Life Sciences Research for Lifelong Health


The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific services.

Individual publications are linked to the website of the journal - subscriptions may be required to view the full text. The database also includes Open Access publications, which can be identified by the icons found on search results.

Open Access symbolWe are working to provide Open Access to as many publications as possible.

'Green' Open Access publications are marked by the PDF icon. Click on the PDF icon, to access a pre-print PDF version of the publication.

​'Gold' Open Access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription.

Title / Authors / Details Open Access Download

Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms.
Hore TA, von Meyenn F, Ravichandran M, Bachman M, Ficz G, Oxley D, Santos F, Balasubramanian S, Jurkowski TP, Reik W

Epigenetic memory, in particular DNA methylation, is established during development in differentiating cells and must be erased to create naïve (induced) pluripotent stem cells. The ten-eleven translocation (TET) enzymes can catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives, thereby actively removing this memory. Nevertheless, the mechanism by which the TET enzymes are regulated, and the extent to which they can be manipulated, are poorly understood. Here we report that retinoic acid (RA) or retinol (vitamin A) and ascorbate (vitamin C) act as modulators of TET levels and activity. RA or retinol enhances 5hmC production in naïve embryonic stem cells by activation of TET2 and TET3 transcription, whereas ascorbate potentiates TET activity and 5hmC production through enhanced Fe(2+) recycling, and not as a cofactor as reported previously. We find that both ascorbate and RA or retinol promote the derivation of induced pluripotent stem cells synergistically and enhance the erasure of epigenetic memory. This mechanistic insight has significance for the development of cell treatments for regenenerative medicine, and enhances our understanding of how intrinsic and extrinsic signals shape the epigenome.

+ View Abstract

Proceedings of the National Academy of Sciences of the United States of America, , 1091-6490, , 2016

PMID: 27729528

Open Access

Norbin Stimulates the Catalytic Activity and Plasma Membrane Localization of the Guanine-Nucleotide Exchange Factor P-Rex1.
Pan D, Barber MA, Hornigold K, Baker MJ, Toth JM, Oxley D, Welch HC

P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates the small G protein (GTPase) Rac1 to control Rac1-dependent cytoskeletal dynamics, and thus cell morphology. Three mechanisms of P-Rex1 regulation are currently known: (i) binding of the phosphoinositide second messenger PIP3, (ii) binding of the Gβγ subunits of heterotrimeric G proteins, and (iii) phosphorylation of various serine residues. Using recombinant P-Rex1 protein to search for new binding partners, we isolated the G-protein coupled receptor (GPCR)-adaptor protein Norbin (Neurochondrin, NCDN) from mouse brain fractions. Coimmunoprecipitation confirmed the interaction between overexpressed P-Rex1 and Norbin in COS-7 cells, as well as between endogenous P-Rex1 and Norbin in HEK-293 cells. Binding assays with purified recombinant proteins showed that their interaction is direct, and mutational analysis revealed that the PH domain of P-Rex1 is required. Rac-GEF activity assays with purified recombinant proteins showed that direct interaction with Norbin increases the basal, PIP3- and Gβγ-stimulated Rac-GEF activity of P-Rex1. Pak-CRIB pull-down assays demonstrated that Norbin promotes the P-Rex1 mediated activation of endogenous Rac1 upon stimulation of HEK-293 cells with lysophosphatidic acid. Finally, immunofluorescence microscopy and subcellular fractionation showed that coexpression of P-Rex1 and Norbin induces a robust translocation of both proteins from the cytosol to the plasma membrane, as well as promoting cell spreading, lamellipodia formation and membrane ruffling, cell morphologies generated by active Rac1. In summary, we have identified a novel mechanism of P-Rex1 regulation through the GPCR-adaptor protein Norbin, a direct P-Rex1 interacting protein that promotes the Rac-GEF activity and membrane localization of P-Rex1.

+ View Abstract

The Journal of biological chemistry, , 1083-351X, , 2016

PMID: 26792863

Open Access

Elf5-centered transcription factor hub controls trophoblast stem cell self-renewal and differentiation through stoichiometry-sensitive shifts in target gene networks.
Latos PA, Sienerth AR, Murray A, Senner CE, Muto M, Ikawa M, Oxley D, Burge S, Cox BJ, Hemberger M

