Life Sciences Research for Lifelong Health

Publications

The Babraham Institute Publications database contains details of all publications resulting from our research groups and scientific services.

Individual publications are linked to the website of the journal - subscriptions may be required to view the full text. The database also includes Open Access publications, which can be identified by the icons found on search results.

Open Access symbolWe are working to provide Open Access to as many publications as possible.

'Green' Open Access publications are marked by the PDF icon. Click on the PDF icon, to access a pre-print PDF version of the publication.

​'Gold' Open Access publications have the gold open padlock icon. You can read the full version of these papers on the publishing journal’s website without a subscription.
 

Title / Authors / Details Open Access Download

Inflammation-induced formation of fat-associated lymphoid clusters.
Bénézech C, Luu NT, Walker JA, Kruglov AA, Loo Y, Nakamura K, Zhang Y, Nayar S, Jones LH, Flores-Langarica A, McIntosh A, Marshall J, Barone F, Besra G, Miles K, Allen JE, Gray M, Kollias G, Cunningham AF, Withers DR, Toellner KM, Jones ND, Veldhoen M, Nedospasov SA, McKenzie AN, Caamaño JH

Fat-associated lymphoid clusters (FALCs) are a type of lymphoid tissue associated with visceral fat. Here we found that the distribution of FALCs was heterogeneous, with the pericardium containing large numbers of these clusters. FALCs contributed to the retention of B-1 cells in the peritoneal cavity through high expression of the chemokine CXCL13, and they supported B cell proliferation and germinal center differentiation during peritoneal immunological challenges. FALC formation was induced by inflammation, which triggered the recruitment of myeloid cells that expressed tumor-necrosis factor (TNF) necessary for signaling via the TNF receptors in stromal cells. Natural killer T cells (NKT cells) restricted by the antigen-presenting molecule CD1d were likewise required for the inducible formation of FALCs. Thus, FALCs supported and coordinated the activation of innate B cells and T cells during serosal immune responses.

+ View Abstract

Nature immunology, , 1529-2916, , 2015

PMID: 26147686


DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome.
Najas S, Arranz J, Lochhead PA, Ashford AL, Oxley D, Delabar JM, Cook SJ, Barallobre MJ, Arbonés ML

Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia) cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome.

+ View Abstract

EBioMedicine, 2, 2352-3964, 120-34, 2015

PMID: 26137553


Open Access

Influence of nutrient-derived metabolites on lymphocyte immunity.
Veldhoen M, Ferreira C

Organisms need to protect themselves against potential dangers from their surroundings, yet they require constant and intimate interactions with the same environment for their survival. The immune system is instrumental for protection against invading organisms and their toxins. The immune system consists of many cell types and is highly integrated within other tissues. Immune activity is particularly enriched at surfaces that separate the host from its environment, such as the skin and the gastrointestinal tract. This enables protection at sites directly at risk but also enables environmental factors to influence the maturation and function of immune structures and cells. Recent work has indicated that the diet in particular is able to influence the immune system and thus affect the development of inflammatory disease. This review aims to highlight recent work on how external factors, with a focus on those derived from the diet such as vitamin A, can have a direct or indirect deterministic influence on the activity and function of immunity.

+ View Abstract

Nature medicine, , 1546-170X, , 2015

PMID: 26121194


The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment.
Pajic M, Herrmann D, Vennin C, Conway JR, Chin VT, Johnsson AE, Welch HC, Timpson P

Numerous large scale genomics studies have demonstrated that cancer is a molecularly heterogeneous disease, characterized by acquired changes in the structure and DNA sequence of tumor genomes. More recently, the role of the equally complex tumor microenvironment in driving the aggressiveness of this disease is increasingly being realized. Tumor cells are surrounded by activated stroma, creating a dynamic environment that promotes cancer development, metastasis and chemoresistance. The Rho family of small GTPases plays an essential role in the regulation of cell shape, cytokinesis, cell adhesion, and cell motility. Importantly, these processes need to be considered in the context of a complex 3-dimensional (3D) environment, with reciprocal feedback and cross-talk taking place between the tumor cells and host environment. Here we discuss the role of molecular networks involving Rho GTPases in cancer, and the therapeutic implications of inhibiting Rho signaling in both cancer cells and the emerging concept of targeting the surrounding stroma.

