+/

2300 bp) and gene body is shown by grey boxes with numbers

indicating the fold enrichment value in each region. Image

exported from SeqMonk.

(PDF)

Figure S10 Putative regulatory regions upstream of
erythroid expressed genes. A) Two intergenic RNAPII peaks

upstream of the Pim1 gene overlap several TF binding sites. B)

One RNAPII peak upstream of the Klf3 gene overlaps several TF

binding sites.

(TIF)

Figure S11 Stable ncRNA candidates expressed in
erythroid cells. Mouse chr19 is depicted from 5758468–

5875817 (117 kbp) with annotated coding mRNA shown in red

(forward) and blue (reverse) depending on the transcript direction.

Candidate ncRNAs identified by Guttman et al 2009 are indicated

by dark grey boxes. Candidate ncRNAs identified in our study are

indicated by light grey boxes. NucRNA sequences are depicted

below the ncRNA candidates. Image exported from SeqMonk.

(TIF)
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Figure S12 The Kcnq1ot1 ncRNA is detected by nucRNA-
Seq. Mouse chr7 is depicted from 150293116–150612579

(319.46 kbp). Kcnq1 transcripts are depicted with the nucRNA

sequences mapped to this region depicted below. The region of

increased nucRNA levels corresponds to the antisense Kcnq1ot1

trasncript. Image exported from SeqMonk.

(TIF)

Table S1 Number of reads per kilobase of gene length
per million mapped reads (RPKM) in nucRNA-Seq
replicates.
(XLSX)

Table S2 Transcription frequency determined by RNA
FISH.
(DOC)

Table S3 Gene Ontology term enrichments for B, T and
BT gene classes.
(XLSX)

Table S4 RNAPII binding patters, promoter peak,
terminator peak and double peaks.
(XLSX)

Table S5 RNAPII+/nucRNA- peaks.
(XLSX)

Table S6 Transcription factor ChIP-Seq data used.
(DOC)

Table S7 Overlap between ChIP-Seq peaks. Using 1 kb

bins across the genome overlapping regions of RNAPII+/

nucRNA- and all erythroid transcription factors (TFs) or p300

were investigated. Log odds ratios and P values were calculated for

peaks in each of the indicated regions of the genome.

(DOC)

Table S8 Validation of supervised motif analysis;
indentified motifs for RNAPII+/nucRNA- candidates
overlapped by TF binding sites identified through
publicly available ChIP-Seq data.

(DOC)

Table S9 Supervised motif analysis for RNAPII+/
nucRNA- candidates not overlapped by TF binding sites
identified through publicly available ChIP-Seq data.

(DOC)

Table S10 Predicted ncRNA candidates.

(XLSX)

Table S11 Selected long ncRNA candidate regions.

(DOC)

Table S12 RNAPII ChIP-seq and nuRNA-seq validation
primers.

(DOC)
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