Elf5 is a transcription factor with pivotal roles in the trophoblast compartment, where it reinforces a trophoblast stem cell (TSC)-specific transcriptional circuit. However, Elf5 is also present in differentiating trophoblast cells that have ceased to express other TSC genes such as Cdx2 and Eomes. In the present study, we aimed to elucidate the context-dependent role of Elf5 at the interface between TSC self-renewal and the onset of differentiation. We demonstrate that precise levels of Elf5 are critical for normal expansion of the TSC compartment and embryonic survival, as Elf5 overexpression triggers precocious trophoblast differentiation. Through integration of protein interactome, transcriptome, and genome-wide chromatin immunoprecipitation data, we reveal that this abundance-dependent function is mediated through a shift in preferred Elf5-binding partners; in TSCs, Elf5 interaction with Eomes recruits Tfap2c to triply occupied sites at TSC-specific genes, driving their expression. In contrast, the Elf5 and Tfap2c interaction becomes predominant as their protein levels increase. This triggers binding to double- and single-occupancy sites that harbor the cognate Tfap2c motif, causing activation of the associated differentiation-promoting genes. These data place Elf5 at the center of a stoichiometry-sensitive transcriptional network, where it acts as a molecular switch governing the balance between TSC proliferation and differentiation.

+ View Abstract

Genes & development, , 1549-5477, , 2015

PMID: 26584622

Open Access

Fgf and Esrrb integrate epigenetic and transcriptional networks that regulate self-renewal of trophoblast stem cells.
Latos PA, Goncalves A, Oxley D, Mohammed H, Turro E, Hemberger M

Esrrb (oestrogen-related receptor beta) is a transcription factor implicated in embryonic stem (ES) cell self-renewal, yet its knockout causes intrauterine lethality due to defects in trophoblast development. Here we show that in trophoblast stem (TS) cells, Esrrb is a downstream target of fibroblast growth factor (Fgf) signalling and is critical to drive TS cell self-renewal. In contrast to its occupancy of pluripotency-associated loci in ES cells, Esrrb sustains the stemness of TS cells by direct binding and regulation of TS cell-specific transcription factors including Elf5 and Eomes. To elucidate the mechanisms whereby Esrrb controls the expression of its targets, we characterized its TS cell-specific interactome using mass spectrometry. Unlike in ES cells, Esrrb interacts in TS cells with the histone demethylase Lsd1 and with the RNA Polymerase II-associated Integrator complex. Our findings provide new insights into both the general and context-dependent wiring of transcription factor networks in stem cells by master transcription factors.

+ View Abstract

Nature communications, 6, 2041-1723, 7776, 2015

PMID: 26206133

Open Access

DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome.
Najas S, Arranz J, Lochhead PA, Ashford AL, Oxley D, Delabar JM, Cook SJ, Barallobre MJ, Arbonés ML

Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia) cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome.

+ View Abstract

EBioMedicine, 2, 2352-3964, 120-34, 2015

PMID: 26137553

Open Access

Resetting transcription factor control circuitry toward ground-state pluripotency in human.
Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W, Reik W, Bertone P, Smith A

Current human pluripotent stem cells lack the transcription factor circuitry that governs the ground state of mouse embryonic stem cells (ESC). Here, we report that short-term expression of two components, NANOG and KLF2, is sufficient to ignite other elements of the network and reset the human pluripotent state. Inhibition of ERK and protein kinase C sustains a transgene-independent rewired state. Reset cells self-renew continuously without ERK signaling, are phenotypically stable, and are karyotypically intact. They differentiate in vitro and form teratomas in vivo. Metabolism is reprogrammed with activation of mitochondrial respiration as in ESC. DNA methylation is dramatically reduced and transcriptome state is globally realigned across multiple cell lines. Depletion of ground-state transcription factors, TFCP2L1 or KLF4, has marginal impact on conventional human pluripotent stem cells but collapses the reset state. These findings demonstrate feasibility of installing and propagating functional control circuitry for ground-state pluripotency in human cells.

+ View Abstract

Cell, 158, 1097-4172, 1254-69, 2014

PMID: 25215486

Open Access

The nuclear exosome is active and important during budding yeast meiosis.
Frenk S, Oxley D, Houseley J