+ View Abstract

Small GTPases, , 2154-1256, 1-11, 2015

PMID: 26103062


Open Access

5-Formylcytosine can be a stable DNA modification in mammals.
Bachman M, Uribe-Lewis S, Yang X, Burgess HE, Iurlaro M, Reik W, Murrell A, Balasubramanian S

5-Formylcytosine (5fC) is a rare base found in mammalian DNA and thought to be involved in active DNA demethylation. Here, we show that developmental dynamics of 5fC levels in mouse DNA differ from those of 5-hydroxymethylcytosine (5hmC), and using stable isotope labeling in vivo, we show that 5fC can be a stable DNA modification. These results suggest that 5fC has functional roles in DNA that go beyond being a demethylation intermediate.

+ View Abstract

Nature chemical biology, 11, 1552-4469, 555-7, 2015

PMID: 26098680


PI3K inhibitors in inflammation, autoimmunity and cancer.
Stark AK, Sriskantharajah S, Hessel EM, Okkenhaug K

The healthy immune system protects against infection and malignant transformation without causing significant damage to host tissues. Immune dysregulation results in diverse pathologies including autoimmune disease, chronic inflammatory disorders, allergies as well as immune deficiencies and cancer. Phosphoinositide 3-kinase (PI3K) signalling has been shown to be a key pathway in the regulation of the immune response and continues to be the focus of intense research. In recent years we have gained detailed understanding of PI3K signalling, and saw the development of potent and highly selective small molecule inhibitors, of which several are currently in clinical trials for the treatment of immune-related disorders and cancer. The role of PI3K signalling in the immune response has been the subject of detailed reviews; here we focus on relevant recent progress in pre-clinical and clinical development of PI3K inhibitors.

+ View Abstract

Current opinion in pharmacology, 23, 1471-4973, 82-91, 2015

PMID: 26093105


Open Access

JSBML 1.0: providing a smorgasbord of options to encode systems biology models.
Rodriguez N, Thomas A, Watanabe L, Vazirabad IY, Kofia V, Gómez HF, Mittag F, Matthes J, Rudolph J, Wrzodek F, Netz E, Diamantikos A, Eichner J, Keller R, Wrzodek C, Fröhlich S, Lewis NE, Myers CJ, Le Novère N, Palsson BØ, Hucka M, Dräger A

JSBML, the official pure Java programming library for the Systems Biology Markup Language (SBML) format, has evolved with the advent of different modeling formalisms in systems biology and their ability to be exchanged and represented via extensions of SBML. JSBML has matured into a major, active open-source project with contributions from a growing, international team of developers who not only maintain compatibility with SBML, but also drive steady improvements to the Java interface and promote ease-of-use with end users.

+ View Abstract

Bioinformatics (Oxford, England), , 1367-4811, , 2015

PMID: 26079347


Open Access

Forget the Parents: Epigenetic Reprogramming in Human Germ Cells.
von Meyenn F, Reik W

Epigenetic reprogramming in the germline resets genomic potential and erases epigenetic memory. Three studies by Gkountela et al., Guo et al., and Tang et al. analyze the transcriptional and epigenetic landscape of human primordial germ cells, revealing a unique transcriptional network and progressive and conserved global erasure of DNA methylation.