Nuclear RNA degradation pathways are highly conserved across eukaryotes and play important roles in RNA quality control. Key substrates for exosomal degradation include aberrant functional RNAs and cryptic unstable transcripts (CUTs). It has recently been reported that the nuclear exosome is inactivated during meiosis in budding yeast through degradation of the subunit Rrp6, leading to the stabilisation of a subset of meiotic unannotated transcripts (MUTs) of unknown function. We have analysed the activity of the nuclear exosome during meiosis by deletion of TRF4, which encodes a key component of the exosome targeting complex TRAMP. We find that TRAMP mutants produce high levels of CUTs during meiosis that are undetectable in wild-type cells, showing that the nuclear exosome remains functional for CUT degradation, and we further report that the meiotic exosome complex contains Rrp6. Indeed Rrp6 over-expression is insufficient to suppress MUT transcripts, showing that the reduced amount of Rrp6 in meiotic cells does not directly cause MUT accumulation. Lack of TRAMP activity stabilises ∼ 1600 CUTs in meiotic cells, which occupy 40% of the binding capacity of the nuclear cap binding complex (CBC). CBC mutants display defects in the formation of meiotic double strand breaks (DSBs), and we see similar defects in TRAMP mutants, suggesting that a key function of the nuclear exosome is to prevent saturation of the CBC complex by CUTs. Together, our results show that the nuclear exosome remains active in meiosis and has an important role in facilitating meiotic recombination.

+ View Abstract

PloS one, 9, 1932-6203, e107648, 2014

PMID: 25210768

Open Access

The uses and limitations of the analysis of cellular phosphoinositides by lipidomic and imaging methodologies.
Wakelam MJ

The advent of mass spectrometric methods has facilitated the determination of multiple molecular species of cellular lipid classes including the polyphosphoinositides, though to date methods to analyse and quantify each of the individual three PtdInsP and three PtdInsP2 species are lacking. The use of imaging methods has allowed intracellular localization of the phosphoinositide classes but this methodology does not determine the acyl structures. The range of molecular species suggests a greater complexity in polyphosphoinositide signaling than yet defined but elucidating this will require further method development to be achieved. This article is part of a Special Issue entitled Tools to study lipid functions.

+ View Abstract

Biochimica et biophysica acta, 1841, 0006-3002, 1102-7, 2014

PMID: 24769341

Open Access

The immune system GTPase GIMAP6 interacts with the Atg8 homologue GABARAPL2 and is recruited to autophagosomes.
Pascall JC, Rotondo S, Mukadam AS, Oxley D, Webster J, Walker SA, Piron J, Carter C, Ktistakis NT, Butcher GW

The GIMAPs (GTPases of the immunity-associated proteins) are a family of small GTPases expressed prominently in the immune systems of mammals and other vertebrates. In mammals, studies of mutant or genetically-modified rodents have indicated important roles for the GIMAP GTPases in the development and survival of lymphocytes. No clear picture has yet emerged, however, of the molecular mechanisms by which they perform their function(s). Using biotin tag-affinity purification we identified a major, and highly specific, interaction between the human cytosolic family member GIMAP6 and GABARAPL2, one of the mammalian homologues of the yeast autophagy protein Atg8. Chemical cross-linking studies performed on Jurkat T cells, which express both GIMAP6 and GABARAPL2 endogenously, indicated that the two proteins in these cells readily associate with one another in the cytosol under normal conditions. The GIMAP6-GABARAPL2 interaction was disrupted by deletion of the last 10 amino acids of GIMAP6. The N-terminal region of GIMAP6, however, which includes a putative Atg8-family interacting motif, was not required. Over-expression of GIMAP6 resulted in increased levels of endogenous GABARAPL2 in cells. After culture of cells in starvation medium, GIMAP6 was found to localise in punctate structures with both GABARAPL2 and the autophagosomal marker MAP1LC3B, indicating that GIMAP6 re-locates to autophagosomes on starvation. Consistent with this finding, we have demonstrated that starvation of Jurkat T cells results in the degradation of GIMAP6. Whilst these findings raise the possibility that the GIMAPs play roles in the regulation of autophagy, we have been unable to demonstrate an effect of GIMAP6 over-expression on autophagic flux.

+ View Abstract

PloS one, 8, 1932-6203, e77782, 2013

PMID: 24204963

Open Access

A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation.
Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ, Andrews S, Balasubramanian S, Reik W

DNA methylation (5mC) plays important roles in epigenetic regulation of genome function. Recently, TET hydroxylases have been found to oxidise 5mC to hydroxymethylcytosine (5hmC), formylcytosine (5fC) and carboxylcytosine (5caC) in DNA. These derivatives have a role in demethylation of DNA but in addition may have epigenetic signaling functions in their own right. A recent study identified proteins which showed preferential binding to 5-methylcytosine (5mC) and its oxidised forms, where readers for 5mC and 5hmC showed little overlap, and proteins bound to further oxidation forms were enriched for repair proteins and transcription regulators. We extend this study by using promoter sequences as baits and compare protein binding patterns to unmodified or modified cytosine using DNA from mouse embryonic stem cell extracts.