+ View Abstract

Cell, 161, 1097-4172, 1248-51, 2015

PMID: 26046435


Short-term diabetic hyperglycemia suppresses celiac ganglia neurotransmission, thereby impairing sympathetically mediated glucagon responses.
Mundinger TO, Cooper E, Coleman MP, Taborsky GJ

Short-term hyperglycemia suppresses superior cervical ganglia neurotransmission. If this ganglionic dysfunction also occurs in the islet sympathetic pathway, sympathetically mediated glucagon responses could be impaired. Our objectives were 1) to test for a suppressive effect of 7 days of streptozotocin (STZ) diabetes on celiac ganglia (CG) activation and on neurotransmitter and glucagon responses to preganglionic nerve stimulation, 2) to isolate the defect in the islet sympathetic pathway to the CG itself, and 3) to test for a protective effect of the WLD(S) mutation. We injected saline or nicotine in nondiabetic and STZ-diabetic rats and measured fos mRNA levels in whole CG. We electrically stimulated the preganglionic or postganglionic nerve trunk of the CG in nondiabetic and STZ-diabetic rats and measured portal venous norepinephrine and glucagon responses. We repeated the nicotine and preganglionic nerve stimulation studies in nondiabetic and STZ-diabetic WLD(S) rats. In STZ-diabetic rats, the CG fos response to nicotine was suppressed, and the norepinephrine and glucagon responses to preganglionic nerve stimulation were impaired. In contrast, the norepinephrine and glucagon responses to postganglionic nerve stimulation were normal. The CG fos response to nicotine, and the norepinephrine and glucagon responses to preganglionic nerve stimulation, were normal in STZ-diabetic WLD(S) rats. In conclusion, short-term hyperglycemia's suppressive effect on nicotinic acetylcholine receptors of the CG impairs sympathetically mediated glucagon responses. WLD(S) rats are protected from this dysfunction. The implication is that this CG dysfunction may contribute to the impaired glucagon response to insulin-induced hypoglycemia seen early in type 1 diabetes.

+ View Abstract

American journal of physiology. Endocrinology and metabolism, 309, 1522-1555, E246-55, 2015

PMID: 26037249


Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression.
Strogantsev R, Krueger F, Yamazawa K, Shi H, Gould P, Goldman-Roberts M, McEwen K, Sun B, Pedersen R, Ferguson-Smith AC

Selective maintenance of genomic epigenetic imprints during pre-implantation development is required for parental origin-specific expression of imprinted genes. The Kruppel-like zinc finger protein ZFP57 acts as a factor necessary for maintaining the DNA methylation memory at multiple imprinting control regions in early mouse embryos and embryonic stem (ES) cells. Maternal-zygotic deletion of ZFP57 in mice presents a highly penetrant phenotype with no animals surviving to birth. Additionally, several cases of human transient neonatal diabetes are associated with somatic mutations in the ZFP57 coding sequence.

+ View Abstract

Genome biology, 16, 1474-760X, 112, 2015

PMID: 26025256


Open Access

The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells.
Khor B, Gagnon JD, Goel G, Roche MI, Conway KL, Tran K, Aldrich LN, Sundberg TB, Paterson AM, Mordecai S, Dombkowski D, Schirmer M, Tan PH, Bhan AK, Roychoudhuri R, Restifo NP, O'Shea JJ, Medoff BD, Shamji AF, Schreiber SL, Sharpe AH, Shaw SY, Xavier RJ

The balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation. Thus, DYRK1A represents a novel mechanistic node at the branch point between commitment to either Treg or Th17 lineages. Importantly, both Treg cells generated using the DYRK1A inhibitor harmine and direct administration of harmine itself potently attenuate inflammation in multiple experimental models of systemic autoimmunity and mucosal inflammation. Our results identify DYRK1A as a physiologically relevant regulator of Treg cell differentiation and suggest a broader role for other DYRK family members in immune homeostasis. These results are discussed in the context of human diseases associated with dysregulated DYRK activity.