+ View Abstract

Genome biology, 14, 1465-6914, R119, 2013

PMID: 24156278

Open Access

FGF Signaling Inhibition in ESCs Drives Rapid Genome-wide Demethylation to the Epigenetic Ground State of Pluripotency.
G Ficz, TA Hore, F Santos, HJ Lee, W Dean, J Arand, F Krueger, D Oxley, YL Paul, J Walter, SJ Cook, S Andrews, MR Branco, W Reik

Genome-wide erasure of DNA methylation takes place in primordial germ cells (PGCs) and early embryos and is linked with pluripotency. Inhibition of Erk1/2 and Gsk3β signaling in mouse embryonic stem cells (ESCs) by small-molecule inhibitors (called 2i) has recently been shown to induce hypomethylation. We show by whole-genome bisulphite sequencing that 2i induces rapid and genome-wide demethylation on a scale and pattern similar to that in migratory PGCs and early embryos. Major satellites, intracisternal A particles (IAPs), and imprinted genes remain relatively resistant to erasure. Demethylation involves oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), impaired maintenance of 5mC and 5hmC, and repression of the de novo methyltransferases (Dnmt3a and Dnmt3b) and Dnmt3L. We identify a Prdm14- and Nanog-binding cis-acting regulatory region in Dnmt3b that is highly responsive to signaling. These insights provide a framework for understanding how signaling pathways regulate reprogramming to an epigenetic ground state of pluripotency.

+ View Abstract

Cell stem cell, 13, 3, 351-9, 2013

PMID: 23850245
DOI: 10.1016/j.stem.2013.06.004

Open Access

Regulation of lineage specific DNA hypomethylation in mouse trophectoderm.
Oda M, Oxley D, Dean W, Reik W

DNA methylation is reprogrammed during early embryogenesis by active and passive mechanisms in advance of the first differentiation event producing the embryonic and extraembryonic lineage cells which contribute to the future embryo proper and to the placenta respectively. Embryonic lineage cells re-acquire a highly methylated genome dependent on the DNA methyltransferases (DNMTs) Dnmt3a and Dnmt3b that are required for de novo methylation. By contrast, extraembryonic lineage cells remain globally hypomethylated but the mechanisms that underlie this hypomethylation remain unknown.

+ View Abstract

PloS one, 8, 1932-6203, e68846, 2013

PMID: 23825703

Open Access

Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring.
Langie SA, Achterfeldt S, Gorniak JP, Halley-Hogg KJ, Oxley D, van Schooten FJ, Godschalk RW, McKay JA, Mathers JC

The mechanisms through which environmental and dietary factors modulate DNA repair are still unclear but may include dysregulation of gene expression due to altered epigenetic markings. In a mouse model, we investigated the effect of maternal folate depletion during pregnancy and lactation, and high-fat feeding from weaning, on base excision repair (BER) and DNA methylation and expression of selected BER-related genes in the brain of adult offspring. While folate depletion did not affect BER activity of the mothers, BER increased in the offspring at weaning (P=0.052). In the long term, as observed in 6-mo-old offspring, the double insult, i.e., maternal low-folate supply and high-fat feeding from weaning, decreased BER activity significantly in the cortex, cerebellum, hippocampus, and subcortical regions (P≤0.017). This fall in BER activity was associated with small changes in methylation or expression of BER-related genes. Maternal folate depletion led to slightly increased oxidative DNA damage levels in subcortical regions of adult offspring, which may increase sensitivity to oxidative stress and predispose to neurological disorders. In summary, our data suggest that low-folate supply during early life may leave an epigenetic mark that can predispose the offspring to further dietary insults, causing adverse effects during adult life.

+ View Abstract

FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 27, 1530-6860, 3323-34, 2013

PMID: 23603834

p38α MAPK regulates adult muscle stem cell fate by restricting progenitor proliferation during postnatal growth and repair.
Brien P, Pugazhendhi D, Woodhouse S, Oxley D, Pell JM

Stem cell function is essential for the maintenance of adult tissue homeostasis. Controlling the balance between self-renewal and differentiation is crucial to maintain a receptive satellite cell pool capable of responding to growth and regeneration cues. The mitogen-activated protein kinase p38α has been implicated in the regulation of these processes but its influence in adult muscle remains unknown. Using conditional satellite cell p38α knockout mice we have demonstrated that p38α restricts excess proliferation in the postnatal growth phase while promoting timely myoblast differentiation. Differentiation was still able to occur in the p38α-null satellite cells, however, but was delayed. An absence of p38α resulted in a postnatal growth defect along with the persistence of an increased reservoir of satellite cells into adulthood. This population was still capable of responding to cardiotoxin-induced injury, resulting in complete, albeit delayed, regeneration, with further enhancement of the satellite cell population. Increased p38γ phosphorylation accompanied the absence of p38α, and inhibition of p38γ ex vivo substantially decreased the myogenic defect. We have used genome-wide transcriptome analysis to characterize the changes in expression that occur between resting and regenerating muscle, and the influence p38α has on these expression profiles. This study provides novel evidence for the fundamental role of p38α in adult muscle homeostasis in vivo.

+ View Abstract

Stem cells (Dayton, Ohio), 31, 1549-4918, 1597-610, 2013

PMID: 23592450

DNA methylation profiles define stem cell identity and reveal a tight embryonic-extraembryonic lineage boundary.
CE Senner, F Krueger, D Oxley, S Andrews, M Hemberger

Embryonic (ES) and epiblast (EpiSC) stem cells are pluripotent but committed to an embryonic lineage fate. Conversely, trophoblast (TS) and extraembryonic endoderm (XEN) stem cells contribute predominantly to tissues of the placenta and yolk sac, respectively. Here we show that each of these four stem cell types is defined by a unique DNA methylation profile. Despite their distinct developmental origin, TS and XEN cells share key epigenomic hallmarks, chiefly characterized by robust DNA methylation of embryo-specific developmental regulators, as well as a subordinate role of 5-hydroxymethylation. We also observe a substantial methylation reinforcement of pre-existing epigenetic repressive marks that specifically occurs in extraembryonic stem cells compared to in vivo tissue, presumably due to continued high Dnmt3b expression levels. These differences establish a major epigenetic barrier between the embryonic and extraembryonic stem cell types. In addition, epigenetic lineage boundaries also separate the two extraembryonic stem cell types by mutual repression of key lineage-specific transcription factors. Thus, global DNA methylation patterns are a defining feature of each stem cell type that underpin lineage commitment and differentiative potency of early embryo-derived stem cells. Our detailed methylation profiles identify a cohort of developmentally regulated sequence elements, such as orphan CpG islands, that will be most valuable to uncover novel transcriptional regulators and pivotal "gatekeeper" genes in pluripotency and lineage differentiation.

+ View Abstract

Stem cells (Dayton, Ohio), 30, 12, 2732-45, 2012

PMID: 23034951
DOI: 10.1002/stem.1249

Open Access

Protein identification by MALDI-TOF mass spectrometry.
Webster J, Oxley D

MALDI-TOF mass spectrometers are now commonplace and their relative ease of use means that most non-specialist labs can readily access the technology for the rapid and sensitive analysis of biomolecules. One of the main uses of MALDI-TOF-MS is in the identification of proteins, by peptide mass fingerprinting (PMF). Here we describe a simple protocol that can be performed in a standard biochemistry laboratory, whereby proteins separated by 1D or 2D gel electrophoresis can be identified at femtomole levels. The procedure involves excision of the spot or band from the gel, washing and destaining, reduction and alkylation, in-gel trypsin digestion, MALDI-TOF-MS of the tryptic peptides and database searching of the PMF data. Up to 96 protein samples can easily be manually processed at one time by this method.

+ View Abstract

Methods in molecular biology (Clifton, N.J.), 800, 1940-6029, 227-40, 2012

PMID: 21964792

A novel foregut mucin characterized by a murine monoclonal autoantibody.
Binos S, Royce SG, Oxley D, Bacic A, Bhathal PS, Underwood JR

Autoantibodies to gastric cellular antigens and glycoproteins including mucins and Lewis X and Y antigens have been implicated in the induction of autoimmune gastritis. Monoclonal antibody D10 (D10 MAb) recognizes a highly conserved mucin expressed in the foregut of mammals and other vertebrates. The objective of this study was to biochemically characterize the autoantigen identified by D10 MAb and examine its autoimmunogenicity in the mouse. Characterization of the mucin autoantigen was undertaken following purification, by amino acid and carbohydrate analyses, deglycosylation, SDS-PAGE, and immunoblotting using D10 MAb. Autoimmune reactivity and specificity of D10 MAb were validated by immunohistochemistry and ELISA using mouse tissue. Induction of autoimmune gastritis was investigated following immunization of mice with D10 MAb-reactive heterologous mucin. D10 MAb was shown to be a murine anti-mucin autoantibody with a unique pattern of immunohistochemical staining of Brunner's glands of the duodenum and the cardiac glands, mucous neck cells, and pyloric glands of the stomach from inbred Balb/c mice in patterns identical to that previously reported in human tissue. Amino acid and carbohydrate analysis of purified D10 mucin reflected a compositional profile of a typical mucin molecule. Confirmation that D10 MAb recognizes a mucin was also provided by demonstration that the carbohydrate epitope resides on a high molecular weight (>1x10(6)Da), high-density (>1.40 g/mL) molecule comprised of greater than 60% carbohydrate. Mice immunized with D10 MAb-reactive, purified, heterologous mucin produced autoantibodies of identical specificity to the original D10 MAb. These data demonstrate the autoimmunogenic properties of a novel foregut mucin and raise the potential of anti-mucin autoantibodies in the induction of autoimmune gastritis.