+ View Abstract

eLife, 4, 2050-084X, , 2015

PMID: 25998054


Open Access

Data Resource Profile: Accessible Resource for Integrated Epigenomic Studies (ARIES).
Relton CL, Gaunt T, McArdle W, Ho K, Duggirala A, Shihab H, Woodward G, Lyttleton O, Evans DM, Reik W, Paul YL, Ficz G, Ozanne SE, Wipat A, Flanagan K, Lister A, Heijmans BT, Ring SM, Davey Smith G

International journal of epidemiology, 44, 1464-3685, 1181-90, 2015

PMID: 25991711


Open Access

3D genome architecture from populations to single cells.
Furlan-Magaril M, Várnai C, Nagano T, Fraser P

Dominated by microscopy for decades the nuclear genome organization field has recently undergone a dramatic transition fuelled by new next generation sequencing technologies that are beginning to bridge the gap between microscopic observations and molecular scale studies. It is no longer in doubt that the nucleus is spatially compartmentalized and that the genome organization with respect to these compartments is cell type specific. However, it is still unclear if and how this organization contributes to genome function, or whether it is simply a consequence of it. This uncertainty is partly due to the cell-to-cell variability of genome organization, but also due to limitations of the measurement techniques and the scale of the problem at hand. Here we discuss some of the exciting recent progress made towards understanding three-dimensional genome architecture and function.

+ View Abstract

Current opinion in genetics & development, 31, 1879-0380, 36-41, 2015

PMID: 25966907


Regulation and Function of P-Rex Family Rac-GEFs.
Welch HC

The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gβγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signalling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue. Deregulation of P-Rex1 and P-Rex2 expression occurs in many types of cancer, and P-Rex2 is frequently mutated in melanoma. Both GEFs promote tumour growth or metastasis. This review critically evaluates the P-Rex literature and tools available and highlights exciting recent developments and open questions.

+ View Abstract

Small GTPases, , 2154-1256, 0, 2015

PMID: 25961466


Open Access

Generation of functionally distinct isoforms of PTBP3 by alternative splicing and translation initiation.
Tan LY, Whitfield P, Llorian M, Monzon-Casanova E, Diaz-Munoz MD, Turner M, Smith CW

Polypyrimidine tract binding protein (PTBP1) is a widely expressed RNA binding protein that acts as a regulator of alternative splicing and of cytoplasmic mRNA functions. Vertebrates contain two closely-related paralogs with >75% amino acid sequence identity. Early replacement of PTBP1 by PTBP2 during neuronal differentiation causes a concerted set of splicing changes. By comparison, very little is known about the molecular functions or physiological roles of PTBP3, although its expression and conservation throughout the vertebrates suggest a role in haematopoietic cells. To begin to understand its functions we have characterized the mRNA and protein isoform repertoire of PTBP3. Combinatorial alternative splicing events at the 5' end of the gene allow for the generation of eight mRNA and three major protein isoforms. Individual mRNAs generate up to three protein isoforms via alternative translation initiation by re-initiation and leaky scanning using downstream AUG codons. The N-terminally truncated PTBP3 isoforms lack nuclear localization signals and/or most of the RRM1 domain and vary in their RNA binding properties and nuclear/cytoplasmic distribution, suggesting that PTBP3 may have major post-transcriptional cytoplasmic roles. Our findings set the stage for understanding the non-redundant physiological roles of PTBP3.

+ View Abstract

Nucleic acids research, , 1362-4962, , 2015

PMID: 25940628


Open Access

Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C.
Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L, Wingett SW, Andrews S, Grey W, Ewels PA, Herman B, Happe S, Higgs A, LeProust E, Follows GA, Fraser P, Luscombe NM, Osborne CS