+ View Abstract

Hybridoma (2005), 29, 1557-8348, 87-100, 2010

PMID: 20455280

Fission yeast Iec1-ino80-mediated nucleosome eviction regulates nucleotide and phosphate metabolism.
CJ Hogan, S Aligianni, M Durand-Dubief, J Persson, WR Will, J Webster, L Wheeler, CK Mathews, S Elderkin, D Oxley, K Ekwall, PD Varga-Weisz

Ino80 is an ATP-dependent nucleosome-remodeling enzyme involved in transcription, replication, and the DNA damage response. Here, we characterize the fission yeast Ino80 and find that it is essential for cell viability. We show that the Ino80 complex from fission yeast mediates ATP-dependent nucleosome remodeling in vitro. The purification of the Ino80-associated complex identified a highly conserved complex and the presence of a novel zinc finger protein with similarities to the mammalian transcriptional regulator Yin Yang 1 (YY1) and other members of the GLI-Krüppel family of proteins. Deletion of this Iec1 protein or the Ino80 complex subunit arp8, ies6, or ies2 causes defects in DNA damage repair, the response to replication stress, and nucleotide metabolism. We show that Iec1 is important for the correct expression of genes involved in nucleotide metabolism, including the ribonucleotide reductase subunit cdc22 and phosphate- and adenine-responsive genes. We find that Ino80 is recruited to a large number of promoter regions on phosphate starvation, including those of phosphate- and adenine-responsive genes that depend on Iec1 for correct expression. Iec1 is required for the binding of Ino80 to target genes and subsequent histone loss at the promoter and throughout the body of these genes on phosphate starvation. This suggests that the Iec1-Ino80 complex promotes transcription through nucleosome eviction.

+ View Abstract

Molecular and cellular biology, 30, 3, 657-74, 2010

PMID: 19933844
DOI: 10.1128/MCB.01117-09

Open Access

Immunoglobulin aggregation leading to Russell body formation is prevented by the antibody light chain.
D Corcos, MJ Osborn, LS Matheson, F Santos, X Zou, JA Smith, G Morgan, A Hutchings, M Hamon, D Oxley, M Brüggemann

Russell bodies (RBs) are intracellular inclusions filled with protein aggregates. In diverse lymphoid disorders these occur as immunoglobulin (Ig) deposits, accumulating in abnormal plasma or Mott cells. In heavy-chain deposition disease truncated antibody heavy-chains (HCs) are found, which bear a resemblance to diverse polypeptides produced in Ig light-chain (LC)-deficient (L(-/-)) mice. In L(-/-) animals, the known functions of LC, providing part of the antigen-binding site of an antibody and securing progression of B-cell development, may not be required. Here, we show a novel function of LC in preventing antibody aggregation. L(-/-) mice produce truncated HC naturally, constant region (C)gamma and Calpha lack C(H)1, and Cmicro is without C(H)1 or C(H)1 and C(H)2. Most plasma cells found in these mice are CD138(+) Mott cells, filled with RBs, formed by aggregation of HCs of different isotypes. The importance of LC in preventing HC aggregation is evident in knock-in mice, expressing Cmicro without C(H)1 and C(H)2, which only develop an abundance of RBs when LC is absent. These results reveal that preventing antibody aggregation is a major function of LC, important for understanding the physiology of heavy-chain deposition disease, and in general recognizing the mechanisms, which initiate protein conformational diseases.

+ View Abstract

Blood, 115, 2, 282-8, 2010

PMID: 19822901
DOI: 10.1182/blood-2009-07-234864

Light chain-deficient mice produce novel multimeric heavy-chain-only IgA by faulty class switching.
LS Matheson, MJ Osborn, JA Smith, D Corcos, M Hamon, R Chaouaf, J Coadwell, G Morgan, D Oxley, M Brüggemann

Recently, we identified that diverse heavy chain (H-chain)-only IgG is spontaneously produced in light chain (L-chain)-deficient mice (L(-/-) with silenced kappa and lambda loci) despite a block in B cell development. In murine H-chain IgG, the first Cgamma exon, C(H)1, is removed after DNA rearrangement and secreted polypeptides are comparable with camelid-type H-chain IgG. Here we show that L(-/-) mice generate a novel class of H-chain Ig with covalently linked alpha chains, not identified in any other healthy mammal. Surprisingly, diverse H-chain-only IgA can be released from B cells at levels similar to conventional IgA and is found in serum and sometimes in milk and saliva. Surface IgA without L-chain is expressed in B220(+) spleen cells, which exhibited a novel B cell receptor, suggesting that associated conventional differentiation events occur. To facilitate the cellular transport and release of H-chain-only IgA, chaperoning via BiP association seems to be prevented as only alpha chains lacking C(H)1 are released from the cell. This appears to be accomplished by imprecise class-switch recombination (CSR) from Smu into the alpha constant region, which removes all or part of the Calpha1 exon at the genomic level.

+ View Abstract

International immunology, 21, 8, 957-66, 2009

PMID: 19561045
DOI: 10.1093/intimm/dxp062

Effect of enzymatic deimination on the conformation of recombinant prion protein.
DS Young, F Meersman, D Oxley, J Webster, AC Gill, I Bronstein, CR Lowe, DV Dear

Deimination is the post-translational conversion of arginine residues to citrulline. It has been implicated as a causative factor in autoimmune diseases such as multiple sclerosis and rheumatoid arthritis and more recently, as a marker of neurodegeneration. We have investigated the effect of the post-translational modification of arginine residues on the structure of recombinant ovine prion protein. Deiminated prion protein exhibited biophysical properties characteristic of the scrapie-associated conformer of prion protein viz. an increased beta-sheet secondary structure, congophilic structures indicative of amyloid and proteinase K resistance which could be templated onto normal unmodified prion protein. In the light of these findings, a potential role of post-translational modifications to prion protein in disease initiation or propagation is discussed.

+ View Abstract

Biochimica et biophysica acta, 1794, 8, 1123-33, 2009

PMID: 19341825
DOI: 10.1016/j.bbapap.2009.03.013

The equatorial subsegment in mammalian spermatozoa is enriched in tyrosine phosphorylated proteins.
R Jones, PS James, D Oxley, J Coadwell, F Suzuki-Toyota, EA Howes

The equatorial subsegment (EqSS) was originally identified by atomic force microscopy as a discrete region within the equatorial segment of Artiodactyl spermatozoa. In this investigation, we show that the EqSS is enriched in tyrosine phosphorylated proteins and present preliminary evidence for its presence in mouse and rat spermatozoa. The anti-phosphotyrosine monoclonal antibody (McAb) 4G10 bound strongly and discretely to the EqSS of permeabilized boar, ram, and bull spermatozoa. It also bound to a small patch on the posterior acrosomal region of permeabilized mouse and rat spermatozoa, suggesting that the EqSS is not restricted to the order Artiodactyla. An anti-HSPA1A (formerly Hsp70) antibody recognized the EqSS in boar spermatozoa. Immunogold labeling with McAb 4G10 localized the tyrosine phosphorylated proteins to the outer acrosomal membrane. This was verified by freeze-fracture electron microscopy, which identified the EqSS in three overlying membranes, the plasma membrane, outer acrosomal membrane, and inner acrosomal membrane. In all five species, tyrosine phosphorylated proteins became restricted to the EqSS during sperm maturation in the epididymis. The major tyrosine phosphorylated proteins in the EqSS of boar and ram spermatozoa were identified by mass spectrometry as orthologs of human SPACA1 (formerly SAMP32). Immunofluorescence with a specific polyclonal antibody localized SPACA1 to the equatorial segment in boar spermatozoa. We speculate that the EqSS is an organizing center for assembly of multimolecular complexes that initiate fusion competence in this area of the plasma membrane following the acrosome reaction.

+ View Abstract

Biology of reproduction, 79, 3, 421-31, 2008

PMID: 18448843
DOI: 10.1095/biolreprod.107.067314

Heavy chain-only antibodies are spontaneously produced in light chain-deficient mice.
X Zou, MJ Osborn, DJ Bolland, JA Smith, D Corcos, M Hamon, D Oxley, A Hutchings, G Morgan, F Santos, PJ Kilshaw, MJ Taussig, AE Corcoran, M Brüggemann