Transcriptional control in large genomes often requires looping interactions between distal DNA elements, such as enhancers and target promoters. Current chromosome conformation capture techniques do not offer sufficiently high resolution to interrogate these regulatory interactions on a genomic scale. Here we use Capture Hi-C (CHi-C), an adapted genome conformation assay, to examine the long-range interactions of almost 22,000 promoters in 2 human blood cell types. We identify over 1.6 million shared and cell type-restricted interactions spanning hundreds of kilobases between promoters and distal loci. Transcriptionally active genes contact enhancer-like elements, whereas transcriptionally inactive genes interact with previously uncharacterized elements marked by repressive features that may act as long-range silencers. Finally, we show that interacting loci are enriched for disease-associated SNPs, suggesting how distal mutations may disrupt the regulation of relevant genes. This study provides new insights and accessible tools to dissect the regulatory interactions that underlie normal and aberrant gene regulation.

+ View Abstract

Nature genetics, , 1546-1718, , 2015

PMID: 25938943


Open Access

Keeping methylation at bay.
Kelsey G

A hallmark of CpG islands is their unmethylated state, and determining how DNA methylation can invade these elements is therefore important for understanding developmental gene regulation and disease. A new study shows that FBXL10, a protein commonly altered by mutation in leukemia, is part of a mechanism that blocks methylation of CpG islands.

+ View Abstract

Nature genetics, 47, 1546-1718, 427-8, 2015

PMID: 25916897


Lineage relationship of CD8(+) T cell subsets is revealed by progressive changes in the epigenetic landscape.
Crompton JG, Narayanan M, Cuddapah S, Roychoudhuri R, Ji Y, Yang W, Patel SJ, Sukumar M, Palmer DC, Peng W, Wang E, Marincola FM, Klebanoff CA, Zhao K, Tsang JS, Gattinoni L, Restifo NP

To better elucidate epigenetic mechanisms that correlate with the dynamic gene expression program observed upon T-cell differentiation, we investigated the genomic landscape of histone modifications in naive and memory CD8(+) T cells. Using a ChIP-Seq approach coupled with global gene expression profiling, we generated genome-wide histone H3 lysine 4 (H3K4me3) and H3 lysine 27 (H3K27me3) trimethylation maps in naive, T memory stem cells, central memory cells, and effector memory cells in order to gain insight into how histone architecture is remodeled during T cell differentiation. We show that H3K4me3 histone modifications are associated with activation of genes, while H3K27me3 is negatively correlated with gene expression at canonical loci and enhancers associated with T-cell metabolism, effector function, and memory. Our results also reveal histone modifications and gene expression signatures that distinguish the recently identified T memory stem cells from other CD8(+) T-cell subsets. Taken together, our results suggest that CD8(+) lymphocytes undergo chromatin remodeling in a progressive fashion. These findings have major implications for our understanding of peripheral T-cell ontogeny and the formation of immunological memory.Cellular & Molecular Immunology advance online publication, 27 April 2015; doi:10.1038/cmi.2015.032.

+ View Abstract

Cellular & molecular immunology, , 2042-0226, , 2015

PMID: 25914936


Helsinki alert of biodiversity and health.
von Hertzen L, Beutler B, Bienenstock J, Blaser M, Cani PD, Eriksson J, Färkkilä M, Haahtela T, Hanski I, Jenmalm MC, Kere J, Knip M, Kontula K, Koskenvuo M, Ling C, Mandrup-Poulsen T, von Mutius E, Mäkelä MJ, Paunio T, Pershagen G, Renz H, Rook G, Saarela M, Vaarala O, Veldhoen M, de Vos WM

Urban living in built environments, combined with the use of processed water and food, may not provide the microbial stimulation necessary for a balanced development of immune function. Many chronic inflammatory disorders, including allergic, autoimmune, metabolic, and even some behavioural disorders, are linked to alteration in the human commensal microbiota. Sedentary lifestyle is associated with reduced exposure to a broad spectrum of environmental micro-organisms and surplus energy balance, both risk factors of chronic inflammatory disorders. According to the Biodiversity Hypothesis, an environment with diverse macrobiota and microbiota modifies and enriches the human microbiota, which in turn is crucial in the development and maintenance of appropriate immune function. These issues were discussed in the symposium 'Chronic Inflammation, Lifestyle and Environment', held in Helsinki, 20-22 August 2014, under the sponsorship of the Yrjö Jahnsson Foundation. This paper briefly outlines the recent findings in the context of the environment, lifestyle, and health; discusses the forces that undermine immune tolerance in urban environments; and highlights the possibilities to restore broken immune tolerance among urban dwellers, summarizing the main messages in four statements and calling for actions to combat major public health threats.

+ View Abstract

Annals of medicine, , 1365-2060, 1-8, 2015

PMID: 25904094


Accumulation of an Endogenous Tryptophan-Derived Metabolite in Colorectal and Breast Cancers.
Puccetti P, Fallarino F, Italiano A, Soubeyran I, MacGrogan G, Debled M, Velasco V, Bodet D, Eimer S, Veldhoen M, Prendergast GC, Platten M, Bessede A, Guillemin GJ

Tumor immune escape mechanisms are being regarded as suitable targets for tumor therapy. Among these, tryptophan catabolism plays a central role in creating an immunosuppressive environment, leading to tolerance to potentially immunogenic tumor antigens. Tryptophan catabolism is initiated by either indoleamine 2,3-dioxygenase (IDO-1/-2) or tryptophan 2,3-dioxygenase 2 (TDO2), resulting in biostatic tryptophan starvation and l-kynurenine production, which participates in shaping the dynamic relationship of the host's immune system with tumor cells. Current immunotherapy strategies include blockade of IDO-1/-2 or TDO2, to restore efficient antitumor responses. Patients who might benefit from this approach are currently identified based on expression analyses of IDO-1/-2 or TDO2 in tumor tissue and/or enzymatic activity assessed by kynurenine/tryptophan ratios in the serum. We developed a monoclonal antibody targeting l-kynurenine as an in situ biomarker of IDO-1/-2 or TDO2 activity. Using Tissue Micro Array technology and immunostaining, colorectal and breast cancer patients were phenotyped based on l-kynurenine production. In colorectal cancer l-kynurenine was not unequivocally associated with IDO-1 expression, suggesting that the mere expression of tryptophan catabolic enzymes is not sufficiently informative for optimal immunotherapy.

+ View Abstract

PloS one, 10, 1932-6203, e0122046, 0

PMID: 25881064


Open Access

5-hydroxymethylcytosine marks promoters in colon that resist DNA hypermethylation in cancer.
Uribe-Lewis S, Stark R, Carroll T, Dunning MJ, Bachman M, Ito Y, Stojic L, Halim S, Vowler SL, Lynch AG, Delatte B, de Bony EJ, Colin L, Defrance M, Krueger F, Silva AL, Ten Hoopen R, Ibrahim AE, Fuks F, Murrell A

The discovery of cytosine hydroxymethylation (5hmC) as a mechanism that potentially controls DNA methylation changes typical of neoplasia prompted us to investigate its behaviour in colon cancer. 5hmC is globally reduced in proliferating cells such as colon tumours and the gut crypt progenitors, from which tumours can arise.

+ View Abstract

Genome biology, 16, 1474-760X, 69, 2015

PMID: 25853800


Open Access

Absence of SARM1 rescues development and survival of NMNAT2-deficient axons.
Gilley J, Orsomando G, Nascimento-Ferreira I, Coleman MP

SARM1 function and nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) loss both promote axon degeneration, but their relative relationship in the process is unknown. Here, we show that NMNAT2 loss and resultant changes to NMNAT metabolites occur in injured SARM1-deficient axons despite their delayed degeneration and that axon degeneration specifically induced by NMNAT2 depletion requires SARM1. Strikingly, SARM1 deficiency also corrects axon outgrowth in mice lacking NMNAT2, independently of NMNAT metabolites, preventing perinatal lethality. Furthermore, NAMPT inhibition partially restores outgrowth of NMNAT2-deficient axons, suggesting that the NMNAT substrate, NMN, contributes to this phenotype. NMNAT2-depletion-dependent degeneration of established axons and restricted extension of developing axons are thus both SARM1 dependent, and SARM1 acts either downstream of NMNAT2 loss and NMN accumulation in a linear pathway or in a parallel branch of a convergent pathway. Understanding the pathway will help establish relationships with other modulators of axon survival and facilitate the development of effective therapies for axonopathies.