In healthy mammals, maturation of B cells expressing heavy (H) chain immunoglobulin (Ig) without light (L) chain is prevented by chaperone association of the H chain in the endoplasmic reticulum. Camelids are an exception, expressing homodimeric IgGs, an antibody type that to date has not been found in mice or humans. In camelids, immunization with viral epitopes generates high affinity H chain-only antibodies, which, because of their smaller size, recognize clefts and protrusions not readily distinguished by typical antibodies. Developmental processes leading to H chain antibody expression are unknown. We show that L(-/-) (kappa(-/-)lambda(-/-)-deficient) mice, in which conventional B cell development is blocked at the immature B cell stage, produce diverse H chain-only antibodies in serum. The generation of H chain-only IgG is caused by the loss of constant (C) gamma exon 1, which is accomplished by genomic alterations in C(H)1-circumventing chaperone association. These mutations can be attributed to errors in class switch recombination, which facilitate the generation of H chain-only Ig-secreting plasma cells. Surprisingly, transcripts with a similar deletion can be found in normal mice. Thus, naturally occurring H chain transcripts without C(H)1 (V(H)DJ(H)-hinge-C(H)2-C(H)3) are selected for and lead to the formation of fully functional and diverse H chain-only antibodies in L(-/-) animals.

+ View Abstract

The Journal of experimental medicine, 204, 13, 3271-83, 2007

PMID: 18086860
DOI: 10.1084/jem.20071155

Open Access

Characterisation of secreted polysaccharides and (glyco)proteins from suspension cultures of Pyrus communis.
Webster JM, Oxley D, Pettolino FA, Bacic A

High molecular weight material recovered from the culture filtrate of cell suspension cultured Pyrus communis was composed of 81% carbohydrate, 13% protein and 5% inorganic material. This material was separated into three fractions (one neutral (Fraction A) and two acidic (Fractions B and C)), by anion-exchange chromatography on DEAE-Sepharose CL-6B using a gradient of imidazole-HCl at pH 7.0. The monosaccharide and linkage composition of each fraction was determined after carboxyl reduction of uronic acid residues. From the combined results of the carbohydrate analyses, we conclude that the high molecular weight extracellular material consists of three major and two minor polysaccharides: a (fucogalacto)xyloglucan (36%) in the unbound neutral Fraction A; a type II arabinogalactan (as an arabinogalactan-protein, 29%) and an acidic (glucurono)arabinoxylan (2%) in Fraction B; and a galacturonan (33%) and a trace of heteromannan in Fraction C. The main amino acids in the proteins were Glx, Thr, Ser, Hyp/Pro and Gly. Further separation of Fraction B by solvent partition, SDS-PAGE and analysis by LC-MS/MS identified the major proteins as two chitanases, two thaumatin-like proteins, a beta-1,3-glucanase, an extracellular dermal glycoprotein and a pathogenesis-related protein.

+ View Abstract

Phytochemistry, 69, 0031-9422, 873-81, 2008

PMID: 18037144

Independent protein-profiling studies show a decrease in apolipoprotein A1 levels in schizophrenia CSF, brain and peripheral tissues.
JT Huang, L Wang, S Prabakaran, M Wengenroth, HE Lockstone, D Koethe, CW Gerth, S Gross, D Schreiber, K Lilley, M Wayland, D Oxley, FM Leweke, S Bahn

Although some insights into the etiology of schizophrenia have been gained, an understanding of the illness at the molecular level remains elusive. Recent advances in proteomic profiling offer great promise for the discovery of markers underlying pathophysiology of diseases. In the present study, we employed two high-throughput proteomic techniques together with traditional methods to investigate cerebrospinal fluid (CSF), brain and peripheral tissues (liver, red blood cells and serum) of schizophrenia patients in an attempt to identify peripheral/surrogate disease markers. The cohorts used to investigate each tissue were largely independent, although some CSF and serum samples were collected from the same patient. To address the major confounding factor of antipsychotic drug treatment, we also included a large cohort of first-onset drug-naive patients. Apolipoprotein A1 (apoA1) showed a significant decrease in expression in schizophrenia patients compared to controls in all five tissues examined. Specifically, using SELDI-TOF mass spectrometry, apoA1 was found decreased in CSF from schizophrenia patients (-35%, P=0.00001) and, using 2D-DIGE, apoA1 was also found downregulated in liver (-30%, P=0.02) and RBCs (-60%, P=0.003). Furthermore, we found a significant reduction of apoA1 in sera of first-onset drug-naive schizophrenia patients using enzyme-linked immunosorbent assay (-18%, P=0.00008) and in two investigations of post-mortem brain tissue using western blot analysis (-35%, P=0.05; -51%, P=0.05). These results show that apoA1 is consistently downregulated in the central nervous system as well as peripheral tissues of schizophrenia patients and may be linked to the underlying disease mechanism.

+ View Abstract

Molecular psychiatry, 13, 12, 1118-28, 2008

PMID: 17938634
DOI: 10.1038/