+ View Abstract

Cell reports, 10, 2211-1247, 1974-81, 2015

PMID: 25818290


Open Access

Annual meeting of the EpiGeneSys Network of Excellence - Advancing epigenetics towards systems biology.
Houseley J, Hill CS, Rugg-Gunn PJ

The third annual meeting of the EpiGeneSys network brought together epigenetics and systems biologists to report on collaborative projects that apply quantitative approaches to understanding complex epigenetic processes. The figure shown represents one meeting highlight, which was the unexpected emergence of genotype versus epigenotype in control of cell state.

+ View Abstract

BioEssays, 2015, , , , 2015

PMID: 25776341

DOI: 10.1002/bies.201500015


Open Access

Autophagy Controls Acquisition of Aging Features in Macrophages.
Stranks AJ, Hansen AL, Panse I, Mortensen M, Ferguson DJ, Puleston DJ, Shenderov K, Watson AS, Veldhoen M, Phadwal K, Cerundolo V, Simon AK

Macrophages provide a bridge linking innate and adaptive immunity. An increased frequency of macrophages and other myeloid cells paired with excessive cytokine production is commonly seen in the aging immune system, known as 'inflamm-aging'. It is presently unclear how healthy macrophages are maintained throughout life and what connects inflammation with myeloid dysfunction during aging. Autophagy, an intracellular degradation mechanism, has known links with aging and lifespan extension. Here, we show for the first time that autophagy regulates the acquisition of major aging features in macrophages. In the absence of the essential autophagy gene Atg7, macrophage populations are increased and key functions such as phagocytosis and nitrite burst are reduced, while the inflammatory cytokine response is significantly increased - a phenotype also observed in aged macrophages. Furthermore, reduced autophagy decreases surface antigen expression and skews macrophage metabolism toward glycolysis. We show that macrophages from aged mice exhibit significantly reduced autophagic flux compared to young mice. These data demonstrate that autophagy plays a critical role in the maintenance of macrophage homeostasis and function, regulating inflammation and metabolism and thereby preventing immunosenescence. Thus, autophagy modulation may prevent excess inflammation and preserve macrophage function during aging, improving immune responses and reducing the morbidity and mortality associated with inflamm-aging. © 2015 S. Karger AG, Basel.

+ View Abstract

Journal of innate immunity, , 1662-8128, , 2015

PMID: 25764971


Open Access

Promoting Coordinated Development of Community-Based Information Standards for Modeling in Biology: The COMBINE Initiative.
Hucka M, Nickerson DP, Bader GD, Bergmann FT, Cooper J, Demir E, Garny A, Golebiewski M, Myers CJ, Schreiber F, Waltemath D, Le Novère N

The Computational Modeling in Biology Network (COMBINE) is a consortium of groups involved in the development of open community standards and formats used in computational modeling in biology. COMBINE's aim is to act as a coordinator, facilitator, and resource for different standardization efforts whose domains of use cover related areas of the computational biology space. In this perspective article, we summarize COMBINE, its general organization, and the community standards and other efforts involved in it. Our goals are to help guide readers toward standards that may be suitable for their research activities, as well as to direct interested readers to relevant communities where they can best expect to receive assistance in how to develop interoperable computational models.

+ View Abstract

Frontiers in bioengineering and biotechnology, 3, 2296-4185, 19, 2015

PMID: 25759811


Open Access